The emission spectrum of AlO radicals was analyzed in 440-540 nm in the reaction of laser ablated Al beam and O 2. The carrier of spectrum was assigned to Δ ν =0, ±1, ±2 vibrational sequences of B ...The emission spectrum of AlO radicals was analyzed in 440-540 nm in the reaction of laser ablated Al beam and O 2. The carrier of spectrum was assigned to Δ ν =0, ±1, ±2 vibrational sequences of B 2Σ +-X 2Σ + transition of AlO radicals, the observed maximum vibrational quantum number was ν ′=6. The rotational and vibrational temperatures of B state were estimated at 3000 and 7500 K by spectrally simulating the rovibronic population distribution. There is a strong evidence that the production of excited Al( 2 S ) atoms is essential to the formation of excited AlO radicals.展开更多
The angular spectrum of spontaneous emission in a two-dimensional undulator free-electron laser is analyzed theoretically. Numerical calculation shows that the 3-th harmonic spontaneous emission power density can be g...The angular spectrum of spontaneous emission in a two-dimensional undulator free-electron laser is analyzed theoretically. Numerical calculation shows that the 3-th harmonic spontaneous emission power density can be greatly enhanced by using a two-dimensional undulator, for which l=s, so the harmonic number can be selected by selecting l. Therefore, the higher harmonic operation of a free-electron laser can be realized selectively.展开更多
This study shows that the photoelectron energy spectrum generated by an intense laser pulse in the presence of a continuous X-ray has interesting and useful statistical properties. The total photoionization production...This study shows that the photoelectron energy spectrum generated by an intense laser pulse in the presence of a continuous X-ray has interesting and useful statistical properties. The total photoionization production is linearly propor- tional to the time duration of the laser pulse and the square of the beam size. The spectral double energy-integration is an intrinsic value of the laser-assisted X-ray photoionization, which linearly depends on the laser intensity and which quantita- tively reflects the strengths of the laser-field modulation and the quantum interference between photoelectrons. The spectral energy width also linearly depends on the laser intensity. These linear relationships suggest new methods for the in-situ measurement of laser intensity and pulse duration with high precision.展开更多
The frequency spectrum of lascr-cxciicd ultrasonic wave has been measured in various metals including aluminum,sied and copper,at both fm and modified surfaces.The result shows that tke material and surface modificati...The frequency spectrum of lascr-cxciicd ultrasonic wave has been measured in various metals including aluminum,sied and copper,at both fm and modified surfaces.The result shows that tke material and surface modification affect the spectrum.展开更多
In this paper, we use femtosecond laser pulse to scribe 304 stainless steel foil, detect the Fourier transform infrared spectrum of the sample before and after processing, confirm the "cold processing" and &...In this paper, we use femtosecond laser pulse to scribe 304 stainless steel foil, detect the Fourier transform infrared spectrum of the sample before and after processing, confirm the "cold processing" and "thermal processing" and their mutual conversion, and determine the "cold processing" parameter window. The ablation threshold and incubation coefficient of 304 stainless steel foil are calculated, and the effects of scanning speed and effective pulse number on the ablation threshold are analyzed. The ANSYS software is used to simulate the radial and axial temperature distributions of the surface on 304 stainless steel foil sample and the heat-affected zone with a femtosecond laser fluence of 10 J/cm2 and an effective number of pulses of 1 200 are obtained. In the aspect of spectral detection, the Fourier transform infrared spectra of the sample before and after processing are measured and two processing mechanisms of "cold processing" and "hot processing" are confirmed, which proves that we can achieve the conversion between "cold processing" and "hot processing" by changing the laser fluence and determine the "cold processing" laser fluence range.展开更多
