[ Objective ] The paper was to explore the damage, occurrence pattern and integrated control methods of oriental fruit fly [ Bactrocera dorsalis ( Hen- del) ] in Nanning region of Guangxi Province. [ Method ] Using ...[ Objective ] The paper was to explore the damage, occurrence pattern and integrated control methods of oriental fruit fly [ Bactrocera dorsalis ( Hen- del) ] in Nanning region of Guangxi Province. [ Method ] Using fixed system survey method, with fruit fly attractants as the materials, the occurrence dynamic of oriental fruit fly adult in guava orchard was investigated. The control effects of the methods such as fruit fly attractants, fruit bagging, cleaning park to pick up fallen fruit and timely spraying pesticide against the pest were also studied. [ Result] Oriental fruit fly had two damage peak periods in Nanning region of Guangxi Prov- ince (May to June, August to September). Through the integrated control measures of trapping agent for male flies, timely spraying, fruit bagging and cleaning park to pick up fallen fruit, the population density in guava orchard dropped significantly. The fruit damage rates of guava in research base were only 6.67% -7.33% during the peak period of oriental fruit fly in June 2008, while they were 90.53% -98.00% in control area, obtaining good control effect against the pest. [ Con- dttalon ] The method used in the study preliminarily restored the yield losses of guava, which also provided basis for the preparation of overall strategy against orien- tal fruit fly in the region.展开更多
Tobacco black shank is one of the devastating diseases of tobacco. In recent years, this disease widely occurred in most tobacco-growing areas, which caused disastrous losses and has severely threatened the sustainabl...Tobacco black shank is one of the devastating diseases of tobacco. In recent years, this disease widely occurred in most tobacco-growing areas, which caused disastrous losses and has severely threatened the sustainable development of flue-cured tobacco. In order to lay a theoretical foundation for the better control of tobacco black shank, the occurrence characteristics and integrated control strategis of this disease were systematically discussed according to the aspects of agricultural control, chemical control, biological control, etc.展开更多
This paper explores and proposes a design solution of an integrated skip cycle mode (SCM) control circuit with a simple structure. The design is simulated and implemented with XD10H-1.0μm modular DIMOS 650 V proces...This paper explores and proposes a design solution of an integrated skip cycle mode (SCM) control circuit with a simple structure. The design is simulated and implemented with XD10H-1.0μm modular DIMOS 650 V process. In order to meet the requirement of a wide temperature range and high yields of products, the schematic extracted from the layout is simulated with five process corners at 27℃ and 90℃. Simulation results demonstrate that the proposed integrated circuit is immune to noise and achieves skipping cycle control when switching mode power supply (SMPS) works with low load or without load.展开更多
The integrated control system of vehicle ABS/ASR/ACC has been developed using the MC9S12DP256 single chip, which is the new Motorola 16-bit product in HSC12 family. The system including the main control module, the da...The integrated control system of vehicle ABS/ASR/ACC has been developed using the MC9S12DP256 single chip, which is the new Motorola 16-bit product in HSC12 family. The system including the main control module, the data collection module and the drive and fault diagnosis module is demonstrated and its data collection function is presented in detail. The system designed by the modularization can supervise the data, drive the valves and pump. The program can be debugged on line, which is steady and reliable validated by the large numbers of vehicle road tests.展开更多
The relevant factors for physiological chlorosis of Cinnamomum camphora L. in Pingdingshan were studied combining with references and production sur- vey. The resuhs showed that the disease was the integrated results ...The relevant factors for physiological chlorosis of Cinnamomum camphora L. in Pingdingshan were studied combining with references and production sur- vey. The resuhs showed that the disease was the integrated results of soil environment, planting situation, microenvironment construction and maintenance manage- ment. Therefore, the countermeasures of "prevention first, restore tree vigor; integrated control, enhance tree vigor" were proposed. Chlorosis of C. camphora had been basically controlled after four years, and the control effect was obvious.展开更多
This paper describes an intelligent integrated control of an acrobot, which is an underactuated mechanical system with second-order nonholonomic constraints. The control combines a model-free fuzzy control, a fuzzy sl...This paper describes an intelligent integrated control of an acrobot, which is an underactuated mechanical system with second-order nonholonomic constraints. The control combines a model-free fuzzy control, a fuzzy sliding-mode control and a model-based fuzzy control. The model-free fuzzy controller designed for the upswing ensures that the energy of the acrobot increases with each swing. Then the fuzzy sliding-mode controller is employed to control the movement that the acrobot enters the balance area from the swing-up area. The model-based fuzzy controller, which is based on a Takagi-Sugeno fuzzy model, is used to balance the acrobot. The stability of the fuzzy control system for balance control is guaranteed by a common symmetric positive matrix, which satisfies linear matrix inequalities.展开更多
