期刊文献+
共找到22,034篇文章
< 1 2 250 >
每页显示 20 50 100
Optimizing neon-based gas mixtures for two-stage amplification fast-timing Micromegas detectors
1
作者 Yue Meng Xu Wang +3 位作者 Jianbei Liu Ming Shao Zhiyong Zhang Yi Zhou 《中国科学技术大学学报》 北大核心 2025年第4期59-66,58,I0002,共10页
The PICOSEC Micromegas(MM)is a precise timing gaseous detector based on a Cherenkov radiator coupled with a semi-transparent photocathode and an MM amplifying structure.It features a two-stage amplification process th... The PICOSEC Micromegas(MM)is a precise timing gaseous detector based on a Cherenkov radiator coupled with a semi-transparent photocathode and an MM amplifying structure.It features a two-stage amplification process that leads to a significant deterioration of non-uniformity when scaling up to larger areas.Since the performance of gaseous detectors is highly dependent on the choice of working gas,optimizing the gas mixture offers a promising solution to improve the uniformity performance.This paper addresses these challenges through a combined approach of simulation based on Garfield++and experimental studies.The simulation investigates the properties of different mixing fractions of gas mixtures and their impact on detector performance,including gain uniformity and time resolution.To verify the simulation results,experimental tests were conducted using a multi-channel PICOSEC MM prototype with different gas mixtures.The experimental results are consistent with the findings of the simulation,indicating that a higher concentration of neon significantly improves the detector’s gain uniformity.Furthermore,the influence of gas mixtures on time resolution was explored as a critical performance indicator.The study presented in this paper offers valuable insights for improving uniformity in large-area PICOSEC MM detectors and optimizing overall performance. 展开更多
关键词 gaseous detectors MICROMEGAS timing detectors fast-timing Micromegas Monte Carlo simulation gain uniformity
在线阅读 下载PDF
A large-area scintillation neutron detector based on WLSF and SiPM readout
2
作者 Xiao-Hu Wang Yang-Tu Lu +4 位作者 Bin Tang Xiu-Ku Wang Shao-Jia Chen Ze-Ren Li Zhi-Jia Sun 《Chinese Physics B》 2025年第6期192-197,共6页
Position-sensitive neutron detectors play an important role in neutron scattering studies. Detectors based on ~6LiF/ZnS(Ag) scintillator and wave-shifting fiber have the advantages of high neutron detection efficiency... Position-sensitive neutron detectors play an important role in neutron scattering studies. Detectors based on ~6LiF/ZnS(Ag) scintillator and wave-shifting fiber have the advantages of high neutron detection efficiency, high position resolution,and large-area splicing, and can well meet the requirement of large area neutron detection for neutron diffractometers. An engineering detector prototype based on a ~6LiF/ZnS(Ag) scintillation screen and SiPM array readout was fabricated for the General Purpose Powder Diffractometer of China Spallation Neutron Source(CSNS). The detector has an active area of 196 mm × 444 mm, with a pixel size of 4 mm × 4 mm. The key performances of the detector prototype were tested at the BL20 neutron beam line of CSNS. The test results show that the neutron detection efficiency of the detector was 32% and 42% at wavelengths of 1.4 ? and 2.8 ?, respectively. An interpolated neutron detection efficiency of 40.2% at a wavelength of 2 ? was obtained. The tested neutron efficiency non-uniformity of the detector was 10.2%, which is less than one-half that of the current general purpose powder diffractometer scintillator neutron detectors at CSNS. This work achieves, for the first time, an efficiency uniformity of < 11% in large-area mosaic neutron detectors, alongside significant advancements in electromagnetic interference immunity and cost-effectiveness. 展开更多
关键词 scintillation neutron detector silicon photomultiplier position sensitive neutron detector
原文传递
Commissioning of the fast neutron detector array at China Institute of Atomic Energy
3
作者 Meng-Xiao Kang Ji-Zhi Zhang +4 位作者 Hong-Yi Wu Han-Xiong Huang Yu-Zhao Li He-Run Yang Xi-Chao Ruan 《Nuclear Science and Techniques》 2025年第5期102-112,共11页
