With the increasingly serious environmental problems,the use of sustainable materials is particularly important.This study focuses on the greenhouse gas emissions and economic costs of wood over its life cycle as a su...With the increasingly serious environmental problems,the use of sustainable materials is particularly important.This study focuses on the greenhouse gas emissions and economic costs of wood over its life cycle as a sustainable resource.We use a systematic life cycle assessment(LCA)approach to assess the entire process from raw material collection,processing,use to disposal.The study found that using wood can significantly reduce greenhouse gas emissions compared to traditional building materials such as steel and concrete.In addition,although the initial procurement costs of wood may be higher,its maintenance costs are lower in the long run,making the life cycle costs generally more economical.The results of this study highlight the environmental and economic advantages of wood in the selection of sustainable building materials,and provide a scientific basis for promoting the use of wood.展开更多
China is the most important steel producer in the world,and its steel industry is one of themost carbon-intensive industries in China.Consequently,research on carbon emissions from the steel industry is crucial for Ch...China is the most important steel producer in the world,and its steel industry is one of themost carbon-intensive industries in China.Consequently,research on carbon emissions from the steel industry is crucial for China to achieve carbon neutrality and meet its sustainable global development goals.We constructed a carbon dioxide(CO_(2))emission model for China’s iron and steel industry froma life cycle perspective,conducted an empirical analysis based on data from2019,and calculated the CO_(2)emissions of the industry throughout its life cycle.Key emission reduction factors were identified using sensitivity analysis.The results demonstrated that the CO_(2)emission intensity of the steel industry was 2.33 ton CO_(2)/ton,and the production and manufacturing stages were the main sources of CO_(2)emissions,accounting for 89.84%of the total steel life-cycle emissions.Notably,fossil fuel combustion had the highest sensitivity to steel CO_(2)emissions,with a sensitivity coefficient of 0.68,reducing the amount of fossil fuel combustion by 20%and carbon emissions by 13.60%.The sensitivities of power structure optimization and scrap consumption were similar,while that of the transportation structure adjustment was the lowest,with a sensitivity coefficient of less than 0.1.Given the current strategic goals of peak carbon and carbon neutrality,it is in the best interest of the Chinese government to actively promote energy-saving and low-carbon technologies,increase the ratio of scrap steel to steelmaking,and build a new power system.展开更多
LCM (life cycle management) is a systematic approach, mindset and culture that considers economic, social, and environmental factors among other factors in the decision making process throughout various business or ...LCM (life cycle management) is a systematic approach, mindset and culture that considers economic, social, and environmental factors among other factors in the decision making process throughout various business or organizational decisions that affect both inputs and outputs of a product or service life cycle. It is a product, process, or activity management system aimed at minimizing environmental and socio-economic burdens associated with an organization's product or process during its entire life cycle and value chain. LCM's application is gaining wider acceptance both in the corporate and governmental organizations as an approach to reduce ecological footprints and to improve the sustainability of human activities. But where and how can it be used in agricultural engineering applications? This study highlights the potential areas of LCM application in agricultural and allied sectors and how it can be utilized. The study revealed that LCM tools such as design for environment and life cycle analysis can be used to evaluate the environmental impacts of-and to improve the products, equipment, and structures produced by biosystems engineers as well as the processes used to generate them.展开更多
The degradation of Lithium-ion batteries(LIBs)during cycling is particularly exacerbated at low temperatures,which has a significant impact on the longevity of electric vehicles,energy storage systems,and consumer ele...The degradation of Lithium-ion batteries(LIBs)during cycling is particularly exacerbated at low temperatures,which has a significant impact on the longevity of electric vehicles,energy storage systems,and consumer electronics.A comprehensive understanding of the low-temperature aging mechanisms throughout the whole life cycle of LIBs is crucial.However,existing research is limited,which typically focuses on capacity degradation to 80%.To fill this gap,this paper conducts low-temperature cyclic aging tests at three different charging rates.The investigation employs differential voltage analysis,the distribution of relaxation times technique,and disassembly characterization to explore both thermodynamic degradation and kinetic degradation,alongside a correlation analysis of the factors influencing these degradation processes.The results reveal two distinct knee points in the capacity decline of LIBs during the whole life cycle,in contrast to prior studies identifying only one.Before the first knee point,the thickening of the SEI film dominates capacity loss,with higher charging rates accelerating the process.After the first knee point,the main degradation mechanisms shift to lithium plating and the fracture of the positive electrode active particles.These two aging factors become more pronounced with ongoing cycling,culminating in a second knee point in capacity decline.Notably,a novel finding demonstrates that after the second knee point,capacity degradation progresses faster at lower charging rates compared to medium rates.The reason is the fracture of graphite particles also becomes a critical contributor to the severe capacity degradation at lower charging rates.These insights will guide the designs of next-generation low-temperature LIBs and low-temperature battery management systems.展开更多
Under the background of resource shortage and global warming,it is of great significance to explore the status,influencing factors and carbon emission reduction effect of waste recycling in China after the implementat...Under the background of resource shortage and global warming,it is of great significance to explore the status,influencing factors and carbon emission reduction effect of waste recycling in China after the implementation of new waste classification policy for guiding waste classification and carbon emission accounting.In this research,the temporal and spatial changes and influencing factors of waste recycling were studied from subdistrict level,life-cycle carbon emission reduction was predicted and policy suggestions for waste recycling were proposed.The results showed that after the implementation of new waste classification policy,the amount of recycled waste and the proportion of low-value recycled waste increased by 420.93 t and 2.29%per month on average,respectively.The district center has the largest amount of recycled waste.Income was the main factors affecting waste recycling,and online shopping and takeout could become important sources of recyclable waste.Accounting cradle-to-grave life cycle carbon footprint,waste plastics takes up the most contribution,accounting for 39.11%,and nearly 391.68 Mt CO_(2eq) would be reduced by waste recycling in China by 2030.Therefore,in the process of waste classification,refining waste classification to increase the amount of low-value recyclables,and rationally deploying collection and transportation vehicles to ensure efficient waste recycling are of great significance to achieve the goal of“carbon peaking and carbon neutrality”.展开更多