Over the few last years, cucumber (Cucumis sativus L) root rot disease became common and inflicted marked losses to yield in Fayoum. Isolation trails from infected cucumber roots revealed that Thielaviopsis basicola...Over the few last years, cucumber (Cucumis sativus L) root rot disease became common and inflicted marked losses to yield in Fayoum. Isolation trails from infected cucumber roots revealed that Thielaviopsis basicola and Fusarium moniliforme were the main cucumber root rot pathogens. The isolation trials from the rhizosphere of healthy cucumber plants revealed that two fungal isolates and four bacterial isolates had antagonistic effects against cucumber root rot fungi. All the tested biocontrol agents reduced the radial growth of all the tested root rots fungi in dual cultures. However, all culture filtrates of the tested biocontrol agent significantly reduced radial growth of all the tested pathogenic fungi, except that T. harzianum. Under field conditions, soil treatment with any of T. harzianum and B. subtilis BI and BF, significantly reduced percentages of infected plants and significantly increased percentages of survived plants and fruit yield compared with the control. Application of the commercial product Harpin protein (Messenger)~ product, as a resistance inducer at 0.3, 0.5 and l g/L significantly reduced the percentage of infected plants under greenhouse and field conditions. Field experiments indicated that the average percentage of infected plants after 90 days significantly decreased. The percentage of the survived plants as well as fruit yield increased by using integrated disease management (IDM) package, including the most effective treatments: tolerant cultivar, Trichoderma harzianum granules formula as soil treatment, Purging cassia plant extract, Harpin protein, and a half dose of Vitavax/thiram comparing with the treatment recommended by the Ministry of Agricultural or applied treatments individually.展开更多
In view of the occurrence and aggravation of diseases and pests of horticultural crops,the management process should follow the basic policy of"prevention first,comprehensive control".Starting from the ecolo...In view of the occurrence and aggravation of diseases and pests of horticultural crops,the management process should follow the basic policy of"prevention first,comprehensive control".Starting from the ecological system,agricultural,biological,physical and chemical means should be comprehensively applied to control diseases and pests below the economic injury level.展开更多
In the development of China's agricultural production, wheat, as a food crop, plays an important role. Its own output will have a direct impact on the safe development of agriculture. Therefore, when planting whea...In the development of China's agricultural production, wheat, as a food crop, plays an important role. Its own output will have a direct impact on the safe development of agriculture. Therefore, when planting wheat in the field, the field management of wheat must be strengthened, especially the comprehensive prevention and control of diseases and insect pests occurring in the growth process of wheat, which cannot be taken lightly. If diseases and insect pests cannot be effectively and timely controlled, the yield and quality of wheat will be severely reduced. When controlling wheat diseases and insect pests, it is necessary to master the specific characteristics of the diseases and insect pests, and adopt various technologies such as biology and agriculture to carry out comprehensive prevention and control, so as to improve the quality and yield of wheat.展开更多
Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety o...Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety of study results in last over two decades,fully incorporating control requirements and actuator characteristics of space missions.This paper presents a novel and comprehensive survey to the coupled position and attitude motions of spacecraft from the perspective of dynamics and control.To this end,a systematic analysis is firstly conducted in details to show the position and attitude mutual couplings of spacecraft.Particularly,in terms of the time discrepancy between spacecraft position and attitude motions,space missions can be categorized into two types:space proximity operation and space orbital maneuver.Based on this classification,the studies on the coupled dynamic modeling and the integrated control design for position and attitude motions of spacecraft are sequentially summarized and analyzed.On the one hand,various coupled position and dynamic formulations of spacecraft based on various mathematical tools are reviewed and compared from five aspects,including mission applicability,modeling simplicity,physical clearance,information matching and expansibility.On the other hand,the development of the integrated position and attitude control of spacecraft is analyzed for two space missions,and especially,five distinctive development trends are captured for space operation missions.Finally,insightful prospects on future development of the integrated position and attitude control technology of spacecraft are proposed,pointing out current primary technical issues and possible feasible solutions.展开更多