The prompt fission neutron spectrum(PFNS)is a key nuclear data quantity that is of particular interest and plays a crucial role in understanding and modeling fission processes.An array comprising 48 liquid scintillati... The prompt fission neutron spectrum(PFNS)is a key nuclear data quantity that is of particular interest and plays a crucial role in understanding and modeling fission processes.An array comprising 48 liquid scintillation detectors and a parallelplate avalanche counter(PPAC)was developed at the China Institute of Atomic Energy(CIAE)to measure the PFNS of actinide nuclei.Efficiency and energy calibrations were performed for all the liquid scintillators,and their efficiencies were consistently found to be better than 5%.The time resolutions of the PPAC and liquid scintillators were measured to be 1.08 ns and 1.16 ns using~(252)Cf and~(207)Bi sources,respectively.The pulse shape discrimination of the liquid scintillator was utilized to identify neutron andγsignals on an event-by-event basis,and the figure of merit was deduced as 1.12 at a 200 ke Vee threshold.The contribution to the PFNS from multiple scattered neutrons was evaluated via Geant4 simulations,and those originating from the environment were found to be comparable to the crosstalk between the detectors.The neutron efficiency of the entire detection array was calibrated using a~(252)Cf spontaneous fission source and was demonstrated to be consistent with the Geant4 simulation results,which verified the reliability of the detection array. 展开更多
关键词 Liquid scintillation detector Parallel Plate Avalanche Counter(PPAC) Prompt Fission Neutron Spectra(PFNS) Neutron detector array
在线阅读 下载PDF
CMOS direct conversion X-ray detector coupled with fluorinated liquid 被引量:1
4
作者 Shi-Hua Liu Chao-Song Gao +5 位作者 Xin Zhang Xiang-Ming Sun Meng Wu Zhi-Hui Han Tong Wan Yong-Shuai Ge 《Nuclear Science and Techniques》 2025年第1期59-68,共10页
X-ray detectors show potential applications in medical imaging,materials science,and nuclear energy.To achieve high detection efficiency and spatial resolution,many conventional semiconductor materials,such as amorpho... X-ray detectors show potential applications in medical imaging,materials science,and nuclear energy.To achieve high detection efficiency and spatial resolution,many conventional semiconductor materials,such as amorphous selenium,cadmium telluride zinc,and perovskites,have been utilized in direct conversion X-ray detectors.However,these semiconductor materials are susceptible to temperature-induced performance degradation,crystallization,delamination,uneven lattice growth,radiation damage,and high dark current.This study explores a new approach by coupling an FC40 electronic fluorinated liquid with a specialized high-resolution and high-readout-speed complementary metal-oxide-semiconductor(CMOS)pixel array,specifically the Topmetal II−chip,to fabricate a direct conversion X-ray detector.The fluorinated liquid FC40(molecular formula:C_(21)F_(48)N_(2))is an electronic medium that is minimally affected by temperature and displays no issues with uniform conductivity.It exhibits a low dark current and minimal radiation damage and enables customizable thickness in X-ray absorption.This addresses the limitations inherent in conventional semiconductor-based detectors.In this study,simple X-ray detector imaging tests were conducted,demonstrating the excellent coupling capability between FC40 electronic fluorinated liquid and CMOS chips by the X-ray detector.A spatial resolution of 4.0 lp/mm was measured using a striped line par card,and a relatively clear image of a cockroach was displayed in the digital radiography imaging results.Preliminary test results indicated the feasibility of fabricating an X-ray detector by combining FC40 electronic fluorinated liquid and CMOS chips.Owing to the absence of issues related to chip-material coupling,a high spatial resolution could be achieved by reducing the chip pixel size.This method presents a new avenue for studies on novel liquid-based direct conversion X-ray detectors. 展开更多
关键词 FC40 electronic fluorinated liquid CMOS pixel chip X-ray detector Spatial resolution
在线阅读 下载PDF
Study of bonding layer for integrated structure of space gravitational wave detector telescope
5
作者 ZHAO Hong-chao LIU Chang +2 位作者 ZHOU Wen-ke ZHU Han-bin CHEN Wen-duo 《中国光学(中英文)》 北大核心 2025年第3期715-724,共10页
