期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Kibble–Zurek Meets Tricriticality:Breakdown of Adiabatic-Impulse and New Scaling Forms
1
作者 Chengshu Li 《Chinese Physics Letters》 2026年第1期1-2,共2页
The Kibble-Zurek (KZ) effect offers an overarching description of dynamical scaling behavior near a critical point.[1,2] Originally proposed in a classical setup,the KZ effect has been generalized to quantum phase tra... The Kibble-Zurek (KZ) effect offers an overarching description of dynamical scaling behavior near a critical point.[1,2] Originally proposed in a classical setup,the KZ effect has been generalized to quantum phase transitions[3-5] and is actively explored on quantum simulation platforms.[6-9] Exploring how the KZ effect fares across different criticalities has proven to be a rewarding pursuit,significantly enriching our understanding of nonequilibrium quantum dynamics.[3-5,10-23] 展开更多
关键词 quantum phase transitions dynamical scaling behavior kz effect kibble zurek effect tricriticality quantum simulation platforms nonequilibrium quantum dynamics critical point
原文传递
Driven Critical Dynamics in the Tricitical Point
2
作者 Ting-Long Wang Yi-Fan Jiang Shuai Yin 《Chinese Physics Letters》 2025年第11期1-8,共8页
The conventional Kibble–Zurek mechanism,describing driven dynamics across critical points based on the adiabatic-impulse scenario(AIS),has attracted broad attention.However,the driven dynamics at the tricritical poin... The conventional Kibble–Zurek mechanism,describing driven dynamics across critical points based on the adiabatic-impulse scenario(AIS),has attracted broad attention.However,the driven dynamics at the tricritical point with two independent relevant directions have not been adequately studied.Here,we employ the time-dependent variational principle to study the driven critical dynamics at a one-dimensional supersymmetric Ising tricritical point.For the relevant direction along the Ising critical line,the AIS apparently breaks down.Nevertheless,we find that the critical dynamics can still be described by finite-time scaling in which the driving rate has a dimension of r_(μ)=z+1/v_(μ)with z and v_(μ)being the dynamic exponent and correlation length exponent in this direction,respectively.For driven dynamics along another direction,the driving rate has a dimension of r_(p)=z+1/v_(p)with v_(p)being another correlation length exponent.Our work brings a new fundamental perspective into nonequilibrium critical dynamics near the tricritical point,which could be realized in programmable quantum processors in Rydberg atomic systems. 展开更多
关键词 driven dynamics across critical points finite time scaling dynamic exponent driven dynamics time dependent variational principle kibble Zurek mechanism tricritical point driven critical dynamics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部