Canker is a quarantine bacterial disease that seriously harms leaves,branches and fruits of citrus,leading to a decrease in the production and affecting the commodity and sales of citrus.Citrus canker has the characte...Canker is a quarantine bacterial disease that seriously harms leaves,branches and fruits of citrus,leading to a decrease in the production and affecting the commodity and sales of citrus.Citrus canker has the characteristics of fast spreading speed and difficult radical cure.Through the identification of symptoms and a summary of occurrence regularity,the integrated prevention and control technology for citrus canker is described in this article,in order to achieve effective prevention and control and reduce prevention and control cost.展开更多
Rice blast is the most devastating disease in rice,and it seriously threatens the safety of rice production.Improving the ability of integrated prevention and control of rice blast has always been an important part of...Rice blast is the most devastating disease in rice,and it seriously threatens the safety of rice production.Improving the ability of integrated prevention and control of rice blast has always been an important part of ensuring food production safety.In the past decade,scientists have made great progress in the prevention and control techniques of rice blast,which paves the way for the green controlling of rice diseases.In this article,the advances in the intelligentization of rice blast field monitoring techniques,the optimization of prediction and forecast modeling system,the research and development of low-toxic and high-efficiency chemical pesticides,biogenic pesticides and inducers and the regulation of multiple ecological factors including variety and cultivation are reviewed,and the new strategies for green controlling of rice blast based on these techniques are summarized.Further,the problems such as high pesticide prices and pesticide residue faced by rice blast prevention and control and the challenge of slow research and development of low-toxic and economical biogenic pesticides are discussed.Finally,the development direction of green controlling of rice blast based on molecular targets,small interfering RNA(siRNA)and CRISPR/Cas9 technologies is predicted,with a view to guaranteeing the safety of rice production.展开更多
Recently,unmanned aerial vehicle(UAV)-aided free-space optical(FSO)communication has attracted widespread attentions.However,most of the existing research focuses on communication performance only.The authors investig...Recently,unmanned aerial vehicle(UAV)-aided free-space optical(FSO)communication has attracted widespread attentions.However,most of the existing research focuses on communication performance only.The authors investigate the integrated scheduling of communication,sensing,and control for UAV-aided FSO communication systems.Initially,a sensing-control model is established via the control theory.Moreover,an FSO communication channel model is established by considering the effects of atmospheric loss,atmospheric turbulence,geometrical loss,and angle-of-arrival fluctuation.Then,the relationship between the motion control of the UAV and radial displacement is obtained to link the control aspect and communication aspect.Assuming that the base station has instantaneous channel state information(CSI)or statistical CSI,the thresholds of the sensing-control pattern activation are designed,respectively.Finally,an integrated scheduling scheme for performing communication,sensing,and control is proposed.Numerical results indicate that,compared with conventional time-triggered scheme,the proposed integrated scheduling scheme obtains comparable communication and control performance,but reduces the sensing consumed power by 52.46%.展开更多
Climate change is accelerating globally,raising significant concerns regarding the environmental risks associated with combined sewer overflows(CSOs).These rainfall events lead to the excessive discharge of multiple p...Climate change is accelerating globally,raising significant concerns regarding the environmental risks associated with combined sewer overflows(CSOs).These rainfall events lead to the excessive discharge of multiple pollutants into natural waters.However,greenhouse gas(GHG)emissions from CSOs,which are crucial for carbon neutrality in urban water systems,remain fragmented.Using the life-cycle assess-ment method expansion approach,this study breaks down the formation and discharge processes of CSOs and uncovers the underlying mechanisms driving GHG emissions during each period.Given the complex-ity and uncertainty in the spatial distribution of GHG emissions from CSOs,the development of standard monitoring and estimation methods is vital.This study identifies the factors influencing GHG emissions within the urban drainage system(UDS)and defines the interactive GHG emission boundaries and accounting framework related to CSOs.This framework is expanded to consider the hybrid nature of urban engineering and hydraulic interactions during the CSO events.Advanced modeling technologies have emerged as essential tools for predicting and managing GHG emissions from CSOs.This review pro-motes comprehensive data-driven methods for predicting GHG emissions from CSOs,fully considering the inherent heterogeneity of CSOs and the impact of multi-source contaminants discharged into aquatic environments.It emphasizes refining emission boundary definitions,novel accounting practices adapting data-driven methods,and comprehensive management strategies in line with the move toward carbon neutrality in the UDS.It advocates the adoption of solutions including advanced technologies and artifi-cial intelligent methods to mitigate CSO-related GHG emissions,stressing the significance of integrating low-carbon solutions and a comprehensive data-driven management framework in future research directions.展开更多
