This paper describes a novel gait pattern recognition method based on Long Short-Term Memory(LSTM)and Convolutional Neural Network(CNN)for lower limb exoskeleton.The Inertial Measurement Unit(IMU)installed on the exos...This paper describes a novel gait pattern recognition method based on Long Short-Term Memory(LSTM)and Convolutional Neural Network(CNN)for lower limb exoskeleton.The Inertial Measurement Unit(IMU)installed on the exoskeleton to collect motion information,which is used for LSTM-CNN input.This article considers five common gait patterns,including walking,going up stairs,going down stairs,sitting down,and standing up.In the LSTM-CNN model,the LSTM layer is used to process temporal sequences and the CNN layer is used to extract features.To optimize the deep neural network structure proposed in this paper,some hyperparameter selection experiments were carried out.In addition,to verify the superiority of the proposed recognition method,the method is compared with several common methods such as LSTM,CNN and SVM.The results show that the average recognition accuracy can reach 97.78%,which has a good recognition eff ect.Finally,according to the experimental results of gait pattern switching,the proposed method can identify the switching gait pattern in time,which shows that it has good real-time performance.展开更多
准确预测PM2.5浓度可以有效避免重污染天气对人体带来的危害。现有方法往往重视本地历史信息对PM2.5浓度预测的影响,而忽略空间传输的作用。提出了一种长短期记忆网络和卷积神经网络(LSTM-CNN)相结合的方法,利用历史PM2.5浓度数据、历...准确预测PM2.5浓度可以有效避免重污染天气对人体带来的危害。现有方法往往重视本地历史信息对PM2.5浓度预测的影响,而忽略空间传输的作用。提出了一种长短期记忆网络和卷积神经网络(LSTM-CNN)相结合的方法,利用历史PM2.5浓度数据、历史气象数据和时间数据,对空气质量监测站未来6 h PM2.5浓度做出预测。该模型主要由2部分组成:1)基于长短期记忆网络的时序预测模型,模拟本地因素对PM2.5浓度预测的影响;2)基于一维卷积神经网络的特征提取模型,模拟周边地区污染物的传输与扩散对PM2.5浓度预测的影响。随机选取了北京市市区及郊区7个监测站在2014-05-01-2015-04-30期间的数据,用于研究和评估LSTM-CNN模型。结果表明:提出的LSTM-CNN模型相比于LSTM模型具有更好的预测效果,且对于郊区站点预测效果的改进略优于市区站点。展开更多
基金supported by the Pre-research project in the manned space field.Project Number 020202,China.
文摘This paper describes a novel gait pattern recognition method based on Long Short-Term Memory(LSTM)and Convolutional Neural Network(CNN)for lower limb exoskeleton.The Inertial Measurement Unit(IMU)installed on the exoskeleton to collect motion information,which is used for LSTM-CNN input.This article considers five common gait patterns,including walking,going up stairs,going down stairs,sitting down,and standing up.In the LSTM-CNN model,the LSTM layer is used to process temporal sequences and the CNN layer is used to extract features.To optimize the deep neural network structure proposed in this paper,some hyperparameter selection experiments were carried out.In addition,to verify the superiority of the proposed recognition method,the method is compared with several common methods such as LSTM,CNN and SVM.The results show that the average recognition accuracy can reach 97.78%,which has a good recognition eff ect.Finally,according to the experimental results of gait pattern switching,the proposed method can identify the switching gait pattern in time,which shows that it has good real-time performance.
文摘准确预测PM2.5浓度可以有效避免重污染天气对人体带来的危害。现有方法往往重视本地历史信息对PM2.5浓度预测的影响,而忽略空间传输的作用。提出了一种长短期记忆网络和卷积神经网络(LSTM-CNN)相结合的方法,利用历史PM2.5浓度数据、历史气象数据和时间数据,对空气质量监测站未来6 h PM2.5浓度做出预测。该模型主要由2部分组成:1)基于长短期记忆网络的时序预测模型,模拟本地因素对PM2.5浓度预测的影响;2)基于一维卷积神经网络的特征提取模型,模拟周边地区污染物的传输与扩散对PM2.5浓度预测的影响。随机选取了北京市市区及郊区7个监测站在2014-05-01-2015-04-30期间的数据,用于研究和评估LSTM-CNN模型。结果表明:提出的LSTM-CNN模型相比于LSTM模型具有更好的预测效果,且对于郊区站点预测效果的改进略优于市区站点。