The NdFeB scrap,as a representative solid waste of rare earths,possesses significant recyclable value.This study focused on NdFeB waste and investigated the environmental impacts of pyro-and hydro-metallurgical proces...The NdFeB scrap,as a representative solid waste of rare earths,possesses significant recyclable value.This study focused on NdFeB waste and investigated the environmental impacts of pyro-and hydro-metallurgical process(PH-M process)and its improved version,the pyro-and hydro-metallurgical improvement process(PH-Mi process).The results demonstrate that,although the PH-Mi process consumes higher amounts of energy,electricity,and chemicals compared to the PH-M process,it is more environmentally friendly and economically efficient(i.e.,net profit increased by 34.12%).To quantify and compare the environmental performance of the two scenarios,life cycle assessment methodology was applied.It is concluded that the PH-Mi process is superior to the PH-M process for eutrophication potential(EP)and the total environmental impacts.In comparison with PH-Mi process,PH-M process exhibits a certain advantage in terms of carbon footprint due to increased consumption of electricity and chemicals after the technological upgrade.展开更多
Coal is a versatile energy resource and was a driver of the industrial revolution that transformed the economies of Europe and North America and the trajectory of civilization.In this work,a technoeconomic analysis wa...Coal is a versatile energy resource and was a driver of the industrial revolution that transformed the economies of Europe and North America and the trajectory of civilization.In this work,a technoeconomic analysis was performed for a coal-to-carbonfiber manufacture process developed at the University of Kentucky’s Center for Applied Energy Research.According to this process,coal,with decant oil as the solvent,was converted to mesophase pitch via solvent extraction,and the mesophase pitch was subsequently converted to carbon fiber.The total cost to produce carbon fibers from coal and decant oil via the solvent extraction process was estimated to be$11.50/kg for 50,000-tow pitch carbon fiber with a production volume of 3750 MT/year.The estimated carbon fiber cost was significantly lower than the current commercially available PAN-based carbon fiber price($20–$30/kg).With decant oil recycling rates of 50%and 70%in the solvent extraction process,the manufacturing cost of carbon fiber was estimated to be$9.90/kg and$9.50/kg of carbon fiber,respectively.A cradle-to-gate energy assessment revealed that carbon fiber derived from coal exhibited an embodied energy of 510 MJ/kg,significantly lower than that of conventionally produced carbon fiber from PAN.This notable difference is primarily attributed to the substantially higher conversion rate of coal-based mesophase pitch fibers into carbon fiber,surpassing PAN fibers by 1.6 times.These findings indicate that using coal for carbon fiber production through solvent extraction methods could offer a more energy-efficient and cost-competitive alternative to the traditional PAN based approach.展开更多
As mining activities expand deeper,deep high-temperature formations seriously threaten the future safe exploitation,while deep geothermal energy has great potential for development.Combining the formation cooling and ...As mining activities expand deeper,deep high-temperature formations seriously threaten the future safe exploitation,while deep geothermal energy has great potential for development.Combining the formation cooling and geothermal mining in mines to establish a thermos-hydraulic coupling numerical model for fractured formation.The study investigates the formation heat transfer behaviour,heat recovery performance and thermal economic benefits influenced during the life cycle.The results show that the accumulation of cold energy during the cold storage phase induces a decline in formation temperature.The heat recovery phase is determined by the extent of the initial cold domain,which contracts inward from the edge and decelerates the heat recovery rate gradually.With groundwater velocity increases,the thermal regulation efficiency gradually increases,the production temperature decreases,while the effective radius and thermal power increase first and then decrease.The injected volume and temperature significantly affect,with higher injection temperatures slowing thermal recovery,and the thermal regulation efficiency is more sensitive to changes in formation permeability and thermal conductivity.The heat extraction performance is positively correlated with all factors.The levelized cost of electricity is estimated at 0.1203$/(kW·h)during the cold storage.During the heat recovery,annual profit is primarily driven by cooling benefits.展开更多
From a life cycle perspective,the material flow analysis is utilized to investigate the lithium material flows in international trade from 2000 to 2019.The results reveal that at the global level,the total volume of l...From a life cycle perspective,the material flow analysis is utilized to investigate the lithium material flows in international trade from 2000 to 2019.The results reveal that at the global level,the total volume of lithium trade grew rapidly,reaching 121116 t in 2019.Lithium trade was dominated by lithium minerals,lithium carbonate and lithium hydroxide rather than final lithium products,indicating an immaturity in global lithium industry.At the intercontinental level,Asia’s import trade and Oceania’s export trade led the world,accounting for 81.22%and 39.68%,respectively.At the national level,China,Japan and Korea became the main importers,while Chile and Australia were the main exporters.In addition,China’s trade volume far exceeded that of the United States.China’s exports were dominated by lithium-ion batteries,while the United States mainly imported lithium-ion batteries,proving that the development of China’s lithium industry was relatively faster.展开更多
The purpose of this paper is to identify the processes with the highest contribution to potential environmental impacts in the life cycle of the masonry of concrete blocks by evaluating their main emissions contributi...The purpose of this paper is to identify the processes with the highest contribution to potential environmental impacts in the life cycle of the masonry of concrete blocks by evaluating their main emissions contributing to impact categories and identifying hotspots for environmental improvements.The research is based on the Life Cycle Assessment(LCA)study of non-load-bearing masonry of concrete blocks performed by the authors.The processes those have demonstrated higher contribution to environmental impacts were identified in the Life Cycle Impact Assessment(LCIA)phase and a detailed analysis was carried out on the main substances derived from these processes.The highest potential impacts in the life cycle of the concrete blocks masonry can be attributed mainly to emissions coming from the production of Portland cement,which explains the peak of impact potential on the blocks production stage,but also the significant impact potential in the use of the blocks for masonry construction,due to the use of cement mortar.The results of this LCA study are part of a major research on the comparative analysis of different typologies of non-load-bearing external walls,which aims to contribute to the creation of a life cycle database of major building systems,to be used by the environmental certification systems of buildings.展开更多