The unpowered high-speed vehicle experiences a significant coupling between the disciplines of aerodynamics and control due to its characteristics of high flight speed and extensive maneuverability within large airspa...The unpowered high-speed vehicle experiences a significant coupling between the disciplines of aerodynamics and control due to its characteristics of high flight speed and extensive maneuverability within large airspace.The conventional aircraft conceptual design process follows a sequential design approach,and there is an artificial separation between the disciplines of aerodynamics and control,neglecting the coupling effects arising from their interaction.As a result,this design process often requires extensive iterations over long periods when applied to high-speed vehicles,and may not be able to effectively achieve the desired design objectives.To enhance the overall performance and design efficiency of high-speed vehicles,this study integrates the concept of Active Control Technology(ACT)from modern aircraft into the philosophy of aerodynamic/control integrated optimization.Two integrated optimization strategies,with differences in coupling granularity,have been developed.Subsequently,these strategies are put into action on a biconical vehicle that operates at Mach 5.The results reveal that the comprehensive performance of the synthesis optimal model derived from the aerodynamic/control integrated optimization strategy is improved by 31.76%and 28.29%respectively compared to the base model under high-speed conditions,demonstrating the feasibility and effectiveness of the method and optimization strategies employed.Moreover,in comparison to the single-stage strategy,the multi-stage strategy takes into deeper consideration the impact of control capacity.As a result,the control performance of the synthesis opti-mal model derived from the multi-stage strategy improves by 13.99%,whereas the single-stage strategy only achieves a 5.79%improvement.This method enables a fruitful interaction between aerodynamic configuration design and control system design,leading to enhanced overall performance and design efficiency.Furthermore,it improves the controllability of high-speed vehicles,mitigating the risk of mission failure resulting from an ineffective control system.展开更多
In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated...In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.展开更多
This paper investigates the damage symptoms and occurrence regularity related to coffee leaf rust,and proposes a comprehensive prevention and control strategy grounded in the principle of prioritizing prevention and i...This paper investigates the damage symptoms and occurrence regularity related to coffee leaf rust,and proposes a comprehensive prevention and control strategy grounded in the principle of prioritizing prevention and implementing integrated prevention and control.This strategy encompasses the cultivation of rust-resistant varieties,the implementation of agricultural practices,the application of chemical interventions,the utilization of hyperparasitic fungi,and the protection and utilization of natural enemies.The paper further outlines the necessary requirements for effective prevention and control,emphasizing the importance of enhancing responsibility implementation,fostering systematic prevention and control measures,enhancing guidance services,and increasing publicity and guidance.The aim is to offer technical guidance for the integrated prevention and control of coffee leaf rust in Yunnan Province.展开更多
To meet the requirements of modern air combat,an integrated fire/flight control(IFFC)system is designed to achieve automatic precision tracking and aiming for armed helicopters and release the pilot from heavy target ...To meet the requirements of modern air combat,an integrated fire/flight control(IFFC)system is designed to achieve automatic precision tracking and aiming for armed helicopters and release the pilot from heavy target burden.Considering the complex dynamic characteristics and the couplings of armed helicopters,an improved automatic attack system is con-structed to integrate the fire control system with the flight con-trol system into a unit.To obtain the optimal command signals,the algorithm is investigated to solve nonconvex optimization problems by the contracting Broyden Fletcher Goldfarb Shanno(C-BFGS)algorithm combined with the trust region method.To address the uncertainties in the automatic attack system,the memory nominal distribution and Wasserstein distance are introduced to accurately characterize the uncertainties,and the dual solvable problem is analyzed by using the duality the-ory,conjugate function,and dual norm.Simulation results verify the practicality and validity of the proposed method in solving the IFFC problem on the premise of satisfactory aiming accu-racy.展开更多
