Sulfide precipitation is an effective method for treating acidic heavy metal wastewater.However,the process often generates tiny particles with poor settling performance.The factors and mechanisms influencing particle...Sulfide precipitation is an effective method for treating acidic heavy metal wastewater.However,the process often generates tiny particles with poor settling performance.The factors and mechanisms influencing particle size and settling performance remain unclear.In this study,the growth behavior of CuS particles generated by two sulfide precipitation methods,gas-liquid and liquid-liquid sulfidation,was investigated.The effects of acidity,sulfur-to-copper molar ratio,and temperature on particle size were analyzed.The results showed that increasing the temperature had an adverse effect on CuS particle growth.Additionally,we found that acidity and sulfur-to-copper molar ratio had a more significant impact on particle growth in the liquid-liquid sulfidation system than in the gas-liquid sulfidation system.Based on supersaturation calculations and XPS analysis,it is found that particle growth in gas-liquid sulfidation systems is mainly influenced by supersaturation,while particle growth in liquid-liquid sulfidation systems is mainly affected by surface charge.This study provides valuable insights into the factors that influence particle growth in sulfide precipitation and can inform the development of strategies to improve the effective precipitation of sulfide nanoparticles in acidic wastewater.展开更多
Hearing loss is one of the most prevalent sensory disorders affecting the human nervous system.Liquid–liquid phase separation(LLPS)is a physiological process that facilitates the reversible and dynamic assembly of bi...Hearing loss is one of the most prevalent sensory disorders affecting the human nervous system.Liquid–liquid phase separation(LLPS)is a physiological process that facilitates the reversible and dynamic assembly of biomolecular condensates.Increasing evidence suggests that LLPS plays a significant role in the pathogenesis of hereditary hearing loss.Nevertheless,there is a conspicuous lack of systematic investigations exploring the impact of LLPS abnormalities on the etiology of hereditary hearing loss.In this review,we examine the mechanisms by which dysfunctions in LLPS contribute to hereditary hearing loss,specifically focusing on its effects on mechanoelectrical transduction in hair bundles,transcriptional regulation,post-transcriptional modifications,the actin cytoskeleton,ion homeostasis within the inner ear,and energy and redox homeostasis.Furthermore,we evaluate the considerable potential of targeting LLPS as a therapeutic approach for hearing loss and propose innovative perspectives on LLPS that may guide future research initiatives in the field of auditory disorders.展开更多
The article considers a relaxation of the water/polypropylene glycol-425 solution with a lower critical solution temperature(LCST)following its pulsed superheating concerning liquid-liquid and liquid-vapor equilibrium...The article considers a relaxation of the water/polypropylene glycol-425 solution with a lower critical solution temperature(LCST)following its pulsed superheating concerning liquid-liquid and liquid-vapor equilibrium lines,as well as the liquid-liquid spinodal.Superheating was performed using the pulsed heat generation method in a micro-sized wire probe.The main heating mode was the constant(over the pulse length)power mode.Characteristic heating rates ranged from 0.05×10^(5) to 2×10^(5) K/s,while the degree of superheating concerning the spinodal was up to 200 K.The temperature of spontaneous boiling-up and the amplitude of the corresponding signal were monitored as functions of the heating rate set by the power value.The results demonstrate an example of the interaction of liquidliquid and liquid-vapor phase transitions,as well as the spinodal decomposition of a solution with LCST against the background of its unstable states.We proposed a physical model to explain the minimum spontaneous boiling-up temperature revealed within a certain range of heating rates,which is not typical of completely miscible solutions.Further research will focus on establishing a general criterion for the possibility of spinodal decomposition of such solutions under the conditions of rapid heating.展开更多
Intracellular liquid-liquid phase separation(LLPS)represents a pivotal biological process for the formation of cellular compartments,which involves the formation of droplet-like condensates through the hydrophobic and...Intracellular liquid-liquid phase separation(LLPS)represents a pivotal biological process for the formation of cellular compartments,which involves the formation of droplet-like condensates through the hydrophobic and hydrophilic interactions of biomolecules.LLPS plays a crucial role in normal cellular physiological activities,and it is also intimately linked to the pathological mechanisms of various diseases.This review summarizes the significant role of LLPS in regulating transcriptional mechanisms within the nucleus,with a focus on the mechanisms by which LLPS modulates gene transcription.Additionally,we highlight the roles of key proteins involved in LLPS,such as FOXK1,BRD4,Tau protein,and HDAC6,in the context of disease.We delve into the relationships between LLPS and diseases such as chronic kidney disease,atherosclerosis,Alzheimer’s disease,and triple-negative breast cancer,revealing the regulatory mechanisms of LLPS in disease onset and progression.Furthermore,we discuss the potential of pharmacological interventions targeting LLPS as novel therapeutic approaches,encompassing strategies such as gene therapy,traditional Chinese medicine monomers,and small-molecule inhibitors.In the future,a deeper understanding of the LLPS mechanism will continue to propel its application in disease prevention and treatment,providing robust support for the development of novel therapeutic strategies.展开更多
Impact, friction and corrosion from the grinding balls and the grinding medium during the mineral processing result in liner breakage. Liner, made from Hadfield steel or alloyed steel, could not have served in wet gri...Impact, friction and corrosion from the grinding balls and the grinding medium during the mineral processing result in liner breakage. Liner, made from Hadfield steel or alloyed steel, could not have served in wet grinding environment for more than ten months. Composite liner, made from HCWCI (high Cr white cast iron) and carbon steel, has been developed successfully with liquid-liquid composing process based on LFC (lost foam casting). The microstructure of composite was analyzed with optical microscope, SEM (scanning electron microscope)/EDX energy-dispersive X-ray and XRD (X-ray diffraction). According to micrograph, the combination region of two metals was staggered like dogtooth, no mixtures occurred between two liquid metals, and its interface presented excellent metallurgical bonding state. The results of mechanical property test show that, the hardness of HRC, the fracture toughness, and the bending strength are more than 61, 16.5 J/cm2 and 1 600 MPa, respectively. Comparison between liners made from bimetal composite and alloyed steel has also been investigated in industrial hematite ball mill. The results of eight months test in wet grinding environment prove that the service life of bimetal composite liner is three times as long as that of one made from alloyed steel.展开更多