Using solid waste as a substitute for conventional cement has become an important way to reduce carbon emissions.This paper attempted to utilize steel slag(SS)and fly ash(FA)as supplementary cementitious material by u...Using solid waste as a substitute for conventional cement has become an important way to reduce carbon emissions.This paper attempted to utilize steel slag(SS)and fly ash(FA)as supplementary cementitious material by utilizing CO_(2)mineralization curing technology.This study examined the dominant and interactive influences of the residual water/cement ratio,CO_(2)pressure,curing time,and SS content on the mechanical properties and CO_(2)uptake rate of CO_(2)mineralization curing SS-FA-Portland cement ternary paste specimens.Additionally,microstructural development was analyzed.The findings demonstrated that each factor significantly affected compressive strength and CO_(2)uptake rate,with factor interactions becoming more pronounced at higher SS dosages(>30%),lower residual water/cement ratios(0.1-0.15),and CO_(2)pressures of 0.1-0.3 MPa.Microscopic examinations revealed that mineralization primarily yielded CaCO_(3)and silica gel.The residual w/c ratio and SS content significantly influenced the CaCO_(3)content and crystallinity of the mineralization products.Post-mineralization curing,the percentage of pores larger than 50 nm significantly decreased,the proportion of harmless pores smaller than 20 nm increased,and pore structure improved.This study also found that using CO_(2)mineralization curing SS-FA-Portland cement solid waste concrete can significantly reduce the negative impact on the environment.展开更多
The de-manufacturing stage is an overlooked component of most current LCA (life cycle assessment) methodologies. Most of the current LCA techniques do not fully account for the usage of the product and end of life a...The de-manufacturing stage is an overlooked component of most current LCA (life cycle assessment) methodologies. Most of the current LCA techniques do not fully account for the usage of the product and end of life aspects. This paper introduces a comprehensive methodology that takes strong consideration of the inventory costs of use and end of life of the functional unit by combining manufacturing and de-manufacturing into the centerpiece of the hybrid analysis. In order to obtain this goal, a new disaggregated model was developed by enhancing current LCA hybrid methods related to life cycle inventory compilations. The new methodology is also compared to existing methodologies.展开更多
Pneumatic actuators and electric actuators have almost been applied to all manufacturing industries. The two kinds of actuators can replace each other in most fields, such as the point to point transmission occasion a...Pneumatic actuators and electric actuators have almost been applied to all manufacturing industries. The two kinds of actuators can replace each other in most fields, such as the point to point transmission occasion and some rotating occasions. However, there are very few research results about the advantages and disadvantages of two kinds of actuators under the same working conditions so far. In this paper, a novel comprehensive assessment method, named as overall life cycle comprehensive assessment (OLCCA), is proposed for comparison and assessment of pneumatic and electric actuators. OLCCA contains mechanical properties evaluation (MPE), life cycle cost analysis based on users (LCCABOU) and life cycle environmental impact analysis (LCEIA) algorithm in order to solve three difficult problems: mechanical properties assessment, cost analysis and environmental impact assessment about actuators. The mechanical properties evaluation of actuators is a multi-objective optimization problem. The fuzzy data quantification and information entropy methods are combined to establish MPE algorithm of actuators. Two kinds of pneumatic actuators and electric actuators with similar bearing capacity and similar work stroke were taken for example to verify the correctness of MPE algorithm. The case study of MPE algorithm for actuators verified its correctness. LCCABOU for actuators is also set up. Considering cost complex structure of pneumatic actuators, public device cost even method (PDCEM) is firstly presented to solve cost division of public devices such as compressors, aftercooler, receivers, etc. LCCABOU method is also effective and verified by the three groups of pneumatic actuators and electric actuators. Finally, LCEIA model of actuators is established for the environmental impact assessment of actuators. LCEIA data collection method and model establishment procedure for actuators are also put forward. With Simapro 7, LCEIA comparison results of six actuators can be obtained: Fossil fuels are the major environmental factor of pneumatic and electric actuators; Environmental impact of electric actuator is large than one of pneumatic actuator under the similar mechanical properties and working conditions of pneumatic and electric actuators. The results are correct and correspond with the actual mechanical properties of actuators. This paper proposes a comprehensive evaluation method of the actuators, which can solve the critical problem that similar electromechanical products are very difficult to be compared with each other from the angle of performance, cost and environment impact.展开更多
Life cycle assessment (LCA) is based on the basic principles of sustainable development. LCA method demonstrated its efficiency in providing a systematic environmental assessment approach of a product or a process. ...Life cycle assessment (LCA) is based on the basic principles of sustainable development. LCA method demonstrated its efficiency in providing a systematic environmental assessment approach of a product or a process. The effectiveness and efficiency of these methods lies in the fact that they take into account all life cycle stages of a product, from the extraction of raw materials to end of life treatment (recycling, ...) through an assessment covering different impact categories such as climate change, human health, ecosystems and resources. Existing LCA indicators reflect different issues surrounding resource depletion, creating inconsistency and moreover confusion among LCA practitioners. The evaluation of different life cycle impacts assessment (LCIA) methods done by EC JRC showed that available models did not address the same parameters: short- vs long-term, stock vs backup technology, etc. It also showed that if the correlation between the methods was sufficient for some resources, others such as rare earth elements showed a high level of inconsistency between methods. It was therefore necessary to develop a relevant indicator and harmonized assessment of impacts on resources in LCA. Furthermore, a resource strategy indicator based on the three pillars of sustainable development (eco- nomic, environmental and social) would better address wider challenges and making it a more powerful decision making tool. This study aimed to introduce an indicator for evaluating the strategy implications of metal resources for products and to compare different ways of production resulting from extraction of raw materials or recycling, with a special focus on rare earth materials. The indicator would assess the impacts based on a reserve-resource vision [BGS NERC] and the evolution over time and founded over three pa- rameters: technical feasibility, economic viability and political stability (including social and environmental aspects) in representing countries.展开更多
Parabolic trough collectors (PTCs) are employed for a variety of applications including steam generation and hot water generation. This paper deals with the experimental results and an economic analysis of a new fib...Parabolic trough collectors (PTCs) are employed for a variety of applications including steam generation and hot water generation. This paper deals with the experimental results and an economic analysis of a new fibre reinforced plastic (FRP) based solar PTC with an embedded electronic controlled tracking system designed and developed for hot water generation in a restaurant in Madurai, India. The new collector performance has been tested according to ASHRAE Standard 93 (1986). The performance of a new PTC hot water generation system with a well mixed hot water storage tank is investigated by a series of extensive tests over ten months period. The average maximum storage tank water temperature observed was 74.91℃, when no energy is withdrawn from the tank to the load during the collection period. The total cost of the new economic FRP based solar PTC for hot water generation with an embedded electronic controlled tracking system is Rs. 25000 (US$ 573) only. In the present work, life cycle savings (LCS) method is employed for a detailed economic analysis of the PTC system. A computer program is used as a tool for the economic analysis. The present worth of life cycle solar savings is evaluated for the new solar PTC hot water generation system that replaces an existing electric water heating system in the restaurant and attains a value of Rs. 23171.66 after 15 years, which is a significant saving. The LCS method and the MATLAB computer simulation program presented in this paper can be used to estimate the LCS of other renewable energy systems.展开更多