This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation techno...This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation technologies:Area 1 combines thermal,hydro,and distributed generation;Area 2 utilizes a blend of thermal units,distributed solar technologies(DST),and hydro power;andThird control area hosts geothermal power station alongside thermal power generation unit and hydropower units.The suggested control system employs a multi-layered approach,featuring a blended methodology utilizing the Tilted Integral Derivative controller(TID)and the Fractional-Order Integral method to enhance performance and stability.The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm(WaOA).Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations.The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance.In addition,the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market,accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control.To ensure the reliability and resilience of the presented methodology,the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation.To wrap up,the study offers a pioneering control approach-a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm(WaOA)-designed for enhanced stability and performance in a complex,three-region hybrid energy system functioning within a deregulated framework.展开更多
基金Supported by Educational Commission of Guangxi Province of China (GJR(2007)No.70)~~
文摘[ Objective ] The paper was to explore the damage, occurrence pattern and integrated control methods of oriental fruit fly [ Bactrocera dorsalis ( Hen- del) ] in Nanning region of Guangxi Province. [ Method ] Using fixed system survey method, with fruit fly attractants as the materials, the occurrence dynamic of oriental fruit fly adult in guava orchard was investigated. The control effects of the methods such as fruit fly attractants, fruit bagging, cleaning park to pick up fallen fruit and timely spraying pesticide against the pest were also studied. [ Result] Oriental fruit fly had two damage peak periods in Nanning region of Guangxi Prov- ince (May to June, August to September). Through the integrated control measures of trapping agent for male flies, timely spraying, fruit bagging and cleaning park to pick up fallen fruit, the population density in guava orchard dropped significantly. The fruit damage rates of guava in research base were only 6.67% -7.33% during the peak period of oriental fruit fly in June 2008, while they were 90.53% -98.00% in control area, obtaining good control effect against the pest. [ Con- dttalon ] The method used in the study preliminarily restored the yield losses of guava, which also provided basis for the preparation of overall strategy against orien- tal fruit fly in the region.
基金Supported by Project of Yunnan Tobacco Company of Science and Technology(2014YN20)
文摘Tobacco black shank is one of the devastating diseases of tobacco. In recent years, this disease widely occurred in most tobacco-growing areas, which caused disastrous losses and has severely threatened the sustainable development of flue-cured tobacco. In order to lay a theoretical foundation for the better control of tobacco black shank, the occurrence characteristics and integrated control strategis of this disease were systematically discussed according to the aspects of agricultural control, chemical control, biological control, etc.
文摘This paper explores and proposes a design solution of an integrated skip cycle mode (SCM) control circuit with a simple structure. The design is simulated and implemented with XD10H-1.0μm modular DIMOS 650 V process. In order to meet the requirement of a wide temperature range and high yields of products, the schematic extracted from the layout is simulated with five process corners at 27℃ and 90℃. Simulation results demonstrate that the proposed integrated circuit is immune to noise and achieves skipping cycle control when switching mode power supply (SMPS) works with low load or without load.
基金Ford-China Research and Development Fund Project(50122148)
文摘The integrated control system of vehicle ABS/ASR/ACC has been developed using the MC9S12DP256 single chip, which is the new Motorola 16-bit product in HSC12 family. The system including the main control module, the data collection module and the drive and fault diagnosis module is demonstrated and its data collection function is presented in detail. The system designed by the modularization can supervise the data, drive the valves and pump. The program can be debugged on line, which is steady and reliable validated by the large numbers of vehicle road tests.
文摘The relevant factors for physiological chlorosis of Cinnamomum camphora L. in Pingdingshan were studied combining with references and production sur- vey. The resuhs showed that the disease was the integrated results of soil environment, planting situation, microenvironment construction and maintenance manage- ment. Therefore, the countermeasures of "prevention first, restore tree vigor; integrated control, enhance tree vigor" were proposed. Chlorosis of C. camphora had been basically controlled after four years, and the control effect was obvious.
文摘This paper describes an intelligent integrated control of an acrobot, which is an underactuated mechanical system with second-order nonholonomic constraints. The control combines a model-free fuzzy control, a fuzzy sliding-mode control and a model-based fuzzy control. The model-free fuzzy controller designed for the upswing ensures that the energy of the acrobot increases with each swing. Then the fuzzy sliding-mode controller is employed to control the movement that the acrobot enters the balance area from the swing-up area. The model-based fuzzy controller, which is based on a Takagi-Sugeno fuzzy model, is used to balance the acrobot. The stability of the fuzzy control system for balance control is guaranteed by a common symmetric positive matrix, which satisfies linear matrix inequalities.