In this paper,a mode-locked Ytterbiumdoped fiber laser based on nonlinear optical loop mirror(NOLM)is proposed.The laser generates a wide-spectrum dissipative soliton resonance modelocked pulse with strong stimulated ...In this paper,a mode-locked Ytterbiumdoped fiber laser based on nonlinear optical loop mirror(NOLM)is proposed.The laser generates a wide-spectrum dissipative soliton resonance modelocked pulse with strong stimulated Raman scattering.The fiber laser is pumped forward,and the fiber ring cavity contains double-cladding Yb-doped fiber,output coupler,polarization controller,polarization independent isolator and other elements.NOLM is connected with the ring cavity by through a 3dB beam splitter and 25m single-mode fiber.The total length of the eight-shape cavity laser is about 60meters.By adjusting the intra-cavity polarization controller,a stable dissipative soliton resonance mode-locked spike pulse can be achieved.The repetition frequency of the pulse train is 3.44MHz,which is consistent with the cavity length.The 3dB bandwidth of the spectrum reaches 70.6nm,and the 10dB bandwidth is close to 147.11nm.In this experiment,dissipative soliton resonance mode-locked pulses with wide spectrum and high pulse energy are realized by a traditional modelocking method,which has wide application in many fields such as laser spectral detection and terahertz wave generation.展开更多
The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light–matter interaction. Previous studies mainly focused on the quantum coherent control...The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light–matter interaction. Previous studies mainly focused on the quantum coherent control of the multi-photon absorption by the phase, amplitude and polarization modulation, but the coherent features of the multi-photon absorption depending on the energy level structure, the laser spectrum bandwidth and laser central frequency still lack in-depth systematic research. In this work, we further explore the coherent features of the resonance-mediated two-photon absorption in a rubidium atom by varying the energy level structure, spectrum bandwidth and central frequency of the femtosecond laser field. The theoretical results show that the change of the intermediate state detuning can effectively influence the enhancement of the near-resonant part, which further affects the transform-limited (TL)-normalized final state population maximum. Moreover, as the laser spectrum bandwidth increases, the TL-normalized final state population maximum can be effectively enhanced due to the increase of the enhancement in the near-resonant part, but the TL-normalized final state population maximum is constant by varying the laser central frequency. These studies can provide a clear physical picture for understanding the coherent features of the resonance-mediated two-photon absorption, and can also provide a theoretical guidance for the future applications.展开更多
This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven second...This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers.展开更多
We demonstrate an integrating sphere to cool~(87)Rb atoms and measure the recoil-induced resonance and electromagnetically induced absorption spectrum.We measure the relationship between their linewidth and light shif...We demonstrate an integrating sphere to cool~(87)Rb atoms and measure the recoil-induced resonance and electromagnetically induced absorption spectrum.We measure the relationship between their linewidth and light shift with variation of the detuning and power of the cooling laser and study the performance of the diffuse laser cooling mechanism by the absorption linewidth radio?ν_E/?ν_R and light shift|?_R-?_E|using nonlinear spectroscopy.Specifically,when?ν_E/?ν_R reaches a value of 1.57,the temperature and number of cold atoms achieve the optimal cooling effect.This characterization of absorption linewidth and light shift will provide a method to estimate whether diffuse light cooling achieves the best cooling effect,contributing to the future development of isotropic laser cooling for application in quantum sensing.展开更多
This study investigated the effects of high-energy-density femtosecond laser pulses on diamond under different pulse counts,revealing the resulting structural changes and defect-formation mechanisms.Raman spectroscopy...This study investigated the effects of high-energy-density femtosecond laser pulses on diamond under different pulse counts,revealing the resulting structural changes and defect-formation mechanisms.Raman spectroscopy and low-temperature fluorescence spectroscopy were used to examine the surface damage,stress,and defect evolution of diamond under varying numbers of pulses.The results revealed the generation of nitrogen-vacancy color centers in diamond under high-energy-density pulsed laser irradiation without requiring annealing treatment.Additionally,confocal spectroscopy provided a distribution model for the evolution of damage and defects in diamond after femtosecond laser processing.This research provides valuable insights into optimizing femtosecond laser processing techniques and improves our understanding of the structural changes and defect-formation mechanisms in diamond.展开更多
The 3-section SG-DBR tunable laser is fabricate d using an ion implantation quantum-well intermixing process.The over 30nm discontinuous tuning range is achieved with the SMRS greater than 30dB.