For a clear understanding of how to foster necessary attributes of partnerships that promote a closer relationship for achieving outsourcing success,this paper tries to explore the role of interaction.Based on empiric...For a clear understanding of how to foster necessary attributes of partnerships that promote a closer relationship for achieving outsourcing success,this paper tries to explore the role of interaction.Based on empirical data from a logistics and procurement flat system outsourcing case and earlier research,the industrial network approach and the international marketing and purchasing interaction model are used to analyze the nature of interaction in a three-phased outsourcing life cycle,particularly,characteristics and activities of the transition phase are identified.The findings reveal that developing a relationship between partners requires an industrial network perspective.Improving the key aspects of interaction,information and knowledge sharing,communication and collaborative participation,involved in the important events of three phases would contribute to enhance the relationships performance.The key aspects of interaction should take place among the network actors and not just between buyers and vendors.展开更多
Pavement performance and economic efficiency are researched on the perpetual test pavement of Yijiang-Suzhou Express Highway in Jiangsu province, China. Test sections were continuously monitored. The conditions and de...Pavement performance and economic efficiency are researched on the perpetual test pavement of Yijiang-Suzhou Express Highway in Jiangsu province, China. Test sections were continuously monitored. The conditions and developing laws of deflection, rutting and cracking are compared among the perpetual pavement with the rich binder layer (RBL), the perpetual pavement without the RBL, and the conventional semi-rigid asphalt pavement in the past eight years after opening for traffic. Economical evaluation is conducted via life cycle cost analysis (LCCA). Based on the performance comparison and LCCA analysis, sections with the RBL have good crack resistance, but they are not very satisfactory in the aspect of permanent deformation; the conventional semi-rigid asphalt pavement is the least economic one due to requiring more frequent maintenance. Research results show that the perpetual pavement without RBL is a more appropriate structure for the test site.展开更多
The need for environmental education, which incorporates the life cycle concept into the learning program, will become increasingly greater all over the world. In the present study, an e-learning system, which is made...The need for environmental education, which incorporates the life cycle concept into the learning program, will become increasingly greater all over the world. In the present study, an e-learning system, which is made up of 3 parts including text-based learning materials, quizzes to review the content of the learning materials and CO<sub>2</sub> emission simulation, was designed and developed with the purpose of supporting environmental learning. Targeting a wide range of people, the operation period of this system was 1 month. Based on the results of questionnaire survey for users, it was evident that the quiz function and the simulation function of CO<sub>2</sub> emission contributed to the efficiency in environmental learning, and the format of the e-learning system was effective and helpful for environmental learning. Additionally, with the users’ awareness related to environmental conservation before and after using the system, significant changes in awareness were seen in areas such as behavioral intention, sense of urgency and sense of connection. Furthermore, as it was revealed that 62% of the total access numbers were from mobile devices, it was effective to prepare an interface optimized for mobile devices enabling users to use the system from their smartphones and tablet PCs.展开更多
The main driver for recycling cable wastes is the high value of the conducting metal, while the plastic with its lower value is often neglected. New improved cable plastic recycling routes can provide both economic an...The main driver for recycling cable wastes is the high value of the conducting metal, while the plastic with its lower value is often neglected. New improved cable plastic recycling routes can provide both economic and environmental incentive to cable producers for moving up the “cable plastic waste ladder”. Cradle-to-gate life cycle assessment, LCA, of the waste management of the cable scrap is suggested and explained as a method to analyze the pros and cons of different cable scrap recycling options at hand. Economic and environmental data about different recycling processes and other relevant processes and materials are given. Cable producers can use this data and method to assess the way they deal with the cable plastic waste today and compare it with available alternatives and thus illuminate the improvement potential of recycling cable plastic waste both in an environmental and in an economic sense. The methodology applied consists of: cradle-to-gate LCA for waste material to a recycled material (recyclate);quantifying the climate impact for each step on the waste ladder for the specific waste material;the use of economic and climate impact data in parallel;climate impact presented as a span to portray the insecurities related to which material the waste will replace;and possibilities for do-it-yourself calculations. Potentially, the methodology can be useful also for other waste materials in the future.展开更多
The methodological basis and procedures for determination of Chinese normalization references and weighting factors according to the EDIP-method is described. According to Chinese industrial development intensity and ...The methodological basis and procedures for determination of Chinese normalization references and weighting factors according to the EDIP-method is described. According to Chinese industrial development intensity and population density, China was divided into three regions and the normalization references for each region were calculated on the basis of an inventory of all of the region's environmental emissions in 1990. The normalization reference was determined as the total environmental impact potential for the area in question in 1990(EP(j)90) divided by the population. The weighting factor was determined as the normalization reference (ER(j)90) divided by society's target contribution in the year 2000 based on Chinese political reduction plans, ER(j)T2000. This paper presents and discuss results obtained for eight different environmental impact categories relevant for China: global warming, stratospheric ozone depletion, acidification, nutrient enrichment, photochemical ozone formation and generation of bulk waste, hazardous waste and slag and ashes.展开更多
文摘With the increasingly serious environmental problems,the use of sustainable materials is particularly important.This study focuses on the greenhouse gas emissions and economic costs of wood over its life cycle as a sustainable resource.We use a systematic life cycle assessment(LCA)approach to assess the entire process from raw material collection,processing,use to disposal.The study found that using wood can significantly reduce greenhouse gas emissions compared to traditional building materials such as steel and concrete.In addition,although the initial procurement costs of wood may be higher,its maintenance costs are lower in the long run,making the life cycle costs generally more economical.The results of this study highlight the environmental and economic advantages of wood in the selection of sustainable building materials,and provide a scientific basis for promoting the use of wood.