文摘Over the few last years, cucumber (Cucumis sativus L) root rot disease became common and inflicted marked losses to yield in Fayoum. Isolation trails from infected cucumber roots revealed that Thielaviopsis basicola and Fusarium moniliforme were the main cucumber root rot pathogens. The isolation trials from the rhizosphere of healthy cucumber plants revealed that two fungal isolates and four bacterial isolates had antagonistic effects against cucumber root rot fungi. All the tested biocontrol agents reduced the radial growth of all the tested root rots fungi in dual cultures. However, all culture filtrates of the tested biocontrol agent significantly reduced radial growth of all the tested pathogenic fungi, except that T. harzianum. Under field conditions, soil treatment with any of T. harzianum and B. subtilis BI and BF, significantly reduced percentages of infected plants and significantly increased percentages of survived plants and fruit yield compared with the control. Application of the commercial product Harpin protein (Messenger)~ product, as a resistance inducer at 0.3, 0.5 and l g/L significantly reduced the percentage of infected plants under greenhouse and field conditions. Field experiments indicated that the average percentage of infected plants after 90 days significantly decreased. The percentage of the survived plants as well as fruit yield increased by using integrated disease management (IDM) package, including the most effective treatments: tolerant cultivar, Trichoderma harzianum granules formula as soil treatment, Purging cassia plant extract, Harpin protein, and a half dose of Vitavax/thiram comparing with the treatment recommended by the Ministry of Agricultural or applied treatments individually.
文摘In view of the occurrence and aggravation of diseases and pests of horticultural crops,the management process should follow the basic policy of"prevention first,comprehensive control".Starting from the ecological system,agricultural,biological,physical and chemical means should be comprehensively applied to control diseases and pests below the economic injury level.
文摘In the development of China's agricultural production, wheat, as a food crop, plays an important role. Its own output will have a direct impact on the safe development of agriculture. Therefore, when planting wheat in the field, the field management of wheat must be strengthened, especially the comprehensive prevention and control of diseases and insect pests occurring in the growth process of wheat, which cannot be taken lightly. If diseases and insect pests cannot be effectively and timely controlled, the yield and quality of wheat will be severely reduced. When controlling wheat diseases and insect pests, it is necessary to master the specific characteristics of the diseases and insect pests, and adopt various technologies such as biology and agriculture to carry out comprehensive prevention and control, so as to improve the quality and yield of wheat.
基金supported by the National Science Foundation of China(61703437,52232014,61690210,61690212)。
文摘Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety of study results in last over two decades,fully incorporating control requirements and actuator characteristics of space missions.This paper presents a novel and comprehensive survey to the coupled position and attitude motions of spacecraft from the perspective of dynamics and control.To this end,a systematic analysis is firstly conducted in details to show the position and attitude mutual couplings of spacecraft.Particularly,in terms of the time discrepancy between spacecraft position and attitude motions,space missions can be categorized into two types:space proximity operation and space orbital maneuver.Based on this classification,the studies on the coupled dynamic modeling and the integrated control design for position and attitude motions of spacecraft are sequentially summarized and analyzed.On the one hand,various coupled position and dynamic formulations of spacecraft based on various mathematical tools are reviewed and compared from five aspects,including mission applicability,modeling simplicity,physical clearance,information matching and expansibility.On the other hand,the development of the integrated position and attitude control of spacecraft is analyzed for two space missions,and especially,five distinctive development trends are captured for space operation missions.Finally,insightful prospects on future development of the integrated position and attitude control technology of spacecraft are proposed,pointing out current primary technical issues and possible feasible solutions.
基金National Key R&D Program of China(2017YFD0202000)Project of Hubei Agricultural Science and Technology Innovation Center(2016-620-000-001-030).
文摘Canker is a quarantine bacterial disease that seriously harms leaves,branches and fruits of citrus,leading to a decrease in the production and affecting the commodity and sales of citrus.Citrus canker has the characteristics of fast spreading speed and difficult radical cure.Through the identification of symptoms and a summary of occurrence regularity,the integrated prevention and control technology for citrus canker is described in this article,in order to achieve effective prevention and control and reduce prevention and control cost.