In this work, a new microextraction method termed ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) was demonstrated for the extraction of 2-methylaniline, 4-chloroaniline, 1-naphthylamine and 4...In this work, a new microextraction method termed ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) was demonstrated for the extraction of 2-methylaniline, 4-chloroaniline, 1-naphthylamine and 4-aminobiphenyl in aqueous matrices. After extraction the ionic liquid (IL) phase was injected directly into the high performance liquid chromatography (HPLC) system for determination. Some parameters that might affect the extraction efficiency were optimized. Under the optimum conditions, good linear relationship, sensitivity and reproducibility were obtained. The limits of detection (LOD, S/N = 3) for the four analytes were in the range of 0.45-2.6 μg L^-1. The relative standard deviations (R.S.D., n = 6) were in the range of 6.2-9.8%. This method was applied for the analysis of the real water samples. The recoveries ranged from 93.4 to 106.4%. The main advantages of the method are high speed, high recovery, good repeatability and volatile organic solvent-free.展开更多
A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in water samples was developed by dispersive liquid-liquid microextraction (DLLME) ...A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in water samples was developed by dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography-diode array detector (HPLC-DAD). Some experimental parameters that influence the extraction efficiency were studied and optimized to obtain the best extraction results. Under the optimum conditions for the method, the calibration curve was linear in the concentration range from 5 to 1000 ng mL^-1 for all the five carbamate pesticides, with the correlation coefficients (r^2) varying from 0.9984 to 0.9994. Good enrichment factors were achieved ranging from 80 to 177- fold, depending on the compound. The limits of detection (LODs) (S/N = 3) were ranged from 0.1 to 0.5 ng mL^-1. The method has been successfully applied to the analysis of the pesticide residues in environmental water samples.展开更多
A new technique for ice slurry production was explored. Multiple small water-drops were formed in another immiscible chilled liquid by a single-nozzled atomizer and frozen in the fluidized bed by direct contact heat t...A new technique for ice slurry production was explored. Multiple small water-drops were formed in another immiscible chilled liquid by a single-nozzled atomizer and frozen in the fluidized bed by direct contact heat transfer. Experiments were conducted to investigate the dynamic behaviors of the ice crystal making system. The results demonstrate that the ice crystals could be produced continuously and stably in the vertical bed with the circulating coolant of initial temperature below -5℃. The size distribution of the ice crystals appears non-uniform, but is more similar and more uniform at lower oil flow rate. The mean ice crystal size rests seriously with the jet velocity and the oil flow rate. It decreases with decreasing the oil flow rate, and reaches the maximum at an intermediate jet velocity at about 16.5 m.s y. The ice crystal size is also closely related to the phenomenon of drop-coalescing, which can be alleviated considerably by reducing the flow rate or lowering the temperature of the carrier oil. However, optimization of liquid-liquid atomization is a more effective approach to produce fine ice crystals of desired size.展开更多
Crusher hammers for the mineral processing industry must meet the demands of both high wear resistance at the hammer head and high impact toughness at the hammer handle. The crusher hammers made of Hadfield steel have...Crusher hammers for the mineral processing industry must meet the demands of both high wear resistance at the hammer head and high impact toughness at the hammer handle. The crusher hammers made of Hadfield steel have typical y low service life of less than 40 hours. To solve the problem, a kind of bimetal crusher hammers made of high chromium cast iron (HCCI) and low al oy steel (LAS) has been successful y developed by using liquid-liquid composite casting. The microstructure and composite interface bonding was analyzed using optical microscope, SEM, EDX and XRD. Micrographs indicate that the composite interface is metal urgical y bonded with a zigzag shape across the boundary and without unbound region or void. After heat treatment, the composite hammers have shown excellent properties. The hardness of HCCI is at least 63 HRC and its αk is greater than 3.5 J?cm-2; the hardness of LAS is greater than 35 HRC and its αk is no less than 80 J?cm-2. Diffusion of elements takes place at the interface and forms a transition region. The micro hardness increases from LAS to the interface and then to HCCI. Wear comparison was made separately between the bimetal composite hammer and a Hadfield steel hammer in two quarries of Jilin province and Liaoning province. The results showed that the liquid-liquid bimetal composite hammers did not have the fal ing off of hammer head or impact fracture phenomenon, and their service life was 3.75 times as long as that of the Hadfield steel hammers.展开更多
Liners in wet ball mill for mineral processing industry must bear abrasive wear and corrosive wear, and consequently, the service life of the liner made from traditional materials, such as Hadfield steel and alloyed s...Liners in wet ball mill for mineral processing industry must bear abrasive wear and corrosive wear, and consequently, the service life of the liner made from traditional materials, such as Hadfield steel and alloyed steels, is typically less than ten months. Bimetal liner, made from high Cr white cast iron and carbon steel, has been successfully developed by using liquid-liquid composite lost foam casting process. The microstructure and interface of the composite were analyzed using optical microscope, SEM, EDX and XRD. Micrographs indicate that the boundary of bimetal combination regions is staggered like dogtooth, two liquid metals are not mixed, and the interface presents excellent metallurgical bonding state. After heat treatment, the composite liner specimens have shown excellent properties, including hardness 〉 61 HRC, fracture toughness ak 〉16.5 J.cm2 and bending strength 〉1,600 MPa. Wear comparison was made between the bimetal composite liner and alloyed steel liner in an industrial hematite ball mill of WISCO, and the results of eight-month test in wet grinding environment have proved that the service life of the bimetal composite liner is three times as long as that of the alloyed steel liner.展开更多