Quantum dot gain spectra based on harmonic oscillator model are calculated including and excluding excitons. The effects of non-equilibrium distributions are considered at low temperatures. The variations of threshold...Quantum dot gain spectra based on harmonic oscillator model are calculated including and excluding excitons. The effects of non-equilibrium distributions are considered at low temperatures. The variations of threshold current density in a wide temperature range are analyzed and the negative characteristic temperature and oscillatory characteristic temperature appearing in that temperature range are discussed. Also,the improvement of quantum dot lasers' performance is investigated through vertical stacking and p-type doping and the optimal dot density, which corresponds to minimal threshold current density,is calculated.展开更多
Based on the finite element method,the angled surface defects have been investigated by using the laser generated surface acoustic wave(SAW).The feature of laser generated SAW interaction with the angled defect is ana...Based on the finite element method,the angled surface defects have been investigated by using the laser generated surface acoustic wave(SAW).The feature of laser generated SAW interaction with the angled defect is analyzed in time and frequency domains.An increase in the amplitude of SAW at the edge of the defect is observed,and the spectral feature is angle dependent.With the angle decreasing from 120°to 30°,the maximum amplitude of frequency spectrum of SAW increases gradually.The corresponding experimental results verify the feasibility of numerical analyses and reach a good agreement with simulation results.展开更多
The LiYF4 single crystal codoped with thulium and holmium ions was successfully grown by the Cz method. The optimal technical parameters obtained were as follows: the pulling rate was 0.16 mm/h; the rotation speed wa...The LiYF4 single crystal codoped with thulium and holmium ions was successfully grown by the Cz method. The optimal technical parameters obtained were as follows: the pulling rate was 0.16 mm/h; the rotation speed was 3 rpm; the cooling rate was 15 °C/h. The result of XRD curve showed that as-grown Tm,Ho:LiYF4 laser crystal belonged to the monoclinic system with scheelite-type structure and space group I41/a. The cell parameters calculated were: a=0.52160 nm, c=1.09841 nm and Z=4. Absorption and fluorescence spectra of Tm,Ho:LiYF4 laser crystal at room temperature were measured and analysed. The absorption cross section, FWHM and absorption coefficient at 779.3 nm calculated were 7.44×10–21 cm2, 8.7 nm and 2.23 cm–1, respectively. An intensive fluorescence emission peak appeared near 2045 nm. The emission cross section and fluorescence lifetime were 0.87×10–20 cm2 and 10.8 ms, respectively. The ratio of Tm–Ho transfer to its back-transfer process was 10.6.展开更多
An optical atomic clock with 171yb atoms is devised and tested. By using a two-stage Doppler cooling technique, the 171Yb atoms are cooled down to a temperature of 6 ± 3 μK, which is close to the Doppler limit. ...An optical atomic clock with 171yb atoms is devised and tested. By using a two-stage Doppler cooling technique, the 171Yb atoms are cooled down to a temperature of 6 ± 3 μK, which is close to the Doppler limit. Then, the cold 171Yb atoms are loaded into a one-dimensional optical lattice with a wavelength of 759 nm in the Lamb-Dicke regime. Furthermore, these cold 171yb atoms are excited from the ground-state 1S0 to the excited-state 3P0 by a clock laser with a wavelength of 578 nm. Finally, the 1S0-3P0 clock-transition spectrum of these 171yb atoms is obtained by measuring the dependence of the population of the ground-state 1 S0 upon the clock-laser detuning.展开更多
In this paper,the chaotic behaviors in an erbium-doped fiber(EDF) single-ring laser(EDFSRL) are investigated experimentally by using the loss modulation method.An electro-optic modulator(EOM) made of LiNbO 3 cry...In this paper,the chaotic behaviors in an erbium-doped fiber(EDF) single-ring laser(EDFSRL) are investigated experimentally by using the loss modulation method.An electro-optic modulator(EOM) made of LiNbO 3 crystal is added to the system.Thus,by changing the modulation voltage and the modulation frequency of the EOM,the freedom of the EDFSRL system is increased.The chaotic characteristics of the system are studied by observing the time series and the power spectra.The experimental results indicate that the erbium-doped fiber single-ring laser system can enter into chaos states through period-doubling bifurcation and intermittency routes.展开更多