To detect space gravitational waves in the extremely low-frequency band,the telescope and optic-al platform require high stability and reliability.However,the cantilevered design presents challenges,espe-cially in the... To detect space gravitational waves in the extremely low-frequency band,the telescope and optic-al platform require high stability and reliability.However,the cantilevered design presents challenges,espe-cially in the glass-metal hetero-bonding process.This study focuses on the analysis and experimental re-search of the bonding layer in the integrated structure.By optimizing the structural configuration and select-ing suitable bonding processes,the reliability of the telescope system is enhanced.The research indicates that using J-133 adhesive achieves the best performance,with a bonding layer thickness of 0.30 mm and a metal substrate surface roughness of Ra 0.8.These findings significantly enhance the reliability of the optical sys-tem while minimizing potential risks. 展开更多
关键词 space gravitational-wave detector integrated structure glass-metal hetero-bonding
在线阅读 下载PDF
Flatness detection method of splicing detector based on channel spectral dispersion
6
作者 ZHAO Hong-chao ZHANG Xiao-qian AN Qi-chang 《中国光学(中英文)》 北大核心 2025年第4期889-898,共10页
For segmented detectors,surface flatness is critical as it directly influences both energy resolution and image clarity.Additionally,the limited adjustment range of the segmented detectors necessitates precise benchma... For segmented detectors,surface flatness is critical as it directly influences both energy resolution and image clarity.Additionally,the limited adjustment range of the segmented detectors necessitates precise benchmark construction.This paper proposes an architecture for detecting detector flatness based on channel spectral dispersion.By measuring the dispersion fringes for coplanar adjustment,the final adjustment residual is improved to better than 300 nm.This result validates the feasibility of the proposed technology and provides significant technical support for the development of next-generation large-aperture sky survey equipment. 展开更多
关键词 large aperture telescope segmented detector surface wavefront detection channel spectral dispersion
在线阅读 下载PDF
Performance Assessment of Semiconductor Detector Used in Diagnostics and Interventional Radiology at the Nigerian Secondary Standard Dosimetry Laboratory
7
作者 Samuel Mofolorunsho Oyeyemi Olumide Olaife Akerele +6 位作者 David Olakanmi Olaniyi Francis Adole Agada Sherif Olaniyi Kelani Akinkunmi Emmanuel Ladapo Ahmed Mohammed Shiyanbade Bamidele Musbau Adeniran Latifat Ronke Owoade 《World Journal of Nuclear Science and Technology》 2025年第1期17-29,共13页
Radiation doses to patients in diagnostics and interventional radiology need to be optimized to comply with the principles of radiation protection in medical practice. This involves using specific detectors with respe... Radiation doses to patients in diagnostics and interventional radiology need to be optimized to comply with the principles of radiation protection in medical practice. This involves using specific detectors with respective diagnostic beams to carry out quality control/quality assurance tests needed to optimize patient doses in the hospital. Semiconductor detectors are used in dosimetry to verify the equipment performance and dose to patients. This work aims to assess the performance, energy dependence, and response of five commercially available semiconductor detectors in RQR, RQR-M, RQA, and RQT at Secondary Standard Dosimetry for clinical applications. The diagnostic beams were generated using Exradin A4 reference ion chamber and PTW electrometer. The ambient temperature and pressure were noted for KTP correction. The detectors designed for RQR showed good performance in RQT beams and vice versa. The detectors designed for RQR-M displayed high energy dependency in other diagnostic beams. The type of diagnostic beam quality determines the response of semiconductor detectors. Therefore, a detector should be calibrated according to the beam qualities to be measured. 展开更多
关键词 Semiconductor detectors Optimization of Protection CALIBRATION Patient Dose Diagnostic Radiology
在线阅读 下载PDF
Advances in integrated polarization detectors with innovative features
8
作者 BU Yong-Hao ZHOU Jing +8 位作者 DENG Jie WANG Ruo-Wen YE Tao SHI Meng-Die HUANG Jun-Wei ZHANG Yu-Jie NING Jun LU Wei CHEN Xiao-Shuang 《红外与毫米波学报》 北大核心 2025年第3期371-383,共13页
The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.How... The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.However,conventional polarization detection systems are often bulky and complex,limiting their poten⁃tial for broader applications.To address the challenges of miniaturization,integrated polarization detectors have been extensively explored in recent years,achieving significant advancements in performance and functionality.In this review,we focus mainly on integrated polarization detectors with innovative features,including infinitely high polarization discrimination,ultrahigh sensitivity to polarization state change,full Stokes parameters measure⁃ment,and simultaneous perception of polarization and other key properties of light.Lastly,we discuss the oppor⁃tunities and challenges for the future development of integrated polarization photodetectors. 展开更多