Primary breakup in a liquid-liquid pintle injector element at different radial jet velocities is investigated to elucidate the impingement morphology,the formation of primary breakup spray half cone angle,the pressure...Primary breakup in a liquid-liquid pintle injector element at different radial jet velocities is investigated to elucidate the impingement morphology,the formation of primary breakup spray half cone angle,the pressure distribution,the liquid diameter distribution,and the liquid velocity distribution.With a sufficient mesh resolution,the liquid morphology can be captured in a physically sound way.A mushroom tip is triggered by a larger radial jet velocity and breakup happens at the tip edge first.Different kinds of ligament breakup patterns due to aerodynamic force and surface tension are captured on the axial sheet.A high pressure core is spotted at the impinging point region.A larger radial jet velocity can feed more disturbances into the impinging point and the axial sheet,generate stronger vortices to promote the breakup process at a longer distance,and form a larger spray half cone angle.Because of the re-collision phenomenon the axial sheet diameter does not decrease monotonically.The inner rim on the axial sheet shows a larger diameter magnitude and a lower velocity magnitude due to surface tension.This paper is expected to provide a reference for the optimum design of a liquid-liquid pintle injector.展开更多
A novel,simple,rapid,efficient and environment-friendly method for the determination of trace copper in cereal samples was developed by using dispersive liquid-liquid microextraction based on solidification of floatin...A novel,simple,rapid,efficient and environment-friendly method for the determination of trace copper in cereal samples was developed by using dispersive liquid-liquid microextraction based on solidification of floating organic drop(DLLME-SFO) followed by flame atomic absorption spectrometry.In the DLLME-SFO,copper was complexed with 8-hydroxy quinoline and extracted into a small volume of 1-dodecanol,which is of low density,low toxicity and proper melting point near room temperature. The experimental parameters affecting the extraction efficiency were investigated and optimized.Under the optimum conditions, the calibration graph exhibited linearity over the range of 0.5—500 ng/mL with the correlation coefficient(r) of 0.9996.The enrichment factor was 122 and the limit of detection was 0.1 ng/mL.The method was applied to the determination of copper in the complex matrix samples such as rice and millet with the recoveries for the spiked samples at 5.0 and 10.0 u,g/g falling in the range of 92.0-98.0%and the relative standard deviation of 3.9-5.7%.展开更多
This paper presents the experimental results of liquid-liquid microflows in a coaxial microfluidic device with mass transfer.Three working systems were n-butanol + phosphoric acid(PA) + water,methyl isobutyl ketone(MI...This paper presents the experimental results of liquid-liquid microflows in a coaxial microfluidic device with mass transfer.Three working systems were n-butanol + phosphoric acid(PA) + water,methyl isobutyl ketone(MIBK) + PA + water,30% kerosene in tri-n-butylphosphate(TBP) + PA + water.The direction and intensity of mass transfer were adjusted by adding PA in one of two phases mutual saturated in advance.When PA transferred from the organic phase to the aqueous phase,tiny aqueous droplets may generate inside the organic phase by mass transfer inducement to form a new W/O/W flow pattern directly on some special cases.Once the PA concentration was very high,violent Marangoni effect could be observed to throw part of organic phase out of droplets as tail.The interphase transfer of PA could expand the jetting flow region,in particular for systems with low or medium inter-facial tension and when the mass transfer direction was from the aqueous phase to the organic phase.展开更多
In the present work,dispersive liquid-liquid microextraction(DLLME)was used to extract six synthetic cannabinoids(JWH-018,JWH-019,JWH-073,JWH-200,or WIN 55,225,JWH-250,and AM-694)from oral fluids.A rapid baseline sepa...In the present work,dispersive liquid-liquid microextraction(DLLME)was used to extract six synthetic cannabinoids(JWH-018,JWH-019,JWH-073,JWH-200,or WIN 55,225,JWH-250,and AM-694)from oral fluids.A rapid baseline separation of the analytes was achieved on a bidentate octadecyl silica hydride phase(Cogent Bidentate C18;4.6 mm×250 mm,4μm)maintained at 37℃,by eluting in isocratic conditions(water:acetonitrile(25:75,V/V)).Detection was performed using positive electrospray ionization-tandem mass spectrometry.The parameters affecting DLLME(pH and ionic strength of the aqueous phase,type and volume of the extractant and dispersive solvent,vortex and centrifugation time)were optimized for maximizing yields.In particular,using 0.5 mL of oral fluid,acetonitrile(1 mL),was identified as the best option,both as a solvent to precipitate proteins and as a dispersing solvent in the DLLME procedure.To select an extraction solvent,a low transition temperature mixture(LTTM;composed of sesamol and chlorine chloride with a molar ratio of 1:3)and dichloromethane were compared;the latter(100μL)was proved to be a better extractant,with recoveries ranging from 73%to 101%by vortexing for 2 min.The method was validated according to the guidelines of Food and Drug Administration bioanalytical methods:intra-day and inter-day precisions ranged between 4%and 18%depending on the spike level and analyte;limits of detection spanned from 2 to 18 ng/mL;matrixmatched calibration curves were characterized by determination coefficients greater than 0.9914.Finally,the extraction procedure was compared with previous methods and with innovative techniques,presenting superior reliability,rapidity,simplicity,inexpensiveness,and efficiency.展开更多
KF or K2CO3 was added into the 1-butanol-water system and two phases were formed: water-rich phase (water phase) and 1-butanol-rich phase (1-butanol phase). The liquid liquid equilibrium (LLE) data for 1-butano...KF or K2CO3 was added into the 1-butanol-water system and two phases were formed: water-rich phase (water phase) and 1-butanol-rich phase (1-butanol phase). The liquid liquid equilibrium (LLE) data for 1-butanol-water-KF and 1-butanol-water-K2CO3 systems were measured at 25℃ and showed that 1-butanol phase contained negligible salt and water phase contained negligible 1-butanol when the concentrations of KF and K2CO3 in the water phase were equal to or higher than 27.11% and 31.68% , respectively. Thus water could be separated efficiently from 1-butanol-water by adding KF or K2CO3 into the system. A theoretical calculation of LLE data was calculated by using the Pitzer theory to get water activity in the water phase, and by the models, such as the Wilson, NRTL or the UNIQUAC for the 1-butanol phase. For 1-hutanol-water-KF system, the experimental data were found in good agreement with the calculated results by using Pitzer theory and Wilson equa tion, while for 1-butanol-water-K2CO3 system, the experimental data were found in good agreement with the calculated results by using Pitzer theory and UNIQUAC eauation.展开更多