The low laser induced damage threshold of the KH2PO4 crystal seriously restricts the output power of inertial confinement fusion.The micro-waviness on the KH2PO4 surface processed by single point diamond turning has a...The low laser induced damage threshold of the KH2PO4 crystal seriously restricts the output power of inertial confinement fusion.The micro-waviness on the KH2PO4 surface processed by single point diamond turning has a significant influence on the damage threshold.In this paper,the influence of micro-waviness on the damage threshold of the KH2PO4 crystal and the chief sources introducing the micro-waviness are analysed based on the combination of the Fourier modal theory and the power spectrum density method.Research results indicate that among the sub-wavinesses with different characteristic spatial frequencies there exists the most dangerous frequency which greatly reduces the damage threshold,although it may not occupy the largest proportion in the original surface.The experimental damage threshold is basically consistent with the theoretical calculation.For the processing parameters used,the leading frequency of micro-waviness which causes the damage threshold to decrease is between 350-1 μm-1 and 30-1 μm-1,especially between 90-1 μm-1 and 200-1 μm-1.Based on the classification study of the time frequencies of microwaviness,we find that the axial vibration of the spindle is the chief source introducing the micro-waviness,nearly all the leading frequencies are related to the practical spindle frequency(about 6.68 Hz,400 r/min) and a special middle frequency(between 1.029 Hz and 1.143 Hz).展开更多
Within the framework of plane-wave angular spectrum analysis of the electromagnetic field structure, a solution valid for tightly focused radially polarized few-cycle laser pulses propagating in vacuum is presented. T...Within the framework of plane-wave angular spectrum analysis of the electromagnetic field structure, a solution valid for tightly focused radially polarized few-cycle laser pulses propagating in vacuum is presented. The resulting field distribution is significantly different from that based on the paraxial approximation for pulses with either small or large beam diameters. We compare the electron accelerations obtained with the two solutions and find that the energy gain obtained with our new solution is usually much larger than that with the paraxial approximation solution.展开更多
In this paper, TitaiJum dioxide (TiO2) rutile single crystal was irradiated by infrared femtosecond laser pulses with repetition rate of 250 kHz. For a P-polarized femtosecond laser, the periodic nanograting structu...In this paper, TitaiJum dioxide (TiO2) rutile single crystal was irradiated by infrared femtosecond laser pulses with repetition rate of 250 kHz. For a P-polarized femtosecond laser, the periodic nanograting structure on the ablation crater surface was formed . The periodicity is much less than the laser wavelength. The direction of nanograting alignment depends on the polarization laser beam. Micro-Raman spectra show that the intensity of Eg Raman vibrating mode of rutile phase increases and that of Alg Raman vibrating mode decreases apparently within the ablation crater. With the increase of irradiation time and laser average power, the Raman vibrating modes of anatase phase emerged. Rutile phase of TiO2 single crystal is partly transformed into anatase phase.展开更多
A laser-produced plasma(LPP) source was built using liquid as target and a Nd:YAG laser as the irradiation laser, and the LPP source's radiation with ethanol and acetone target respectively was measured by an AXUV...A laser-produced plasma(LPP) source was built using liquid as target and a Nd:YAG laser as the irradiation laser, and the LPP source's radiation with ethanol and acetone target respectively was measured by an AXUV100 silicon photodiode combined with a McPHERSON model 247 grazing incidence monochromator of the resolution Δλ≤0.075 nm and the wavelength scanning interval 0.5 nm. Both ethanol and acetone target LPP source had EUV emission at 11~20 nm wavelength. The comparison between the spectra of the two kinds of target materials shows that all the two kinds of target source's spectra are the result of oxygen ions' transitions under current source's parameters, but the spectrum intensity from different target sources is different. The spectra intensity from the ethanol target is higher than that from the acetone target. In addition, the target liquid is forced into the vacuum chamber by the background pressure supported by the connected external high pressure gas, and the influence of the background pressure on the source's intensity is investigated.展开更多
基金Supported by the National Natural Science Foundation of China( No.2 0 0 730 4 2 )
文摘The emission spectrum of AlO radicals was analyzed in 440-540 nm in the reaction of laser ablated Al beam and O 2. The carrier of spectrum was assigned to Δ ν =0, ±1, ±2 vibrational sequences of B 2Σ +-X 2Σ + transition of AlO radicals, the observed maximum vibrational quantum number was ν ′=6. The rotational and vibrational temperatures of B state were estimated at 3000 and 7500 K by spectrally simulating the rovibronic population distribution. There is a strong evidence that the production of excited Al( 2 S ) atoms is essential to the formation of excited AlO radicals.
