From 1981 to 2010, the effects of climate change on evapotranspiration of the alpine ecosystem and the regional difference of effects in the Tibetan Plateau (TP) were studied based on the Lund-Potsdam-Jena dynamic v...From 1981 to 2010, the effects of climate change on evapotranspiration of the alpine ecosystem and the regional difference of effects in the Tibetan Plateau (TP) were studied based on the Lund-Potsdam-Jena dynamic vegetation model and data from 80 meteorological stations. Changes in actual evapotranspiration (AET) and water balance in TP were analyzed. Over the last 30 years, climate change in TP was characterized by significantly increased temperature, slightly increased precipitation, and decreased potential evapotranspiration (PET), which was significant before 2000. AET exhibited increasing trends in most parts of TP. The difference between precipitation and AET decreased in the southeastern plateau and increased in the northwestern plateau. A decrease in atmospheric water demand will lead to a decreased trend in AET. However, AET in most regions increased because of increased precipitation. Increased precipitation was observed in 86% of the areas with increased AET, whereas decreased precipitation was observed in 73% of the areas with decreased AET.展开更多
利用1971—2006年环杭州湾地区25个气象站的降水、温度和云量资料及全球CO2年平均体积分数资料,采用LPJ全球动态植被模式(Lund-Potsdam-Jena Dynamic Global Vegetation Model),通过模拟环杭州湾地区的植被年净初级生产力(Annual Net Pr...利用1971—2006年环杭州湾地区25个气象站的降水、温度和云量资料及全球CO2年平均体积分数资料,采用LPJ全球动态植被模式(Lund-Potsdam-Jena Dynamic Global Vegetation Model),通过模拟环杭州湾地区的植被年净初级生产力(Annual Net Primary Productivity,ANPP),分析了该地区ANPP的变化特征,并探讨了植被ANPP变化的可能原因。结果表明:1)就环杭州湾地区,36a间植被ANPP均表现出不同程度的增加,尤其以嘉兴市北部、绍兴市东部较明显;全区平均增加速率为1.5243g·m-2·a-2;2)通过多元线性回归分析发现,环杭州湾地区平均云量与植被ANPP的关系最为密切,偏相关系数为-0.5175,而温度、降水与植被ANPP的关系不明显;同时,植被ANPP对气候变化的响应存在一定的地域性差异;3)在全区平均情况下,36a间由温度下降、降水增加、云量减小、CO2体积分数升高引起的植被ANPP变化趋势分别为-0.0813、-0.0171、0.7601、0.8673g·m-2·a-2,其对应的贡献率分别为-5.18%、-1.09%、48.38%、55.21%。由此可见,该地区植被ANPP变化的主要强迫因子是CO2体积分数和云量,而降水变化对植被ANNP的变化作用不大。展开更多
为评估吉林省落叶松林的生产力现状并为我国森林生态系统生产力和植被监测研究提供基础数据,以吉林省落叶松林为研究对象,基于吉林省及其周边100 km范围内41个气象站点资料,采用LPJ-DGVM模型模拟了2000-2019年吉林省落叶松林近20年的净...为评估吉林省落叶松林的生产力现状并为我国森林生态系统生产力和植被监测研究提供基础数据,以吉林省落叶松林为研究对象,基于吉林省及其周边100 km范围内41个气象站点资料,采用LPJ-DGVM模型模拟了2000-2019年吉林省落叶松林近20年的净初级生产力,并采用线性回归趋势分析、变异系数、Hurst指数和相关性分析法对其时空变化、稳定性及其与气候因子的相关关系进行了分析。结果表明:(1)2000-2019年吉林省落叶松林年均净初级生产力(NPP)为592 g C m^(-2)a^(-1),年均增长率为2.81%,随时间推移呈现波动增长的趋势(β=14.55,R^(2)=0.784,P<0.01)。(2)NPP变异系数为0.07-2.33,均值为0.48,除幼龄林外,整体波动较小。Hurst指数介于0.441-0.849之间,均值为0.612,未来吉林省落叶松林NPP呈增加趋势。(3)吉林省落叶松林NPP存在明显的空间异质性,北部和南部区域NPP较高,是近20年NPP增长较快的区域。(4)2000-2019年吉林省落叶松林年均NPP与年总降水、生长季降水量之间均不显著(P>0.05),与年均温呈显著正相关(P<0.05),与生长季均温为极显著正相关(P<0.01),该阶段内温度比降水更能对吉林省落叶松林NPP的年际变化产生影响。LPJ模型模拟吉林省落叶松林2000-2019年NPP与样地实测值极显著相关(P<0.01),可以用于模拟吉林省落叶松林的NPP。展开更多