A simple method has been proposed for the determination of clozapine (CLZ) and chlorpromazine (CPZ) in human urine by dispersive liquid-liquid microextraction (DLLME) in combination with high-performance liquid ...A simple method has been proposed for the determination of clozapine (CLZ) and chlorpromazine (CPZ) in human urine by dispersive liquid-liquid microextraction (DLLME) in combination with high-performance liquid chromatography-ultraviolet detector (HPLC-UV). All important variables influencing the extraction efficiency, such as pH, types of the extraction solvent and the disperser solvent and their volume, ionic strength and centrifugation time were investigated and optimized. Under the optimal conditions, the limit of detection (LODs) and quantification (LOQs) of the method were 13 and 39 ng/mL for CLZ, and 2 and 6 ng/mL for CPZ, respectively. The relative standard deviations (RSDs) of the targets were less than 5.1% (C=0.100 μg/mL, n=9). Good linear behaviors over the tested concentration ranges were obtained with the values of R20.999 for the targets. The absolute extraction efficiencies of CLZ and CPZ from the spiked blank urine samples were 98.3% and 97.8%, respectively. The applicability of the technique was validated by analyzing urine samples and the mean recoveries for spiked urine samples ranged from 93.3% to 105.0%. The method was successfully applied for the determination of CLZ and CPZ in real human urine.展开更多
Liquid-liquid phase separation(LLPS)or biomolecular condensation that leads to formation of membraneless organelles plays a critical role in many biochemical processes.Mechanism study of regulating LLPS is therefore c...Liquid-liquid phase separation(LLPS)or biomolecular condensation that leads to formation of membraneless organelles plays a critical role in many biochemical processes.Mechanism study of regulating LLPS is therefore central to the understanding of protein aggregation and disease-relevant process.We report a fused in sarcoma protein(FUS)-derived low complexity(LC)sequence that undergoes LLPS in the presence of metal ions.The LC protein was constructed by fusing a hexhistidine-tag to the N-terminal low complexity domain(the residues 1–165 in QGSY-rich segment)of FUS.Spontaneous condensation of the intrinsic disordered protein into coacervate droplets was observed in the presence of metal ions that chelate oligohistidine moieties to form protein matrix.We demonstrate the key role of metal ion-histidine coordination in governing LLPS behaviours and the fluidity of biomolecular condensates.By taking advantage of competitive binding using chelators,we show the possibility of regulating dynamic behaviors of disease-relevant protein droplets,and developing a potential approach towards controllable biological encapsulation/release.展开更多
A sensitive solvent extraction method for the determination of nonamolar concentrations of silicate in natural waters is developed. According to the traditional aqueous silicate method, silicomolybdenum blue formed by...A sensitive solvent extraction method for the determination of nonamolar concentrations of silicate in natural waters is developed. According to the traditional aqueous silicate method, silicomolybdenum blue formed by the reaction between silicate and ammoni- um molydate and reduced by metol-sulfite reagent is extracted by methyl isobutyl ketone. The absorbance can be enhanced substantially up to 10-folds. The detection limit of silicate is 8 nmol/dm^3 , which is one tenth smaller than the traditional method, with the precision of 4.0% at a silicate level of 50 nmol/dm^3 and 3.2% at a silicate level of 6 μmol/dm^3. Comparing the calibration curves in the distilled water and seawater, it can be seen that the salt effect also exists in the extraction method. However, the salt effect is a linear function of the salinity and can be corrected by simple calibration. The proposed method is successfully applied to the determination of silicate in natural waters. Natural concentrations of arsenate, arsenite and phosphate cause negligible interference.展开更多
For the determination of salicylaldoxime in environmental water samples,a stable and rapid method with low detection was proposed and established,based on the liquid-liquid extraction-high performance liquid chromatog...For the determination of salicylaldoxime in environmental water samples,a stable and rapid method with low detection was proposed and established,based on the liquid-liquid extraction-high performance liquid chromatography with ultraviolet detector.Parameters including extraction solvent,ionic strength,solution pH,and extraction pattern were discussed for the optimal quantification of salicylaldoxime-spiked water.When the described method was applied to four spiked water samples,the obtained average extraction recovery rate was found between 87%–107%and relative standard deviation was below 6%.At the same time,good linear relationships were observed for spiked water samples from 0.01 to 10μg/mL(R2=0.9993).In addition,the detection limit of salicylaldoxime was revealed between 0.003–0.008μg/mL,which is two orders of magnitude lower than previously reported results.Thus,the presented method may be advantageous for the high-efficiency determination of salicylaldoxime in water samples.展开更多
A simple and rapid technique based on liquid-liquid extraction coupled to gas chromatography-mass spectrometric detection(LLE-GC-MS) was developed for analysis of taste and odour compound β-ionone in water. Instrumen...A simple and rapid technique based on liquid-liquid extraction coupled to gas chromatography-mass spectrometric detection(LLE-GC-MS) was developed for analysis of taste and odour compound β-ionone in water. Instrument parameters including programmed oven temperature, injection temperature and ion source temperature were evaluated and optimized. Effects of extraction time, ionic strength and p H on the detection efficiency were investigated and optimum conditions were 8 min of extraction time, without Na Cl addition at p H=9. Good linearity(R2=0.9997) was obtained when the linear range was 10-500 μg/L. The recoveries of β-ionone in ultrapure water and tap water samples were 88%-95% and 110%-114%, respectively. The relative standard deviations(RSD) were less than 10%. The method detection limit(MDL) and rejection quality level(RQL) were achieved at1.98 μg/L and 6.53 μg/L, respectively. LLE-GC-MS was demonstrated to be a rapid and convenient method for the determination ofβ-ionone in water samples.展开更多
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.52121004)the National Natural Science Foundation of China(No.52274414).