基金supported by Ningbo’s major scientific and technological breakthrough project“Research and Demonstration on the Technology of Collaborative Disposal of Secondary Ash in Typical Industrial Furnaces” (No.20212ZDYF020047)the central balance fund project“Research on Carbon Emission Accounting and Emission Reduction Potential Assessment for the Whole Life Cycle of Iron and Steel Industry” (No.2021-JY-07).
文摘China is the most important steel producer in the world,and its steel industry is one of themost carbon-intensive industries in China.Consequently,research on carbon emissions from the steel industry is crucial for China to achieve carbon neutrality and meet its sustainable global development goals.We constructed a carbon dioxide(CO_(2))emission model for China’s iron and steel industry froma life cycle perspective,conducted an empirical analysis based on data from2019,and calculated the CO_(2)emissions of the industry throughout its life cycle.Key emission reduction factors were identified using sensitivity analysis.The results demonstrated that the CO_(2)emission intensity of the steel industry was 2.33 ton CO_(2)/ton,and the production and manufacturing stages were the main sources of CO_(2)emissions,accounting for 89.84%of the total steel life-cycle emissions.Notably,fossil fuel combustion had the highest sensitivity to steel CO_(2)emissions,with a sensitivity coefficient of 0.68,reducing the amount of fossil fuel combustion by 20%and carbon emissions by 13.60%.The sensitivities of power structure optimization and scrap consumption were similar,while that of the transportation structure adjustment was the lowest,with a sensitivity coefficient of less than 0.1.Given the current strategic goals of peak carbon and carbon neutrality,it is in the best interest of the Chinese government to actively promote energy-saving and low-carbon technologies,increase the ratio of scrap steel to steelmaking,and build a new power system.
文摘LCM (life cycle management) is a systematic approach, mindset and culture that considers economic, social, and environmental factors among other factors in the decision making process throughout various business or organizational decisions that affect both inputs and outputs of a product or service life cycle. It is a product, process, or activity management system aimed at minimizing environmental and socio-economic burdens associated with an organization's product or process during its entire life cycle and value chain. LCM's application is gaining wider acceptance both in the corporate and governmental organizations as an approach to reduce ecological footprints and to improve the sustainability of human activities. But where and how can it be used in agricultural engineering applications? This study highlights the potential areas of LCM application in agricultural and allied sectors and how it can be utilized. The study revealed that LCM tools such as design for environment and life cycle analysis can be used to evaluate the environmental impacts of-and to improve the products, equipment, and structures produced by biosystems engineers as well as the processes used to generate them.
基金financially supported by the National Natural Science Foundation of China(NSFC,Grant number U20A20310)the Program of Shanghai Academic/Technology Research Leader(Grant number 22XD1423800)。
文摘The degradation of Lithium-ion batteries(LIBs)during cycling is particularly exacerbated at low temperatures,which has a significant impact on the longevity of electric vehicles,energy storage systems,and consumer electronics.A comprehensive understanding of the low-temperature aging mechanisms throughout the whole life cycle of LIBs is crucial.However,existing research is limited,which typically focuses on capacity degradation to 80%.To fill this gap,this paper conducts low-temperature cyclic aging tests at three different charging rates.The investigation employs differential voltage analysis,the distribution of relaxation times technique,and disassembly characterization to explore both thermodynamic degradation and kinetic degradation,alongside a correlation analysis of the factors influencing these degradation processes.The results reveal two distinct knee points in the capacity decline of LIBs during the whole life cycle,in contrast to prior studies identifying only one.Before the first knee point,the thickening of the SEI film dominates capacity loss,with higher charging rates accelerating the process.After the first knee point,the main degradation mechanisms shift to lithium plating and the fracture of the positive electrode active particles.These two aging factors become more pronounced with ongoing cycling,culminating in a second knee point in capacity decline.Notably,a novel finding demonstrates that after the second knee point,capacity degradation progresses faster at lower charging rates compared to medium rates.The reason is the fracture of graphite particles also becomes a critical contributor to the severe capacity degradation at lower charging rates.These insights will guide the designs of next-generation low-temperature LIBs and low-temperature battery management systems.
基金supported by the Construction of Environmental Science and Engineering Discipline for the Goal of Carbon Peaking and Carbon Neutrality Funding comes from Beijing Forestry University(No.2022XKJS0207).
文摘Under the background of resource shortage and global warming,it is of great significance to explore the status,influencing factors and carbon emission reduction effect of waste recycling in China after the implementation of new waste classification policy for guiding waste classification and carbon emission accounting.In this research,the temporal and spatial changes and influencing factors of waste recycling were studied from subdistrict level,life-cycle carbon emission reduction was predicted and policy suggestions for waste recycling were proposed.The results showed that after the implementation of new waste classification policy,the amount of recycled waste and the proportion of low-value recycled waste increased by 420.93 t and 2.29%per month on average,respectively.The district center has the largest amount of recycled waste.Income was the main factors affecting waste recycling,and online shopping and takeout could become important sources of recyclable waste.Accounting cradle-to-grave life cycle carbon footprint,waste plastics takes up the most contribution,accounting for 39.11%,and nearly 391.68 Mt CO_(2eq) would be reduced by waste recycling in China by 2030.Therefore,in the process of waste classification,refining waste classification to increase the amount of low-value recyclables,and rationally deploying collection and transportation vehicles to ensure efficient waste recycling are of great significance to achieve the goal of“carbon peaking and carbon neutrality”.