文摘The angular spectrum of spontaneous emission in a two-dimensional undulator free-electron laser is analyzed theoretically. Numerical calculation shows that the 3-th harmonic spontaneous emission power density can be greatly enhanced by using a two-dimensional undulator, for which l=s, so the harmonic number can be selected by selecting l. Therefore, the higher harmonic operation of a free-electron laser can be realized selectively.
基金supported by the National Natural Science Foundation of China(Grant No.11175010)
文摘This study shows that the photoelectron energy spectrum generated by an intense laser pulse in the presence of a continuous X-ray has interesting and useful statistical properties. The total photoionization production is linearly propor- tional to the time duration of the laser pulse and the square of the beam size. The spectral double energy-integration is an intrinsic value of the laser-assisted X-ray photoionization, which linearly depends on the laser intensity and which quantita- tively reflects the strengths of the laser-field modulation and the quantum interference between photoelectrons. The spectral energy width also linearly depends on the laser intensity. These linear relationships suggest new methods for the in-situ measurement of laser intensity and pulse duration with high precision.
文摘The frequency spectrum of lascr-cxciicd ultrasonic wave has been measured in various metals including aluminum,sied and copper,at both fm and modified surfaces.The result shows that tke material and surface modification affect the spectrum.
基金supported by the National Natural Science Foundation of China (No.11574159)the Open Fund of the State Key Laboratory of High Field Laser Physics,China (Shanghai Institute of Optics and Fine Mechanics)the Special Research Foundation of the Central University of Nankai University (No.63191108)。
文摘In this paper, we use femtosecond laser pulse to scribe 304 stainless steel foil, detect the Fourier transform infrared spectrum of the sample before and after processing, confirm the "cold processing" and "thermal processing" and their mutual conversion, and determine the "cold processing" parameter window. The ablation threshold and incubation coefficient of 304 stainless steel foil are calculated, and the effects of scanning speed and effective pulse number on the ablation threshold are analyzed. The ANSYS software is used to simulate the radial and axial temperature distributions of the surface on 304 stainless steel foil sample and the heat-affected zone with a femtosecond laser fluence of 10 J/cm2 and an effective number of pulses of 1 200 are obtained. In the aspect of spectral detection, the Fourier transform infrared spectra of the sample before and after processing are measured and two processing mechanisms of "cold processing" and "hot processing" are confirmed, which proves that we can achieve the conversion between "cold processing" and "hot processing" by changing the laser fluence and determine the "cold processing" laser fluence range.
基金This work is supported by the Natural Science Foundation of Shandong Province(ZR2017MF072)and HIT Graduate Teaching Innovation Project(JGYJ-2019039).