文摘Sulfide precipitation is an effective method for treating acidic heavy metal wastewater.However,the process often generates tiny particles with poor settling performance.The factors and mechanisms influencing particle size and settling performance remain unclear.In this study,the growth behavior of CuS particles generated by two sulfide precipitation methods,gas-liquid and liquid-liquid sulfidation,was investigated.The effects of acidity,sulfur-to-copper molar ratio,and temperature on particle size were analyzed.The results showed that increasing the temperature had an adverse effect on CuS particle growth.Additionally,we found that acidity and sulfur-to-copper molar ratio had a more significant impact on particle growth in the liquid-liquid sulfidation system than in the gas-liquid sulfidation system.Based on supersaturation calculations and XPS analysis,it is found that particle growth in gas-liquid sulfidation systems is mainly influenced by supersaturation,while particle growth in liquid-liquid sulfidation systems is mainly affected by surface charge.This study provides valuable insights into the factors that influence particle growth in sulfide precipitation and can inform the development of strategies to improve the effective precipitation of sulfide nanoparticles in acidic wastewater.
基金supported by the National Natural Science Foundation of China(82430035)the Foundation for Innovative Research Groups of Hubei Province(2023AFA038)+1 种基金the National Key Research and Development Program of China(2021YFF0702303,2024YFC2511101,and 2023YFE0203200)the Fundamental Research Funds for the Central Universities(2024BRA019).
文摘Hearing loss is one of the most prevalent sensory disorders affecting the human nervous system.Liquid–liquid phase separation(LLPS)is a physiological process that facilitates the reversible and dynamic assembly of biomolecular condensates.Increasing evidence suggests that LLPS plays a significant role in the pathogenesis of hereditary hearing loss.Nevertheless,there is a conspicuous lack of systematic investigations exploring the impact of LLPS abnormalities on the etiology of hereditary hearing loss.In this review,we examine the mechanisms by which dysfunctions in LLPS contribute to hereditary hearing loss,specifically focusing on its effects on mechanoelectrical transduction in hair bundles,transcriptional regulation,post-transcriptional modifications,the actin cytoskeleton,ion homeostasis within the inner ear,and energy and redox homeostasis.Furthermore,we evaluate the considerable potential of targeting LLPS as a therapeutic approach for hearing loss and propose innovative perspectives on LLPS that may guide future research initiatives in the field of auditory disorders.
基金the expense of a grant of the Russian Science Foundation(project No.23-69-10006),https://rscf.ru/project/23-69-10006/(accessed on 6 May 2025).
文摘The article considers a relaxation of the water/polypropylene glycol-425 solution with a lower critical solution temperature(LCST)following its pulsed superheating concerning liquid-liquid and liquid-vapor equilibrium lines,as well as the liquid-liquid spinodal.Superheating was performed using the pulsed heat generation method in a micro-sized wire probe.The main heating mode was the constant(over the pulse length)power mode.Characteristic heating rates ranged from 0.05×10^(5) to 2×10^(5) K/s,while the degree of superheating concerning the spinodal was up to 200 K.The temperature of spontaneous boiling-up and the amplitude of the corresponding signal were monitored as functions of the heating rate set by the power value.The results demonstrate an example of the interaction of liquidliquid and liquid-vapor phase transitions,as well as the spinodal decomposition of a solution with LCST against the background of its unstable states.We proposed a physical model to explain the minimum spontaneous boiling-up temperature revealed within a certain range of heating rates,which is not typical of completely miscible solutions.Further research will focus on establishing a general criterion for the possibility of spinodal decomposition of such solutions under the conditions of rapid heating.
基金supported by the Hebei Natural Science Foundation(Grant No.H2022110019).Peer review。
文摘Intracellular liquid-liquid phase separation(LLPS)represents a pivotal biological process for the formation of cellular compartments,which involves the formation of droplet-like condensates through the hydrophobic and hydrophilic interactions of biomolecules.LLPS plays a crucial role in normal cellular physiological activities,and it is also intimately linked to the pathological mechanisms of various diseases.This review summarizes the significant role of LLPS in regulating transcriptional mechanisms within the nucleus,with a focus on the mechanisms by which LLPS modulates gene transcription.Additionally,we highlight the roles of key proteins involved in LLPS,such as FOXK1,BRD4,Tau protein,and HDAC6,in the context of disease.We delve into the relationships between LLPS and diseases such as chronic kidney disease,atherosclerosis,Alzheimer’s disease,and triple-negative breast cancer,revealing the regulatory mechanisms of LLPS in disease onset and progression.Furthermore,we discuss the potential of pharmacological interventions targeting LLPS as novel therapeutic approaches,encompassing strategies such as gene therapy,traditional Chinese medicine monomers,and small-molecule inhibitors.In the future,a deeper understanding of the LLPS mechanism will continue to propel its application in disease prevention and treatment,providing robust support for the development of novel therapeutic strategies.