关键词 integrated polarization detector infinite polarization extinction ratio polarization state change detection full-Stokes multidimensional detection
在线阅读 下载PDF
Study of true coincidence summing effects on FEP efficiency of HPGe detectors during decay measurements at HIRFL
9
作者 Peng-Song Zheng Fu-Rong Shi +14 位作者 Sunil Dutt Ya-Ling Zhang Yan-Shi Zhang Wei Wang Guang-Shun Li Si-Cheng Wang Hao-Ran Yang Jin-Qi He Peng-Cong Ma Jilehu Gada Xin Ma Fan-Fei Zeng Hao Huang Chen-Sheng Gao Jian-Guo Wang 《Nuclear Science and Techniques》 2025年第5期70-78,共9页
The measurement of low-level radioactivity using high-purity germanium(HPGe)detectors is important in applications such as environmental background radiation,material screening,and rare decays.The dead layers,dead zon... The measurement of low-level radioactivity using high-purity germanium(HPGe)detectors is important in applications such as environmental background radiation,material screening,and rare decays.The dead layers,dead zones,aluminum shell thickness,and diameter of Ge crystals are the most influential factors affecting the performance of HPGe detectors;hence,precise modeling of the physical conditions of the detectors is highly desirable.In this study,the GEANT4 simulation framework with an optimized detector geometry adequately replicated the experimentally recorded spectrum.These detector simulations explored the idea of realizing a dead zone(an inactive volume)at the backend of an n-type coaxial Gecrystal.Using multigamma sources,the effect of true coincidence summing(TCS)on the full energy peak(FEP)efficiency calibration of an HPGe detector was investigated as a function of sample-to-detector distance.Good agreements between the simulated and experimental efficiencies as well as the simulated and analytically calculated summing coincidence correction coefficients were achieved.At a short distance between the source and detector,calculating the correction factors for a strong source posed challenges owing to significant deadtime and pile-up effects of the detection system.The described methodology can efficiently determine summing peak probabilities at short sample-to-detector distances. 展开更多
关键词 Coaxial HPGe detector detector characterization GEANT4 simulation Sum-peak Analytical approach Transfer reaction cross-section
在线阅读 下载PDF
Suppression of electromagnetic crosstalk in kinetic inductance detector arrays by redesigning the pixel arrangement
10
作者 Houceng Huang Shilin Sun +4 位作者 Xiandong Shi Yuechen Zhao Yaqian Zhang Dejun Liu Weijie Du 《Astronomical Techniques and Instruments》 2025年第4期239-245,共7页
Superconducting kinetic inductance detectors(KIDs)are considered to be a highly promising technique for the large-scale imaging of millimeter and submillimeter waves in astronomy.As the pixel density and the array siz... Superconducting kinetic inductance detectors(KIDs)are considered to be a highly promising technique for the large-scale imaging of millimeter and submillimeter waves in astronomy.As the pixel density and the array size increase,the electromagnetic crosstalk inevitably becomes a problem that prevents increasing the multiplexing during the development of larger KIDs arrays.In this work,an effective method is introduced to suppress the electromagnetic crosstalk and achieve a compact pixel distribution and small frequency intervals.The electromagnetic crosstalk is first analyzed by simulating the behavior of two neighboring pixels,and the physical distance and the frequency interval are optimized.Then,the arrangement of the pixels on the whole array is redesigned using a genetic algorithm to satisfy the requirements.The simulation results reveal that the normalized electromagnetic crosstalk can be reduced to 0.5%on an 8×8 array.Larger arrays of 16×16 pixels have been fabricated and measured to validate this method,and the results reveal that both the resonance property and survival rate of pixels are improved effectively with this method.This method will be very helpful for designing high-multiplexing KIDs arrays within a limited bandwidth. 展开更多
关键词 Kinetic inductance detector CROSSTALK Submillimeter wave RESONATOR