文摘In this paper,a mode-locked Ytterbiumdoped fiber laser based on nonlinear optical loop mirror(NOLM)is proposed.The laser generates a wide-spectrum dissipative soliton resonance modelocked pulse with strong stimulated Raman scattering.The fiber laser is pumped forward,and the fiber ring cavity contains double-cladding Yb-doped fiber,output coupler,polarization controller,polarization independent isolator and other elements.NOLM is connected with the ring cavity by through a 3dB beam splitter and 25m single-mode fiber.The total length of the eight-shape cavity laser is about 60meters.By adjusting the intra-cavity polarization controller,a stable dissipative soliton resonance mode-locked spike pulse can be achieved.The repetition frequency of the pulse train is 3.44MHz,which is consistent with the cavity length.The 3dB bandwidth of the spectrum reaches 70.6nm,and the 10dB bandwidth is close to 147.11nm.In this experiment,dissipative soliton resonance mode-locked pulses with wide spectrum and high pulse energy are realized by a traditional modelocking method,which has wide application in many fields such as laser spectral detection and terahertz wave generation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51132004,11474096 and 11604199the Science and Technology Commission of Shanghai Municipality under Grant No 14JC1401500the Higher Education Key Program of He'nan Province under Grant Nos 17A140025 and 16A140030
文摘The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light–matter interaction. Previous studies mainly focused on the quantum coherent control of the multi-photon absorption by the phase, amplitude and polarization modulation, but the coherent features of the multi-photon absorption depending on the energy level structure, the laser spectrum bandwidth and laser central frequency still lack in-depth systematic research. In this work, we further explore the coherent features of the resonance-mediated two-photon absorption in a rubidium atom by varying the energy level structure, spectrum bandwidth and central frequency of the femtosecond laser field. The theoretical results show that the change of the intermediate state detuning can effectively influence the enhancement of the near-resonant part, which further affects the transform-limited (TL)-normalized final state population maximum. Moreover, as the laser spectrum bandwidth increases, the TL-normalized final state population maximum can be effectively enhanced due to the increase of the enhancement in the near-resonant part, but the TL-normalized final state population maximum is constant by varying the laser central frequency. These studies can provide a clear physical picture for understanding the coherent features of the resonance-mediated two-photon absorption, and can also provide a theoretical guidance for the future applications.
基金funding from the European Union’s Horizon 2020 research and innovation program through the European IMPULSE project under Grant Agreement No.871161from LASERLAB-EUROPE V under Grant Agreement No.871124+6 种基金from the Grant Agency of the Czech Republic(Grant No.GM23-05027M)Grant No.PDC2021120933-I00 funded by MCIN/AEI/10.13039/501100011033by the European Union Next Generation EU/PRTRsupported by funding from the Ministerio de Ciencia,Innovación y Universidades in Spain through ICTS Equipment Grant No.EQC2018-005230-Pfrom Grant No.PID2021-125389O A-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby“ERDF A Way of Making Europe”by the European Unionfrom grants of the Junta de Castilla y León with Grant Nos.CLP263P20 and CLP087U16。
文摘This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers.
基金Project supported by Shandong Provincial Natural Science Foundation(Grant No.ZR2023LLZ003)the National Natural Science Foundation of China(Grant No.62005145)Fundamental Research Fund of Shandong University,and Shandong Provincial Postdoctoral Science Foundation(Grant No.SDBX202302002)。
文摘We demonstrate an integrating sphere to cool~(87)Rb atoms and measure the recoil-induced resonance and electromagnetically induced absorption spectrum.We measure the relationship between their linewidth and light shift with variation of the detuning and power of the cooling laser and study the performance of the diffuse laser cooling mechanism by the absorption linewidth radio?ν_E/?ν_R and light shift|?_R-?_E|using nonlinear spectroscopy.Specifically,when?ν_E/?ν_R reaches a value of 1.57,the temperature and number of cold atoms achieve the optimal cooling effect.This characterization of absorption linewidth and light shift will provide a method to estimate whether diffuse light cooling achieves the best cooling effect,contributing to the future development of isotropic laser cooling for application in quantum sensing.
基金funded by the Henan Key Laboratory of Intelligent Manufacturing Equipment Integration for Superhard Materials(Grant No.JDKJ2022-01)the Key Lab of Modern Optical Technologies of Education Ministry of China,Soochow University.
文摘This study investigated the effects of high-energy-density femtosecond laser pulses on diamond under different pulse counts,revealing the resulting structural changes and defect-formation mechanisms.Raman spectroscopy and low-temperature fluorescence spectroscopy were used to examine the surface damage,stress,and defect evolution of diamond under varying numbers of pulses.The results revealed the generation of nitrogen-vacancy color centers in diamond under high-energy-density pulsed laser irradiation without requiring annealing treatment.Additionally,confocal spectroscopy provided a distribution model for the evolution of damage and defects in diamond after femtosecond laser processing.This research provides valuable insights into optimizing femtosecond laser processing techniques and improves our understanding of the structural changes and defect-formation mechanisms in diamond.