基金Item Sponsored by National Natural Science Foundation of China (50805109)Fundamental Research Funds for Central Universities of China (2011-1a-023)
文摘Impact, friction and corrosion from the grinding balls and the grinding medium during the mineral processing result in liner breakage. Liner, made from Hadfield steel or alloyed steel, could not have served in wet grinding environment for more than ten months. Composite liner, made from HCWCI (high Cr white cast iron) and carbon steel, has been developed successfully with liquid-liquid composing process based on LFC (lost foam casting). The microstructure of composite was analyzed with optical microscope, SEM (scanning electron microscope)/EDX energy-dispersive X-ray and XRD (X-ray diffraction). According to micrograph, the combination region of two metals was staggered like dogtooth, no mixtures occurred between two liquid metals, and its interface presented excellent metallurgical bonding state. The results of mechanical property test show that, the hardness of HRC, the fracture toughness, and the bending strength are more than 61, 16.5 J/cm2 and 1 600 MPa, respectively. Comparison between liners made from bimetal composite and alloyed steel has also been investigated in industrial hematite ball mill. The results of eight months test in wet grinding environment prove that the service life of bimetal composite liner is three times as long as that of one made from alloyed steel.
基金the National Natural Science Foundation of China(Nos.20375035,20527005,20775070)by Zhejiang Provincial Natural Science Foundation of China(Nos.Z404105,Y507252).
文摘In this work, a new microextraction method termed ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) was demonstrated for the extraction of 2-methylaniline, 4-chloroaniline, 1-naphthylamine and 4-aminobiphenyl in aqueous matrices. After extraction the ionic liquid (IL) phase was injected directly into the high performance liquid chromatography (HPLC) system for determination. Some parameters that might affect the extraction efficiency were optimized. Under the optimum conditions, good linear relationship, sensitivity and reproducibility were obtained. The limits of detection (LOD, S/N = 3) for the four analytes were in the range of 0.45-2.6 μg L^-1. The relative standard deviations (R.S.D., n = 6) were in the range of 6.2-9.8%. This method was applied for the analysis of the real water samples. The recoveries ranged from 93.4 to 106.4%. The main advantages of the method are high speed, high recovery, good repeatability and volatile organic solvent-free.
基金supported both by the Natural Science Foundations of Hebei(No.B2008000210)the Scientific Research Foundation of Agricultural University of Hebei.
文摘A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in water samples was developed by dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography-diode array detector (HPLC-DAD). Some experimental parameters that influence the extraction efficiency were studied and optimized to obtain the best extraction results. Under the optimum conditions for the method, the calibration curve was linear in the concentration range from 5 to 1000 ng mL^-1 for all the five carbamate pesticides, with the correlation coefficients (r^2) varying from 0.9984 to 0.9994. Good enrichment factors were achieved ranging from 80 to 177- fold, depending on the compound. The limits of detection (LODs) (S/N = 3) were ranged from 0.1 to 0.5 ng mL^-1. The method has been successfully applied to the analysis of the pesticide residues in environmental water samples.
基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(20060286034)
文摘A new technique for ice slurry production was explored. Multiple small water-drops were formed in another immiscible chilled liquid by a single-nozzled atomizer and frozen in the fluidized bed by direct contact heat transfer. Experiments were conducted to investigate the dynamic behaviors of the ice crystal making system. The results demonstrate that the ice crystals could be produced continuously and stably in the vertical bed with the circulating coolant of initial temperature below -5℃. The size distribution of the ice crystals appears non-uniform, but is more similar and more uniform at lower oil flow rate. The mean ice crystal size rests seriously with the jet velocity and the oil flow rate. It decreases with decreasing the oil flow rate, and reaches the maximum at an intermediate jet velocity at about 16.5 m.s y. The ice crystal size is also closely related to the phenomenon of drop-coalescing, which can be alleviated considerably by reducing the flow rate or lowering the temperature of the carrier oil. However, optimization of liquid-liquid atomization is a more effective approach to produce fine ice crystals of desired size.
基金financially supported by the National Foundation (grant No:51371090)the Science and Technology Support Program of the 12th Five-year Plan (grant No:2011BAD20B03010401)+1 种基金the National Natural Science Foundation of China (grant No:51203061)the College Student Science and Technology Innovation of Hei Longjiang Province (grant No:2012sj001)
文摘Crusher hammers for the mineral processing industry must meet the demands of both high wear resistance at the hammer head and high impact toughness at the hammer handle. The crusher hammers made of Hadfield steel have typical y low service life of less than 40 hours. To solve the problem, a kind of bimetal crusher hammers made of high chromium cast iron (HCCI) and low al oy steel (LAS) has been successful y developed by using liquid-liquid composite casting. The microstructure and composite interface bonding was analyzed using optical microscope, SEM, EDX and XRD. Micrographs indicate that the composite interface is metal urgical y bonded with a zigzag shape across the boundary and without unbound region or void. After heat treatment, the composite hammers have shown excellent properties. The hardness of HCCI is at least 63 HRC and its αk is greater than 3.5 J?cm-2; the hardness of LAS is greater than 35 HRC and its αk is no less than 80 J?cm-2. Diffusion of elements takes place at the interface and forms a transition region. The micro hardness increases from LAS to the interface and then to HCCI. Wear comparison was made separately between the bimetal composite hammer and a Hadfield steel hammer in two quarries of Jilin province and Liaoning province. The results showed that the liquid-liquid bimetal composite hammers did not have the fal ing off of hammer head or impact fracture phenomenon, and their service life was 3.75 times as long as that of the Hadfield steel hammers.
基金supported by the National Natural Science Foundation of China under grant No.50805109the Fundamental Research Funds for the Central Universities under grant No.2011-1a-023
文摘Liners in wet ball mill for mineral processing industry must bear abrasive wear and corrosive wear, and consequently, the service life of the liner made from traditional materials, such as Hadfield steel and alloyed steels, is typically less than ten months. Bimetal liner, made from high Cr white cast iron and carbon steel, has been successfully developed by using liquid-liquid composite lost foam casting process. The microstructure and interface of the composite were analyzed using optical microscope, SEM, EDX and XRD. Micrographs indicate that the boundary of bimetal combination regions is staggered like dogtooth, two liquid metals are not mixed, and the interface presents excellent metallurgical bonding state. After heat treatment, the composite liner specimens have shown excellent properties, including hardness 〉 61 HRC, fracture toughness ak 〉16.5 J.cm2 and bending strength 〉1,600 MPa. Wear comparison was made between the bimetal composite liner and alloyed steel liner in an industrial hematite ball mill of WISCO, and the results of eight-month test in wet grinding environment have proved that the service life of the bimetal composite liner is three times as long as that of the alloyed steel liner.