在线阅读 下载PDF
Gamma-ray spectral energy resolution calibration based on locally constrained regularization for scintillation detector response:methodology,numerical,and experimental analysis
11
作者 Guo-Feng Yang Wen-Zheng Peng +3 位作者 Dong-Ming Liu Xiao-Long Wu Meng Chen Xiang-Jun Liu 《Nuclear Science and Techniques》 2025年第4期92-104,共13页
Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration para... Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration parameters.First,a Monte Carlo simulation model consistent with an actual measurement system was constructed to obtain the energy deposition distribution in the scintillation crystal.Subsequently,the regularization objective function is established based on weighted least squares and additional constraints.Additional constraints were designed using a special weighting scheme based on the incident gamma-ray energies.Subsequently,an intelligent algorithm was introduced to search for the optimal resolution calibration parameters by minimizing the objective function.The most appropriate regularization parameter was determined through mathematical experiments.When the regularization parameter was 30,the calibrated results exhibited the minimum RMSE.Simulations and test pit experiments were conducted to verify the performance of the proposed method.The simulation results demonstrate that the proposed algorithm can determine resolution calibration parameters more accurately than the traditional weighted least squares,and the test pit experimental results show that the R-squares between the calibrated and measured spectra are larger than 0.99.The accurate resolution calibration parameters determined by the proposed method lay the foundation for gamma-ray spectral processing and simulation benchmarking. 展开更多
关键词 Energy resolution REGULARIZATION Gaussian broadening Spectral analysis Scintillation detector
在线阅读 下载PDF
Design of a silicon charge detector readout system for beam test
12
作者 Xuan Liu Dong-Yu Wang +6 位作者 Wen-Xi Peng Rui Qiao Meng-Long Wu Ming Huang Ya-Qing Liu Dong-Ya Guo Ke Gong 《Nuclear Science and Techniques》 2025年第7期53-63,共11页
The high-energy cosmic radiation detector(HERD)is a planned experimental instrument at the Chinese Space Station.The silicon charge detector(SCD),a subdetector in HERD,is used to detect cosmic-ray nuclei with a high c... The high-energy cosmic radiation detector(HERD)is a planned experimental instrument at the Chinese Space Station.The silicon charge detector(SCD),a subdetector in HERD,is used to detect cosmic-ray nuclei with a high charge resolution.In this study,we present a compact readout electronic system for the SCD that is designed for the HERD heavy-ion beam test.It comprises front-end readout electronics with 200 input channels as well as data acquisition and data management electronics.The test results showed that the SCD readout system had low noise with a silicon-strip detector connected.The dynamic range could be extended from 200 to 1200 fC,and the cosmic-ray test was performed as expected. 展开更多
关键词 HERD Silicon charge detector Readout electronics
在线阅读 下载PDF
Achieving detector-grade CdTe(Cl)single crystals through vapor-pressure-controlled vertical gradient freeze growth
13
作者 Zi-Ang Yin Ya-Ru Zhang +7 位作者 Zhe Kang Xiang-Gang Zhang Jin-Bo Liu Ke-Jin Liu Zheng-Yi Sun Wan-Qi Jie Qing-Hua Zhao Tao Wang 《Nuclear Science and Techniques》 2025年第7期213-221,共9页
Cadmium telluride(CdTe),which has a high average atomic number and a unique band structure,is a leading material for room-temperature X/γ-ray detectors.Resistivity and mobility are the two most important properties o... Cadmium telluride(CdTe),which has a high average atomic number and a unique band structure,is a leading material for room-temperature X/γ-ray detectors.Resistivity and mobility are the two most important properties of detector-grade CdTe single crystals.However,despite decades of research,the fabrication of high-resistivity and high-mobility CdTe single crystals faces persistent challenges,primarily because the stoichiometric composition cannot be well controlled owing to the high volatility of Cd under high-temperature conditions.This volatility introduces Te inclusions and cadmium vacancies(V_(Cd))into the as-grown CdTe ingot,which significantly degrades the device performance.In this study,we successfully obtained detector-grade CdTe single crystals by simultaneously employing a Cd reservoir and chlorine(Cl)dopants via a vertical gradient freeze(VGF)method.By installing a Cd