基金The "Strategic Priority Research Program" of the Chinese Academy of Sciences,No.XDA05090304Project for Public Service from Ministry of Environmental Protection of China,No.201009056National Key Technology Research and Development Program,No.2009BAC61B05
文摘From 1981 to 2010, the effects of climate change on evapotranspiration of the alpine ecosystem and the regional difference of effects in the Tibetan Plateau (TP) were studied based on the Lund-Potsdam-Jena dynamic vegetation model and data from 80 meteorological stations. Changes in actual evapotranspiration (AET) and water balance in TP were analyzed. Over the last 30 years, climate change in TP was characterized by significantly increased temperature, slightly increased precipitation, and decreased potential evapotranspiration (PET), which was significant before 2000. AET exhibited increasing trends in most parts of TP. The difference between precipitation and AET decreased in the southeastern plateau and increased in the northwestern plateau. A decrease in atmospheric water demand will lead to a decreased trend in AET. However, AET in most regions increased because of increased precipitation. Increased precipitation was observed in 86% of the areas with increased AET, whereas decreased precipitation was observed in 73% of the areas with decreased AET.
文摘利用1971—2006年环杭州湾地区25个气象站的降水、温度和云量资料及全球CO2年平均体积分数资料,采用LPJ全球动态植被模式(Lund-Potsdam-Jena Dynamic Global Vegetation Model),通过模拟环杭州湾地区的植被年净初级生产力(Annual Net Primary Productivity,ANPP),分析了该地区ANPP的变化特征,并探讨了植被ANPP变化的可能原因。结果表明:1)就环杭州湾地区,36a间植被ANPP均表现出不同程度的增加,尤其以嘉兴市北部、绍兴市东部较明显;全区平均增加速率为1.5243g·m-2·a-2;2)通过多元线性回归分析发现,环杭州湾地区平均云量与植被ANPP的关系最为密切,偏相关系数为-0.5175,而温度、降水与植被ANPP的关系不明显;同时,植被ANPP对气候变化的响应存在一定的地域性差异;3)在全区平均情况下,36a间由温度下降、降水增加、云量减小、CO2体积分数升高引起的植被ANPP变化趋势分别为-0.0813、-0.0171、0.7601、0.8673g·m-2·a-2,其对应的贡献率分别为-5.18%、-1.09%、48.38%、55.21%。由此可见,该地区植被ANPP变化的主要强迫因子是CO2体积分数和云量,而降水变化对植被ANNP的变化作用不大。
文摘为评估吉林省落叶松林的生产力现状并为我国森林生态系统生产力和植被监测研究提供基础数据,以吉林省落叶松林为研究对象,基于吉林省及其周边100 km范围内41个气象站点资料,采用LPJ-DGVM模型模拟了2000-2019年吉林省落叶松林近20年的净初级生产力,并采用线性回归趋势分析、变异系数、Hurst指数和相关性分析法对其时空变化、稳定性及其与气候因子的相关关系进行了分析。结果表明:(1)2000-2019年吉林省落叶松林年均净初级生产力(NPP)为592 g C m^(-2)a^(-1),年均增长率为2.81%,随时间推移呈现波动增长的趋势(β=14.55,R^(2)=0.784,P<0.01)。(2)NPP变异系数为0.07-2.33,均值为0.48,除幼龄林外,整体波动较小。Hurst指数介于0.441-0.849之间,均值为0.612,未来吉林省落叶松林NPP呈增加趋势。(3)吉林省落叶松林NPP存在明显的空间异质性,北部和南部区域NPP较高,是近20年NPP增长较快的区域。(4)2000-2019年吉林省落叶松林年均NPP与年总降水、生长季降水量之间均不显著(P>0.05),与年均温呈显著正相关(P<0.05),与生长季均温为极显著正相关(P<0.01),该阶段内温度比降水更能对吉林省落叶松林NPP的年际变化产生影响。LPJ模型模拟吉林省落叶松林2000-2019年NPP与样地实测值极显著相关(P<0.01),可以用于模拟吉林省落叶松林的NPP。