基金Key R&D Project of Guangdong(2019B020217003)Science and Technology Plan Project of Guangzhou(202002030001)+2 种基金Fund for Modern Agro-Industry Technology Research System(CARS-01-32,2020KJ105)Natural Science Foundation of Guangdong(2020A1515011213)New Discipline Team Building Project of Guangdong Academy of Agricultural Sciences(202116TD).
文摘Rice blast is the most devastating disease in rice,and it seriously threatens the safety of rice production.Improving the ability of integrated prevention and control of rice blast has always been an important part of ensuring food production safety.In the past decade,scientists have made great progress in the prevention and control techniques of rice blast,which paves the way for the green controlling of rice diseases.In this article,the advances in the intelligentization of rice blast field monitoring techniques,the optimization of prediction and forecast modeling system,the research and development of low-toxic and high-efficiency chemical pesticides,biogenic pesticides and inducers and the regulation of multiple ecological factors including variety and cultivation are reviewed,and the new strategies for green controlling of rice blast based on these techniques are summarized.Further,the problems such as high pesticide prices and pesticide residue faced by rice blast prevention and control and the challenge of slow research and development of low-toxic and economical biogenic pesticides are discussed.Finally,the development direction of green controlling of rice blast based on molecular targets,small interfering RNA(siRNA)and CRISPR/Cas9 technologies is predicted,with a view to guaranteeing the safety of rice production.
文摘Recently,unmanned aerial vehicle(UAV)-aided free-space optical(FSO)communication has attracted widespread attentions.However,most of the existing research focuses on communication performance only.The authors investigate the integrated scheduling of communication,sensing,and control for UAV-aided FSO communication systems.Initially,a sensing-control model is established via the control theory.Moreover,an FSO communication channel model is established by considering the effects of atmospheric loss,atmospheric turbulence,geometrical loss,and angle-of-arrival fluctuation.Then,the relationship between the motion control of the UAV and radial displacement is obtained to link the control aspect and communication aspect.Assuming that the base station has instantaneous channel state information(CSI)or statistical CSI,the thresholds of the sensing-control pattern activation are designed,respectively.Finally,an integrated scheduling scheme for performing communication,sensing,and control is proposed.Numerical results indicate that,compared with conventional time-triggered scheme,the proposed integrated scheduling scheme obtains comparable communication and control performance,but reduces the sensing consumed power by 52.46%.
基金supported by the National Natural Science Foun-dation of China(52325001,52170009,and 52400114)the National Key Research and Development Program of China(2021YFC3200700 and 2021YFC3200702)+1 种基金the Program of Shanghai Academic Research Leader,China(21XD1424000)the Fundamental Research Funds for the Central Universities.
文摘Climate change is accelerating globally,raising significant concerns regarding the environmental risks associated with combined sewer overflows(CSOs).These rainfall events lead to the excessive discharge of multiple pollutants into natural waters.However,greenhouse gas(GHG)emissions from CSOs,which are crucial for carbon neutrality in urban water systems,remain fragmented.Using the life-cycle assess-ment method expansion approach,this study breaks down the formation and discharge processes of CSOs and uncovers the underlying mechanisms driving GHG emissions during each period.Given the complex-ity and uncertainty in the spatial distribution of GHG emissions from CSOs,the development of standard monitoring and estimation methods is vital.This study identifies the factors influencing GHG emissions within the urban drainage system(UDS)and defines the interactive GHG emission boundaries and accounting framework related to CSOs.This framework is expanded to consider the hybrid nature of urban engineering and hydraulic interactions during the CSO events.Advanced modeling technologies have emerged as essential tools for predicting and managing GHG emissions from CSOs.This review pro-motes comprehensive data-driven methods for predicting GHG emissions from CSOs,fully considering the inherent heterogeneity of CSOs and the impact of multi-source contaminants discharged into aquatic environments.It emphasizes refining emission boundary definitions,novel accounting practices adapting data-driven methods,and comprehensive management strategies in line with the move toward carbon neutrality in the UDS.It advocates the adoption of solutions including advanced technologies and artifi-cial intelligent methods to mitigate CSO-related GHG emissions,stressing the significance of integrating low-carbon solutions and a comprehensive data-driven management framework in future research directions.