reservoir,we can maintain the Cd pressure under the crystal growth conditions,thereby preventing the accumulation of Te in the CdTe ingot.Additionally,the existence of the Cl dopant helps improve the CdTe resistivity by minimizing V_(Cd)density through the formation of an acceptor complex(Cl_(Te)-V_(Cd))^(-1).The crystalline quality of the obtained CdTe(Cl)was evidenced by a reduction in large Te inclusions,high optical transmission(60%),and a sharp absorption edge(1.456 eV).The presence of substitutional Cl dopants,known as Cl_(Te)^(+),simultaneously supports the record high resistivity of 1.5×10^(10)Ω·cm and remarkable electron mobility of 1075±88 cm^(2)V^(-1)s^(-1)simultaneously,has been confirmed by photoluminescence spectroscopy.Moreover,using our crystals,we fabricated a planar detector withμτ_(e)of(1.11±0.04)×10^(-4)cm^(2)∕V,which performed with a decent radiation-detection feature.This study demonstrates that the vapor-pressure-controlled VGF method is a viable technical route for fabricating detector-grade CdTe crystals. 展开更多
关键词 CDTE Semiconductor detector Alpha-detector Vertical gradient freeze method
在线阅读 下载PDF
Implementation of a double trigger condition system based on charge comparison and TOF measurement for the NEDA detector array
14
作者 J.M.Deltoro A.Goasduff +19 位作者 F.J.Egea V.González A.Gadea R.M.Pérez-Vidal I.Lazarus M.Kogimtzis L.McNicholl M.Palacz G.Jaworski J.J.Valiente-Dobón J.Nyberg S.Casans A.E.Navarro-Antón E.Sanchis A.Boujrad E.Clément T.Hüyük R.Illicachi O.Stezowski V.Modamio 《Nuclear Science and Techniques》 2025年第2期40-48,共9页
The NEutron Detector Array(NEDA)is designed to be coupled to gamma-ray spectrometers to enhance the sensitivity of the setup by enabling reaction channel selection through counting of the evaporated neutrons.This arti... The NEutron Detector Array(NEDA)is designed to be coupled to gamma-ray spectrometers to enhance the sensitivity of the setup by enabling reaction channel selection through counting of the evaporated neutrons.This article presents the implementation of a double trigger condition system for NEDA,which improves the acquisition of neutrons and reduces the number of gamma rays acquired.Two independent triggers are generated in the double trigger condition system:one based on charge comparison(CC)and the other on time-of-flight(TOF).These triggers can be combined using OR and AND logic,offering four distinct trigger modes.The developed firmware is added to the previous one in the Virtex 6 field programmable gate array(FPGA)present in the system,which also includes signal processing,baseline correction,and various trigger logic blocks.The performance of the trigger system is evaluated using data from the E703 experiment performed at GANIL.The four trigger modes are applied to the same data,and a subsequent offline analysis is performed.It is shown that most of the detected neutrons are preserved with the AND mode,and the total number of gamma rays is significantly reduced.Compared with the CC trigger mode,the OR trigger mode allows increasing the selection of neutrons.In addition,it is demonstrated that if the OR mode is selected,the online CC trigger threshold can be raised without losing neutrons. 展开更多
关键词 Neutron detector Neutron-gamma discrimination Pulse shape analysis TIME-OF-FLIGHT Charge comparison
在线阅读 下载PDF
Evaluation of the satellite's wake effect on the electric field detector onboard the CSES-01 satellite
15
作者 JianPing Huang ZongYu Li +4 位作者 Zhong Li XingHong Zhu JunGang Lei YuanQing Miao WenJing Li 《Earth and Planetary Physics》 2025年第2期400-409,共10页
This study aimed to evaluate the wake effect on the electric field detector(EFD) onboard the China Seismo-Electromagnetic Satellite(CSES-01). Through a series of experiments and analyses, we confirmed that the disturb... This study aimed to evaluate the wake effect on the electric field detector(EFD) onboard the China Seismo-Electromagnetic Satellite(CSES-01). Through a series of experiments and analyses, we confirmed that the disturbance phenomenon from probe B of the EFD is not caused by the boom layout. To validate and determine whether it is influenced by the wake effect, we conducted two experiments. In the first experiment, the entire satellite platform underwent a 90° counterclockwise yaw maneuver to allow probe B to avoid the plasma wake region. We then verified whether the disturbance was improved. In the second experiment, the satellite platform performed a 180° counterclockwise yaw maneuver, positioning