基金supported by the National Natural Science Foundation of China(No.11572346)。
文摘Primary breakup in a liquid-liquid pintle injector element at different radial jet velocities is investigated to elucidate the impingement morphology,the formation of primary breakup spray half cone angle,the pressure distribution,the liquid diameter distribution,and the liquid velocity distribution.With a sufficient mesh resolution,the liquid morphology can be captured in a physically sound way.A mushroom tip is triggered by a larger radial jet velocity and breakup happens at the tip edge first.Different kinds of ligament breakup patterns due to aerodynamic force and surface tension are captured on the axial sheet.A high pressure core is spotted at the impinging point region.A larger radial jet velocity can feed more disturbances into the impinging point and the axial sheet,generate stronger vortices to promote the breakup process at a longer distance,and form a larger spray half cone angle.Because of the re-collision phenomenon the axial sheet diameter does not decrease monotonically.The inner rim on the axial sheet shows a larger diameter magnitude and a lower velocity magnitude due to surface tension.This paper is expected to provide a reference for the optimum design of a liquid-liquid pintle injector.
基金supported by the Natural Science Foundation of Hebei(No.B2010000657)
文摘A novel,simple,rapid,efficient and environment-friendly method for the determination of trace copper in cereal samples was developed by using dispersive liquid-liquid microextraction based on solidification of floating organic drop(DLLME-SFO) followed by flame atomic absorption spectrometry.In the DLLME-SFO,copper was complexed with 8-hydroxy quinoline and extracted into a small volume of 1-dodecanol,which is of low density,low toxicity and proper melting point near room temperature. The experimental parameters affecting the extraction efficiency were investigated and optimized.Under the optimum conditions, the calibration graph exhibited linearity over the range of 0.5—500 ng/mL with the correlation coefficient(r) of 0.9996.The enrichment factor was 122 and the limit of detection was 0.1 ng/mL.The method was applied to the determination of copper in the complex matrix samples such as rice and millet with the recoveries for the spiked samples at 5.0 and 10.0 u,g/g falling in the range of 92.0-98.0%and the relative standard deviation of 3.9-5.7%.
基金Supported by the National Natural Science Foundation of China (20525622,20876084)the National Basic Research Program of China (2007CB714302)
文摘This paper presents the experimental results of liquid-liquid microflows in a coaxial microfluidic device with mass transfer.Three working systems were n-butanol + phosphoric acid(PA) + water,methyl isobutyl ketone(MIBK) + PA + water,30% kerosene in tri-n-butylphosphate(TBP) + PA + water.The direction and intensity of mass transfer were adjusted by adding PA in one of two phases mutual saturated in advance.When PA transferred from the organic phase to the aqueous phase,tiny aqueous droplets may generate inside the organic phase by mass transfer inducement to form a new W/O/W flow pattern directly on some special cases.Once the PA concentration was very high,violent Marangoni effect could be observed to throw part of organic phase out of droplets as tail.The interphase transfer of PA could expand the jetting flow region,in particular for systems with low or medium inter-facial tension and when the mass transfer direction was from the aqueous phase to the organic phase.
基金supported by the Sapienza University of Rome through the project RICERCA 2019(protocol number:RG11916B6451D44A)。
文摘In the present work,dispersive liquid-liquid microextraction(DLLME)was used to extract six synthetic cannabinoids(JWH-018,JWH-019,JWH-073,JWH-200,or WIN 55,225,JWH-250,and AM-694)from oral fluids.A rapid baseline separation of the analytes was achieved on a bidentate octadecyl silica hydride phase(Cogent Bidentate C18;4.6 mm×250 mm,4μm)maintained at 37℃,by eluting in isocratic conditions(water:acetonitrile(25:75,V/V)).Detection was performed using positive electrospray ionization-tandem mass spectrometry.The parameters affecting DLLME(pH and ionic strength of the aqueous phase,type and volume of the extractant and dispersive solvent,vortex and centrifugation time)were optimized for maximizing yields.In particular,using 0.5 mL of oral fluid,acetonitrile(1 mL),was identified as the best option,both as a solvent to precipitate proteins and as a dispersing solvent in the DLLME procedure.To select an extraction solvent,a low transition temperature mixture(LTTM;composed of sesamol and chlorine chloride with a molar ratio of 1:3)and dichloromethane were compared;the latter(100μL)was proved to be a better extractant,with recoveries ranging from 73%to 101%by vortexing for 2 min.The method was validated according to the guidelines of Food and Drug Administration bioanalytical methods:intra-day and inter-day precisions ranged between 4%and 18%depending on the spike level and analyte;limits of detection spanned from 2 to 18 ng/mL;matrixmatched calibration curves were characterized by determination coefficients greater than 0.9914.Finally,the extraction procedure was compared with previous methods and with innovative techniques,presenting superior reliability,rapidity,simplicity,inexpensiveness,and efficiency.
文摘KF or K2CO3 was added into the 1-butanol-water system and two phases were formed: water-rich phase (water phase) and 1-butanol-rich phase (1-butanol phase). The liquid liquid equilibrium (LLE) data for 1-butanol-water-KF and 1-butanol-water-K2CO3 systems were measured at 25℃ and showed that 1-butanol phase contained negligible salt and water phase contained negligible 1-butanol when the concentrations of KF and K2CO3 in the water phase were equal to or higher than 27.11% and 31.68% , respectively. Thus water could be separated efficiently from 1-butanol-water by adding KF or K2CO3 into the system. A theoretical calculation of LLE data was calculated by using the Pitzer theory to get water activity in the water phase, and by the models, such as the Wilson, NRTL or the UNIQUAC for the 1-butanol phase. For 1-hutanol-water-KF system, the experimental data were found in good agreement with the calculated results by using Pitzer theory and Wilson equa tion, while for 1-butanol-water-K2CO3 system, the experimental data were found in good agreement with the calculated results by using Pitzer theory and UNIQUAC eauation.