文摘The 3-section SG-DBR tunable laser is fabricate d using an ion implantation quantum-well intermixing process.The over 30nm discontinuous tuning range is achieved with the SMRS greater than 30dB.
文摘Quantum dot gain spectra based on harmonic oscillator model are calculated including and excluding excitons. The effects of non-equilibrium distributions are considered at low temperatures. The variations of threshold current density in a wide temperature range are analyzed and the negative characteristic temperature and oscillatory characteristic temperature appearing in that temperature range are discussed. Also,the improvement of quantum dot lasers' performance is investigated through vertical stacking and p-type doping and the optimal dot density, which corresponds to minimal threshold current density,is calculated.
基金supported by the National Natural Science Foundation of China(No.51505220)
文摘Based on the finite element method,the angled surface defects have been investigated by using the laser generated surface acoustic wave(SAW).The feature of laser generated SAW interaction with the angled defect is analyzed in time and frequency domains.An increase in the amplitude of SAW at the edge of the defect is observed,and the spectral feature is angle dependent.With the angle decreasing from 120°to 30°,the maximum amplitude of frequency spectrum of SAW increases gradually.The corresponding experimental results verify the feasibility of numerical analyses and reach a good agreement with simulation results.
基金Project supported by Changchun Science and Technology Bureau (2009110)Jilin Provincial Education Department (2009JYT15)Jilin Pro-vincial Science and Technology Department (20100556)
文摘The LiYF4 single crystal codoped with thulium and holmium ions was successfully grown by the Cz method. The optimal technical parameters obtained were as follows: the pulling rate was 0.16 mm/h; the rotation speed was 3 rpm; the cooling rate was 15 °C/h. The result of XRD curve showed that as-grown Tm,Ho:LiYF4 laser crystal belonged to the monoclinic system with scheelite-type structure and space group I41/a. The cell parameters calculated were: a=0.52160 nm, c=1.09841 nm and Z=4. Absorption and fluorescence spectra of Tm,Ho:LiYF4 laser crystal at room temperature were measured and analysed. The absorption cross section, FWHM and absorption coefficient at 779.3 nm calculated were 7.44×10–21 cm2, 8.7 nm and 2.23 cm–1, respectively. An intensive fluorescence emission peak appeared near 2045 nm. The emission cross section and fluorescence lifetime were 0.87×10–20 cm2 and 10.8 ms, respectively. The ratio of Tm–Ho transfer to its back-transfer process was 10.6.
基金supported by the National Basic Research Program of China (Grant Nos. 2012CB821302 and 2010CB922903)the National Natural Science Foundation of China (Grant Nos. 11134003 and 10774044)the Shanghai Excellent Academic Leaders Program of China (Grant No. 12XD1402400)
文摘An optical atomic clock with 171yb atoms is devised and tested. By using a two-stage Doppler cooling technique, the 171Yb atoms are cooled down to a temperature of 6 ± 3 μK, which is close to the Doppler limit. Then, the cold 171Yb atoms are loaded into a one-dimensional optical lattice with a wavelength of 759 nm in the Lamb-Dicke regime. Furthermore, these cold 171yb atoms are excited from the ground-state 1S0 to the excited-state 3P0 by a clock laser with a wavelength of 578 nm. Finally, the 1S0-3P0 clock-transition spectrum of these 171yb atoms is obtained by measuring the dependence of the population of the ground-state 1 S0 upon the clock-laser detuning.