probe B on the ram side of the satellite and completely avoiding all satellite wakes. The plasma wake effect of the satellite did not significantly influence the spherical probes of the EFD because the measurement accuracy stayed relatively stable under the two experiments, despite the observed abnormalities in the operating state of spherical probe B. This consistency in performance is important for electric field detection missions because the spatial electric field vector data obtained from these probes continue to effectively reflect information on spatial electromagnetic disturbances. These two experimental results showed that probe B consistently exhibited data jump phenomena under various maneuver states, whereas probes A, C, and D did not display such phenomena in any maneuver state. 展开更多
关键词 CSES-01 PAYLOAD electric field detector satellite attitude data quality
在线阅读 下载PDF
Development of a ceramic gas-electron-multiplier neutron detector prototype with a large sensitive area
16
作者 Lin Zhu Jianrong Zhou +13 位作者 Xiaojuan Zhou Lixin Zeng Liang Xiao Hong Xu Fei Jia Chaoyue Zhang Yezhao Yang Dingfu Li Hao Xiong Yuguang Xie Yubin Zhao Yadong Wei Zhijia Sun Yuanbo Chen 《Chinese Physics B》 2025年第9期135-141,共7页
The rapid growth of neutron flux has driven the development of^(3)He-free neutron detectors to satisfy the requirements of the neutron scattering instruments under construction or planned at the China Spallation Neutr... The rapid growth of neutron flux has driven the development of^(3)He-free neutron detectors to satisfy the requirements of the neutron scattering instruments under construction or planned at the China Spallation Neutron Source(CSNS).Position-sensitive neutron detectors with a high counting rate and large area play an important role in the instruments performing neutron measurements in or close to the direct beam.The ceramic gas-electron-multiplier(GEM)detector serves as a promising solution,and considerable work has been done using the small-area GEM neutron detectors.In this article,we designed and constructed a detector prototype utilizing ceramic GEM foils with an effective area of about307 mm×307 mm.To evaluate and investigate their basic characteristics,the Monte Carlo(MC)tool FLUKA was employed and several neutron beam tests were conducted at CSNS.The simulated spatial resolution was basically in agreement with the measured value of 2.50±0.01 mm(FWHM).The wavelength spectra measurement was verified through comparisons with a commercial beam monitor.In addition,a detection efficiency of 4.7±0.1%was achieved for monoenergetic neutrons of 1.59 A wavelength.This is consistent with the simulated result.The results indicate that the large-area ceramic GEM detector is a good candidate to implement neutron beam measurements.Its efficiency can be improved in a cascading manner to approach that reached by traditional^(3)He detectors. 展开更多
关键词 neutron detector counting rate gas electron multiplier spatial resolution detection efficiency
原文传递
Data analysis framework for silicon strip detector in compact spectrometer for heavy-ion experiments
17
作者 Xiao-Bao Wei Yu-Hao Qin +15 位作者 Sheng Xiao Da-Wei Si Dong Guo Zhi Qin Fen-Hai Guan Xin-Yue Diao Bo-Yuan Zhang Bai-Ting Tian Jun-Huai Xu Tian-Ren Zhuo Yi-Bo Hao Zeng-Xiang Wang Shi-Tao Wang Chun-Wang Ma Yi-Jie Wang Zhi-Gang Xiao 《Nuclear Science and Techniques》 2025年第7期236-252,共17页
We developed a dedicated data analysis framework for silicon strip detector telescopes(SSDTs)of the Compact Spectrometer for Heavy-IoN Experiments(CSHINE)that addresses the challenges of processing complex signals.The... We developed a dedicated data analysis framework for silicon strip detector telescopes(SSDTs)of the Compact Spectrometer for Heavy-IoN Experiments(CSHINE)that addresses the challenges of processing complex signals.The framework integrates advanced algorithms for precise calibration,accurate particle identification,and efficient event reconstruction,aiming to account for critical experimental factors such as charge-sharing effects,multi-hit event resolution,and detector response nonuniformity.Its robust performance was demonstrated through the successful analysis of light-charged particles in the 25 MeV/u^(86)Kr+^(124)Sn experiment conducted at the first Radioactive Ion Beam Line in Lanzhou,allowing for precise extraction of physical observables,including energy,momentum,and particle type.Furthermore,utilizing the reconstructed physical information,such as the number of effective physical events and energy spectra to optimize the track recognition algorithm,the final track recognition efficiencies of approximately 90%were achieved.This framework establishes a valuable reference methodology for SSDT-based detector systems in heavy-ion reaction experiments,thereby significantly enhancing the accuracy and efficiency of data analysis in nuclear physics research. 展开更多