基金supported by the National Natural Science Foundation of China(Nos.92371201,52192633)the Natural Science Foundation of Shaanxi Province(No.2022JC-03)Chinese Aeronautical Foundation(No.ASFC-20220019070002)。
文摘The unpowered high-speed vehicle experiences a significant coupling between the disciplines of aerodynamics and control due to its characteristics of high flight speed and extensive maneuverability within large airspace.The conventional aircraft conceptual design process follows a sequential design approach,and there is an artificial separation between the disciplines of aerodynamics and control,neglecting the coupling effects arising from their interaction.As a result,this design process often requires extensive iterations over long periods when applied to high-speed vehicles,and may not be able to effectively achieve the desired design objectives.To enhance the overall performance and design efficiency of high-speed vehicles,this study integrates the concept of Active Control Technology(ACT)from modern aircraft into the philosophy of aerodynamic/control integrated optimization.Two integrated optimization strategies,with differences in coupling granularity,have been developed.Subsequently,these strategies are put into action on a biconical vehicle that operates at Mach 5.The results reveal that the comprehensive performance of the synthesis optimal model derived from the aerodynamic/control integrated optimization strategy is improved by 31.76%and 28.29%respectively compared to the base model under high-speed conditions,demonstrating the feasibility and effectiveness of the method and optimization strategies employed.Moreover,in comparison to the single-stage strategy,the multi-stage strategy takes into deeper consideration the impact of control capacity.As a result,the control performance of the synthesis opti-mal model derived from the multi-stage strategy improves by 13.99%,whereas the single-stage strategy only achieves a 5.79%improvement.This method enables a fruitful interaction between aerodynamic configuration design and control system design,leading to enhanced overall performance and design efficiency.Furthermore,it improves the controllability of high-speed vehicles,mitigating the risk of mission failure resulting from an ineffective control system.
文摘In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.
基金Supported by Innovation Guidance and Technology-based Enterprise Cultivation Program of Yunnan Science and Technology Project(202304BP090027).
文摘This paper investigates the damage symptoms and occurrence regularity related to coffee leaf rust,and proposes a comprehensive prevention and control strategy grounded in the principle of prioritizing prevention and implementing integrated prevention and control.This strategy encompasses the cultivation of rust-resistant varieties,the implementation of agricultural practices,the application of chemical interventions,the utilization of hyperparasitic fungi,and the protection and utilization of natural enemies.The paper further outlines the necessary requirements for effective prevention and control,emphasizing the importance of enhancing responsibility implementation,fostering systematic prevention and control measures,enhancing guidance services,and increasing publicity and guidance.The aim is to offer technical guidance for the integrated prevention and control of coffee leaf rust in Yunnan Province.
基金supported by the National Natural Science Foundation of China(62373187)Forward-looking Layout Special Projects(ILA220591A22).
文摘To meet the requirements of modern air combat,an integrated fire/flight control(IFFC)system is designed to achieve automatic precision tracking and aiming for armed helicopters and release the pilot from heavy target burden.Considering the complex dynamic characteristics and the couplings of armed helicopters,an improved automatic attack system is con-structed to integrate the fire control system with the flight con-trol system into a unit.To obtain the optimal command signals,the algorithm is investigated to solve nonconvex optimization problems by the contracting Broyden Fletcher Goldfarb Shanno(C-BFGS)algorithm combined with the trust region method.To address the uncertainties in the automatic attack system,the memory nominal distribution and Wasserstein distance are introduced to accurately characterize the uncertainties,and the dual solvable problem is analyzed by using the duality the-ory,conjugate function,and dual norm.Simulation results verify the practicality and validity of the proposed method in solving the IFFC problem on the premise of satisfactory aiming accu-racy.
文摘This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation technologies:Area 1 combines thermal,hydro,and distributed generation;Area 2 utilizes a blend of thermal units,distributed solar technologies(DST),and hydro power;andThird control area hosts geothermal power station alongside thermal power generation unit and hydropower units.The suggested control system employs a multi-layered approach,featuring a blended methodology utilizing the Tilted Integral Derivative controller(TID)and the Fractional-Order Integral method to enhance performance and stability.The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm(WaOA).Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations.The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance.In addition,the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market,accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control.To ensure the reliability and resilience of the presented methodology,the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation.To wrap up,the study offers a pioneering control approach-a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm(WaOA)-designed for enhanced stability and performance in a complex,three-region hybrid energy system functioning within a deregulated framework.