基金supported by the National Key R&D Program of China(No.2020YFC1909005).
文摘The NdFeB scrap,as a representative solid waste of rare earths,possesses significant recyclable value.This study focused on NdFeB waste and investigated the environmental impacts of pyro-and hydro-metallurgical process(PH-M process)and its improved version,the pyro-and hydro-metallurgical improvement process(PH-Mi process).The results demonstrate that,although the PH-Mi process consumes higher amounts of energy,electricity,and chemicals compared to the PH-M process,it is more environmentally friendly and economically efficient(i.e.,net profit increased by 34.12%).To quantify and compare the environmental performance of the two scenarios,life cycle assessment methodology was applied.It is concluded that the PH-Mi process is superior to the PH-M process for eutrophication potential(EP)and the total environmental impacts.In comparison with PH-Mi process,PH-M process exhibits a certain advantage in terms of carbon footprint due to increased consumption of electricity and chemicals after the technological upgrade.
基金sponsored by the US Department of Energy Fossil Energy and Carbon Management Program,project FEAA157 under contract DE-AC05-00OR22725 with UTBattelle,LLC.
文摘Coal is a versatile energy resource and was a driver of the industrial revolution that transformed the economies of Europe and North America and the trajectory of civilization.In this work,a technoeconomic analysis was performed for a coal-to-carbonfiber manufacture process developed at the University of Kentucky’s Center for Applied Energy Research.According to this process,coal,with decant oil as the solvent,was converted to mesophase pitch via solvent extraction,and the mesophase pitch was subsequently converted to carbon fiber.The total cost to produce carbon fibers from coal and decant oil via the solvent extraction process was estimated to be$11.50/kg for 50,000-tow pitch carbon fiber with a production volume of 3750 MT/year.The estimated carbon fiber cost was significantly lower than the current commercially available PAN-based carbon fiber price($20–$30/kg).With decant oil recycling rates of 50%and 70%in the solvent extraction process,the manufacturing cost of carbon fiber was estimated to be$9.90/kg and$9.50/kg of carbon fiber,respectively.A cradle-to-gate energy assessment revealed that carbon fiber derived from coal exhibited an embodied energy of 510 MJ/kg,significantly lower than that of conventionally produced carbon fiber from PAN.This notable difference is primarily attributed to the substantially higher conversion rate of coal-based mesophase pitch fibers into carbon fiber,surpassing PAN fibers by 1.6 times.These findings indicate that using coal for carbon fiber production through solvent extraction methods could offer a more energy-efficient and cost-competitive alternative to the traditional PAN based approach.
基金financial support from the National Natural Science Foundation of China(Nos.52434006,52374151,and 51927808)。
文摘As mining activities expand deeper,deep high-temperature formations seriously threaten the future safe exploitation,while deep geothermal energy has great potential for development.Combining the formation cooling and geothermal mining in mines to establish a thermos-hydraulic coupling numerical model for fractured formation.The study investigates the formation heat transfer behaviour,heat recovery performance and thermal economic benefits influenced during the life cycle.The results show that the accumulation of cold energy during the cold storage phase induces a decline in formation temperature.The heat recovery phase is determined by the extent of the initial cold domain,which contracts inward from the edge and decelerates the heat recovery rate gradually.With groundwater velocity increases,the thermal regulation efficiency gradually increases,the production temperature decreases,while the effective radius and thermal power increase first and then decrease.The injected volume and temperature significantly affect,with higher injection temperatures slowing thermal recovery,and the thermal regulation efficiency is more sensitive to changes in formation permeability and thermal conductivity.The heat extraction performance is positively correlated with all factors.The levelized cost of electricity is estimated at 0.1203$/(kW·h)during the cold storage.During the heat recovery,annual profit is primarily driven by cooling benefits.
基金supported by the National Natural Science Foundation of China(Nos.71671187,71874210,71633006)the Natural Science Foundation of Hunan Province,China(No.2024JJ6539)+1 种基金the National Social Science Fund of China(No.22&ZD098)the Social Sciences Fund of Hunan Province,China(No.24YBQ138)。
文摘From a life cycle perspective,the material flow analysis is utilized to investigate the lithium material flows in international trade from 2000 to 2019.The results reveal that at the global level,the total volume of lithium trade grew rapidly,reaching 121116 t in 2019.Lithium trade was dominated by lithium minerals,lithium carbonate and lithium hydroxide rather than final lithium products,indicating an immaturity in global lithium industry.At the intercontinental level,Asia’s import trade and Oceania’s export trade led the world,accounting for 81.22%and 39.68%,respectively.At the national level,China,Japan and Korea became the main importers,while Chile and Australia were the main exporters.In addition,China’s trade volume far exceeded that of the United States.China’s exports were dominated by lithium-ion batteries,while the United States mainly imported lithium-ion batteries,proving that the development of China’s lithium industry was relatively faster.
基金The authors would like to acknowledge CAPES (Higher Education Personnel Improvement Coordination) for the financial support given to this research.
文摘The purpose of this paper is to identify the processes with the highest contribution to potential environmental impacts in the life cycle of the masonry of concrete blocks by evaluating their main emissions contributing to impact categories and identifying hotspots for environmental improvements.The research is based on the Life Cycle Assessment(LCA)study of non-load-bearing masonry of concrete blocks performed by the authors.The processes those have demonstrated higher contribution to environmental impacts were identified in the Life Cycle Impact Assessment(LCIA)phase and a detailed analysis was carried out on the main substances derived from these processes.The highest potential impacts in the life cycle of the concrete blocks masonry can be attributed mainly to emissions coming from the production of Portland cement,which explains the peak of impact potential on the blocks production stage,but also the significant impact potential in the use of the blocks for masonry construction,due to the use of cement mortar.The results of this LCA study are part of a major research on the comparative analysis of different typologies of non-load-bearing external walls,which aims to contribute to the creation of a life cycle database of major building systems,to be used by the environmental certification systems of buildings.