基金supported by Science Research Funds of Medical Course, HUST
文摘A simple method has been proposed for the determination of clozapine (CLZ) and chlorpromazine (CPZ) in human urine by dispersive liquid-liquid microextraction (DLLME) in combination with high-performance liquid chromatography-ultraviolet detector (HPLC-UV). All important variables influencing the extraction efficiency, such as pH, types of the extraction solvent and the disperser solvent and their volume, ionic strength and centrifugation time were investigated and optimized. Under the optimal conditions, the limit of detection (LODs) and quantification (LOQs) of the method were 13 and 39 ng/mL for CLZ, and 2 and 6 ng/mL for CPZ, respectively. The relative standard deviations (RSDs) of the targets were less than 5.1% (C=0.100 μg/mL, n=9). Good linear behaviors over the tested concentration ranges were obtained with the values of R20.999 for the targets. The absolute extraction efficiencies of CLZ and CPZ from the spiked blank urine samples were 98.3% and 97.8%, respectively. The applicability of the technique was validated by analyzing urine samples and the mean recoveries for spiked urine samples ranged from 93.3% to 105.0%. The method was successfully applied for the determination of CLZ and CPZ in real human urine.
基金financially supported by the National Natural Science Foundation of China (Nos. 22072159 and 22172007)the Fundamental Research Funds for the Central Universities(No. buctrc202015)
文摘Liquid-liquid phase separation(LLPS)or biomolecular condensation that leads to formation of membraneless organelles plays a critical role in many biochemical processes.Mechanism study of regulating LLPS is therefore central to the understanding of protein aggregation and disease-relevant process.We report a fused in sarcoma protein(FUS)-derived low complexity(LC)sequence that undergoes LLPS in the presence of metal ions.The LC protein was constructed by fusing a hexhistidine-tag to the N-terminal low complexity domain(the residues 1–165 in QGSY-rich segment)of FUS.Spontaneous condensation of the intrinsic disordered protein into coacervate droplets was observed in the presence of metal ions that chelate oligohistidine moieties to form protein matrix.We demonstrate the key role of metal ion-histidine coordination in governing LLPS behaviours and the fluidity of biomolecular condensates.By taking advantage of competitive binding using chelators,we show the possibility of regulating dynamic behaviors of disease-relevant protein droplets,and developing a potential approach towards controllable biological encapsulation/release.
基金The National Science Foundation of China under contract No.40606028the Special Fund from the National Key Basic Research Program of China under contract No.2006CB400601.
文摘A sensitive solvent extraction method for the determination of nonamolar concentrations of silicate in natural waters is developed. According to the traditional aqueous silicate method, silicomolybdenum blue formed by the reaction between silicate and ammoni- um molydate and reduced by metol-sulfite reagent is extracted by methyl isobutyl ketone. The absorbance can be enhanced substantially up to 10-folds. The detection limit of silicate is 8 nmol/dm^3 , which is one tenth smaller than the traditional method, with the precision of 4.0% at a silicate level of 50 nmol/dm^3 and 3.2% at a silicate level of 6 μmol/dm^3. Comparing the calibration curves in the distilled water and seawater, it can be seen that the salt effect also exists in the extraction method. However, the salt effect is a linear function of the salinity and can be corrected by simple calibration. The proposed method is successfully applied to the determination of silicate in natural waters. Natural concentrations of arsenate, arsenite and phosphate cause negligible interference.
基金Project(201309052)supported by the National Special Fund for Scientific Research in the Public InterestProject(2013FJ2003)supported by the Science and Technology Planning Project of Hunan Province of China
文摘For the determination of salicylaldoxime in environmental water samples,a stable and rapid method with low detection was proposed and established,based on the liquid-liquid extraction-high performance liquid chromatography with ultraviolet detector.Parameters including extraction solvent,ionic strength,solution pH,and extraction pattern were discussed for the optimal quantification of salicylaldoxime-spiked water.When the described method was applied to four spiked water samples,the obtained average extraction recovery rate was found between 87%–107%and relative standard deviation was below 6%.At the same time,good linear relationships were observed for spiked water samples from 0.01 to 10μg/mL(R2=0.9993).In addition,the detection limit of salicylaldoxime was revealed between 0.003–0.008μg/mL,which is two orders of magnitude lower than previously reported results.Thus,the presented method may be advantageous for the high-efficiency determination of salicylaldoxime in water samples.
基金Project(51178321)supported by the National Natural Science Foundation of ChinaProject(2012ZX07403-001)supported by the National Science and Technology Major Project,ChinaProject(20120072110050)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘A simple and rapid technique based on liquid-liquid extraction coupled to gas chromatography-mass spectrometric detection(LLE-GC-MS) was developed for analysis of taste and odour compound β-ionone in water. Instrument parameters including programmed oven temperature, injection temperature and ion source temperature were evaluated and optimized. Effects of extraction time, ionic strength and p H on the detection efficiency were investigated and optimum conditions were 8 min of extraction time, without Na Cl addition at p H=9. Good linearity(R2=0.9997) was obtained when the linear range was 10-500 μg/L. The recoveries of β-ionone in ultrapure water and tap water samples were 88%-95% and 110%-114%, respectively. The relative standard deviations(RSD) were less than 10%. The method detection limit(MDL) and rejection quality level(RQL) were achieved at1.98 μg/L and 6.53 μg/L, respectively. LLE-GC-MS was demonstrated to be a rapid and convenient method for the determination ofβ-ionone in water samples.