基金Project supported by the Science and Technology Development Program of Jilin Province,China (Grant No. 20090309)
文摘In this paper,the chaotic behaviors in an erbium-doped fiber(EDF) single-ring laser(EDFSRL) are investigated experimentally by using the loss modulation method.An electro-optic modulator(EOM) made of LiNbO 3 crystal is added to the system.Thus,by changing the modulation voltage and the modulation frequency of the EOM,the freedom of the EDFSRL system is increased.The chaotic characteristics of the system are studied by observing the time series and the power spectra.The experimental results indicate that the erbium-doped fiber single-ring laser system can enter into chaos states through period-doubling bifurcation and intermittency routes.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50875066)
文摘The low laser induced damage threshold of the KH2PO4 crystal seriously restricts the output power of inertial confinement fusion.The micro-waviness on the KH2PO4 surface processed by single point diamond turning has a significant influence on the damage threshold.In this paper,the influence of micro-waviness on the damage threshold of the KH2PO4 crystal and the chief sources introducing the micro-waviness are analysed based on the combination of the Fourier modal theory and the power spectrum density method.Research results indicate that among the sub-wavinesses with different characteristic spatial frequencies there exists the most dangerous frequency which greatly reduces the damage threshold,although it may not occupy the largest proportion in the original surface.The experimental damage threshold is basically consistent with the theoretical calculation.For the processing parameters used,the leading frequency of micro-waviness which causes the damage threshold to decrease is between 350-1 μm-1 and 30-1 μm-1,especially between 90-1 μm-1 and 200-1 μm-1.Based on the classification study of the time frequencies of microwaviness,we find that the axial vibration of the spindle is the chief source introducing the micro-waviness,nearly all the leading frequencies are related to the practical spindle frequency(about 6.68 Hz,400 r/min) and a special middle frequency(between 1.029 Hz and 1.143 Hz).
基金supported by the National Natural Science Foundation of China (Grant Nos.10734130,10935002,and 11075105)the National Basic Research Program of China (Grant No.2009GB105002)
文摘Within the framework of plane-wave angular spectrum analysis of the electromagnetic field structure, a solution valid for tightly focused radially polarized few-cycle laser pulses propagating in vacuum is presented. The resulting field distribution is significantly different from that based on the paraxial approximation for pulses with either small or large beam diameters. We compare the electron accelerations obtained with the two solutions and find that the energy gain obtained with our new solution is usually much larger than that with the paraxial approximation solution.
基金Project supported by Shanghai Leading Academic Discipline Project, China (Grant No T0104), the Shanghai Nano-technology Promotion Center and Science & Technology of Shanghai Municipality, China (Grant No 0652nm005), Science Foundation of Shanghai Municipal Commission Education and Science and Technology Commission of Shanghai Municipal, China (Grant No 06PJ14042).
文摘In this paper, TitaiJum dioxide (TiO2) rutile single crystal was irradiated by infrared femtosecond laser pulses with repetition rate of 250 kHz. For a P-polarized femtosecond laser, the periodic nanograting structure on the ablation crater surface was formed . The periodicity is much less than the laser wavelength. The direction of nanograting alignment depends on the polarization laser beam. Micro-Raman spectra show that the intensity of Eg Raman vibrating mode of rutile phase increases and that of Alg Raman vibrating mode decreases apparently within the ablation crater. With the increase of irradiation time and laser average power, the Raman vibrating modes of anatase phase emerged. Rutile phase of TiO2 single crystal is partly transformed into anatase phase.
文摘A laser-produced plasma(LPP) source was built using liquid as target and a Nd:YAG laser as the irradiation laser, and the LPP source's radiation with ethanol and acetone target respectively was measured by an AXUV100 silicon photodiode combined with a McPHERSON model 247 grazing incidence monochromator of the resolution Δλ≤0.075 nm and the wavelength scanning interval 0.5 nm. Both ethanol and acetone target LPP source had EUV emission at 11~20 nm wavelength. The comparison between the spectra of the two kinds of target materials shows that all the two kinds of target source's spectra are the result of oxygen ions' transitions under current source's parameters, but the spectrum intensity from different target sources is different. The spectra intensity from the ethanol target is higher than that from the acetone target. In addition, the target liquid is forced into the vacuum chamber by the background pressure supported by the connected external high pressure gas, and the influence of the background pressure on the source's intensity is investigated.