基金Project(52479115)supported by the National Natural Science Foundation of ChinaProject(2024SF-YBXM-615)supported by the Key Research and Development Program of Shaanxi Province,China+1 种基金Project(2022943)supported by the Youth Innovation Team of Shaanxi Universities,ChinaProject(300102283721)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Using solid waste as a substitute for conventional cement has become an important way to reduce carbon emissions.This paper attempted to utilize steel slag(SS)and fly ash(FA)as supplementary cementitious material by utilizing CO_(2)mineralization curing technology.This study examined the dominant and interactive influences of the residual water/cement ratio,CO_(2)pressure,curing time,and SS content on the mechanical properties and CO_(2)uptake rate of CO_(2)mineralization curing SS-FA-Portland cement ternary paste specimens.Additionally,microstructural development was analyzed.The findings demonstrated that each factor significantly affected compressive strength and CO_(2)uptake rate,with factor interactions becoming more pronounced at higher SS dosages(>30%),lower residual water/cement ratios(0.1-0.15),and CO_(2)pressures of 0.1-0.3 MPa.Microscopic examinations revealed that mineralization primarily yielded CaCO_(3)and silica gel.The residual w/c ratio and SS content significantly influenced the CaCO_(3)content and crystallinity of the mineralization products.Post-mineralization curing,the percentage of pores larger than 50 nm significantly decreased,the proportion of harmless pores smaller than 20 nm increased,and pore structure improved.This study also found that using CO_(2)mineralization curing SS-FA-Portland cement solid waste concrete can significantly reduce the negative impact on the environment.
文摘The de-manufacturing stage is an overlooked component of most current LCA (life cycle assessment) methodologies. Most of the current LCA techniques do not fully account for the usage of the product and end of life aspects. This paper introduces a comprehensive methodology that takes strong consideration of the inventory costs of use and end of life of the functional unit by combining manufacturing and de-manufacturing into the centerpiece of the hybrid analysis. In order to obtain this goal, a new disaggregated model was developed by enhancing current LCA hybrid methods related to life cycle inventory compilations. The new methodology is also compared to existing methodologies.
基金Supported by Doctoral Foundation of Henan Polytechnic University(Grant No.B2012-101)Opening Project of Key Laboratory of Precision Manufacturing Technology and Engineering of Henan Polytechnic University,China(Grant No.PMTE201318A)Henan Provincial Science and Technology Research Projects of Education Department of China(Grant No.14B460033)
文摘Pneumatic actuators and electric actuators have almost been applied to all manufacturing industries. The two kinds of actuators can replace each other in most fields, such as the point to point transmission occasion and some rotating occasions. However, there are very few research results about the advantages and disadvantages of two kinds of actuators under the same working conditions so far. In this paper, a novel comprehensive assessment method, named as overall life cycle comprehensive assessment (OLCCA), is proposed for comparison and assessment of pneumatic and electric actuators. OLCCA contains mechanical properties evaluation (MPE), life cycle cost analysis based on users (LCCABOU) and life cycle environmental impact analysis (LCEIA) algorithm in order to solve three difficult problems: mechanical properties assessment, cost analysis and environmental impact assessment about actuators. The mechanical properties evaluation of actuators is a multi-objective optimization problem. The fuzzy data quantification and information entropy methods are combined to establish MPE algorithm of actuators. Two kinds of pneumatic actuators and electric actuators with similar bearing capacity and similar work stroke were taken for example to verify the correctness of MPE algorithm. The case study of MPE algorithm for actuators verified its correctness. LCCABOU for actuators is also set up. Considering cost complex structure of pneumatic actuators, public device cost even method (PDCEM) is firstly presented to solve cost division of public devices such as compressors, aftercooler, receivers, etc. LCCABOU method is also effective and verified by the three groups of pneumatic actuators and electric actuators. Finally, LCEIA model of actuators is established for the environmental impact assessment of actuators. LCEIA data collection method and model establishment procedure for actuators are also put forward. With Simapro 7, LCEIA comparison results of six actuators can be obtained: Fossil fuels are the major environmental factor of pneumatic and electric actuators; Environmental impact of electric actuator is large than one of pneumatic actuator under the similar mechanical properties and working conditions of pneumatic and electric actuators. The results are correct and correspond with the actual mechanical properties of actuators. This paper proposes a comprehensive evaluation method of the actuators, which can solve the critical problem that similar electromechanical products are very difficult to be compared with each other from the angle of performance, cost and environment impact.
基金platfom[avniR]–cd2e particularly Christian TRAISNEL for funding this research project
文摘Life cycle assessment (LCA) is based on the basic principles of sustainable development. LCA method demonstrated its efficiency in providing a systematic environmental assessment approach of a product or a process. The effectiveness and efficiency of these methods lies in the fact that they take into account all life cycle stages of a product, from the extraction of raw materials to end of life treatment (recycling, ...) through an assessment covering different impact categories such as climate change, human health, ecosystems and resources. Existing LCA indicators reflect different issues surrounding resource depletion, creating inconsistency and moreover confusion among LCA practitioners. The evaluation of different life cycle impacts assessment (LCIA) methods done by EC JRC showed that available models did not address the same parameters: short- vs long-term, stock vs backup technology, etc. It also showed that if the correlation between the methods was sufficient for some resources, others such as rare earth elements showed a high level of inconsistency between methods. It was therefore necessary to develop a relevant indicator and harmonized assessment of impacts on resources in LCA. Furthermore, a resource strategy indicator based on the three pillars of sustainable development (eco- nomic, environmental and social) would better address wider challenges and making it a more powerful decision making tool. This study aimed to introduce an indicator for evaluating the strategy implications of metal resources for products and to compare different ways of production resulting from extraction of raw materials or recycling, with a special focus on rare earth materials. The indicator would assess the impacts based on a reserve-resource vision [BGS NERC] and the evolution over time and founded over three pa- rameters: technical feasibility, economic viability and political stability (including social and environmental aspects) in representing countries.
文摘Parabolic trough collectors (PTCs) are employed for a variety of applications including steam generation and hot water generation. This paper deals with the experimental results and an economic analysis of a new fibre reinforced plastic (FRP) based solar PTC with an embedded electronic controlled tracking system designed and developed for hot water generation in a restaurant in Madurai, India. The new collector performance has been tested according to ASHRAE Standard 93 (1986). The performance of a new PTC hot water generation system with a well mixed hot water storage tank is investigated by a series of extensive tests over ten months period. The average maximum storage tank water temperature observed was 74.91℃, when no energy is withdrawn from the tank to the load during the collection period. The total cost of the new economic FRP based solar PTC for hot water generation with an embedded electronic controlled tracking system is Rs. 25000 (US$ 573) only. In the present work, life cycle savings (LCS) method is employed for a detailed economic analysis of the PTC system. A computer program is used as a tool for the economic analysis. The present worth of life cycle solar savings is evaluated for the new solar PTC hot water generation system that replaces an existing electric water heating system in the restaurant and attains a value of Rs. 23171.66 after 15 years, which is a significant saving. The LCS method and the MATLAB computer simulation program presented in this paper can be used to estimate the LCS of other renewable energy systems.
文摘For a clear understanding of how to foster necessary attributes of partnerships that promote a closer relationship for achieving outsourcing success,this paper tries to explore the role of interaction.Based on empirical data from a logistics and procurement flat system outsourcing case and earlier research,the industrial network approach and the international marketing and purchasing interaction model are used to analyze the nature of interaction in a three-phased outsourcing life cycle,particularly,characteristics and activities of the transition phase are identified.The findings reveal that developing a relationship between partners requires an industrial network perspective.Improving the key aspects of interaction,information and knowledge sharing,communication and collaborative participation,involved in the important events of three phases would contribute to enhance the relationships performance.The key aspects of interaction should take place among the network actors and not just between buyers and vendors.
基金The Science and Technology Project of Jiangsu Provincial Communications Department(No.7621000078)
文摘Pavement performance and economic efficiency are researched on the perpetual test pavement of Yijiang-Suzhou Express Highway in Jiangsu province, China. Test sections were continuously monitored. The conditions and developing laws of deflection, rutting and cracking are compared among the perpetual pavement with the rich binder layer (RBL), the perpetual pavement without the RBL, and the conventional semi-rigid asphalt pavement in the past eight years after opening for traffic. Economical evaluation is conducted via life cycle cost analysis (LCCA). Based on the performance comparison and LCCA analysis, sections with the RBL have good crack resistance, but they are not very satisfactory in the aspect of permanent deformation; the conventional semi-rigid asphalt pavement is the least economic one due to requiring more frequent maintenance. Research results show that the perpetual pavement without RBL is a more appropriate structure for the test site.
文摘The need for environmental education, which incorporates the life cycle concept into the learning program, will become increasingly greater all over the world. In the present study, an e-learning system, which is made up of 3 parts including text-based learning materials, quizzes to review the content of the learning materials and CO<sub>2</sub> emission simulation, was designed and developed with the purpose of supporting environmental learning. Targeting a wide range of people, the operation period of this system was 1 month. Based on the results of questionnaire survey for users, it was evident that the quiz function and the simulation function of CO<sub>2</sub> emission contributed to the efficiency in environmental learning, and the format of the e-learning system was effective and helpful for environmental learning. Additionally, with the users’ awareness related to environmental conservation before and after using the system, significant changes in awareness were seen in areas such as behavioral intention, sense of urgency and sense of connection. Furthermore, as it was revealed that 62% of the total access numbers were from mobile devices, it was effective to prepare an interface optimized for mobile devices enabling users to use the system from their smartphones and tablet PCs.
文摘The main driver for recycling cable wastes is the high value of the conducting metal, while the plastic with its lower value is often neglected. New improved cable plastic recycling routes can provide both economic and environmental incentive to cable producers for moving up the “cable plastic waste ladder”. Cradle-to-gate life cycle assessment, LCA, of the waste management of the cable scrap is suggested and explained as a method to analyze the pros and cons of different cable scrap recycling options at hand. Economic and environmental data about different recycling processes and other relevant processes and materials are given. Cable producers can use this data and method to assess the way they deal with the cable plastic waste today and compare it with available alternatives and thus illuminate the improvement potential of recycling cable plastic waste both in an environmental and in an economic sense. The methodology applied consists of: cradle-to-gate LCA for waste material to a recycled material (recyclate);quantifying the climate impact for each step on the waste ladder for the specific waste material;the use of economic and climate impact data in parallel;climate impact presented as a span to portray the insecurities related to which material the waste will replace;and possibilities for do-it-yourself calculations. Potentially, the methodology can be useful also for other waste materials in the future.
基金TheNationalNaturalScienceFoundationofChina (No .79870 0 2 7)andtheEuropeanCommunityINCO project
文摘The methodological basis and procedures for determination of Chinese normalization references and weighting factors according to the EDIP-method is described. According to Chinese industrial development intensity and population density, China was divided into three regions and the normalization references for each region were calculated on the basis of an inventory of all of the region's environmental emissions in 1990. The normalization reference was determined as the total environmental impact potential for the area in question in 1990(EP(j)90) divided by the population. The weighting factor was determined as the normalization reference (ER(j)90) divided by society's target contribution in the year 2000 based on Chinese political reduction plans, ER(j)T2000. This paper presents and discuss results obtained for eight different environmental impact categories relevant for China: global warming, stratospheric ozone depletion, acidification, nutrient enrichment, photochemical ozone formation and generation of bulk waste, hazardous waste and slag and ashes.