关键词 CSHINE Si-Si-CsI telescope Silicon strip detector Energy calibration Particle identification Track reconstruction Heavy-ion collisions
在线阅读 下载PDF
Neutron observations from the energetic particle detector on China's Space Station
18
作者 GuoHong Shen DongHui Hou +5 位作者 Yuan Chang XianGuo Zhang HuanXin Zhang Bin Yuan BinQuan Zhang Ying Sun 《Earth and Planetary Physics》 2025年第2期460-466,共7页
The energetic particle detector on China's space station can determine the energy, flux, and direction of medium-and highenergy protons, electrons, heavy ions, and neutrons within the path of the station's orb... The energetic particle detector on China's space station can determine the energy, flux, and direction of medium-and highenergy protons, electrons, heavy ions, and neutrons within the path of the station's orbit. It also assesses the linear energy transfer(LET)spectra and radiation dose rates generated by these particles. Neutron detection is a significant component of this work, utilizing a new type of Cs_(2)LiYCl_(6): Ce scintillator material along with plastic scintillators as sensors. In-orbit testing has demonstrated the efficient identification of space neutrons and gamma rays(n/γ). This data plays a crucial role in supporting manned space engineering, scientific research, and other related fields. 展开更多
关键词 China's space station energy particle detector neutron detection heavy ion detection radiation effect detection
在线阅读 下载PDF
Readout electronics for the gamma detector of the HIRFL-CSR external target facility
19
作者 Xian-Qin Li Hai-Bo Yang +10 位作者 Xiao-Meng Ma Chao-Jie Zou Tao Liu Xian-Cai Zhou Duo Yan Yang-Zhou Su Shu-Wen Tang Shi-Tao Wang Yu-Hong Yu Zhi-Yu Sun Cheng-Xin Zhao 《Nuclear Science and Techniques》 2025年第2期71-81,共11页
The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(... The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(ETF)is located in the main ring of the HIRFL-CSR.The gamma detector of the ETF is built to measure emitted gamma rays with energies below 5 MeV in the center-of-mass frame and is planned to measure light fragments with energies up to 300 MeV.The readout electronics for the gamma detector were designed and commissioned.The readout electronics consist of thirty-two front-end cards,thirty-two readout control units(RCUs),one common readout unit,one synchronization&clock unit,and one sub-trigger unit.By using the real-time peak-detection algorithm implemented in the RCU,the data volume can be significantly reduced.In addition,trigger logic selection algorithms are implemented to improve the selection of useful events and reduce the data size.The test results show that the integral nonlinearity of the readout electronics is less than 1%,and the energy resolution for measuring the 60 Co source is better than 5.5%.This study discusses the design and performance of the readout electronics. 展开更多
关键词 HIRFL-CSR Gamma detector External target facility Readout electronics Readout control unit Common readout unit Peak-detection algorithm
在线阅读 下载PDF
Face-/Edge-Shared 3D Perovskitoid Single Crystals with Suppressed Ion Migration for Stable X-Ray Detector
20
作者 Zimin Zhang Xiaoli Wang +10 位作者 Huayang Li Dong Li Yang Zhang Nan Shen Xue-Feng Yu Yucheng Liu Shengzhong Liu Haomin Song Yanliang Liu Xingzhu Wang Shi Chen 《Nano-Micro Letters》 2025年第12期336-348,共13页
Although three-dimensional metal halide perovskites are promising candidates for direct X-ray detection,the ion migration of perovskites seriously affects the detector stability.Herein,face-/edge-shared 3D heterometal... Although three-dimensional metal halide perovskites are promising candidates for direct X-ray detection,the ion migration of perovskites seriously affects the detector stability.Herein,face-/edge-shared 3D heterometallic glycinate hybrid perovskitoid Pb_(2)CuGly_(2)X_(4)(Gly=-O_(2)C-CH_(2)-NH_(2);X=Cl,Br)single crystals(SCs),in which the adjacent lead halide layers are linked by large-sized Cu(Gly)_(2)pillars,are synthesized in water.The Cu(Gly)_(2)pillars in combination with face-/edge-shared inorganic skeleton are found able to synergistically suppress the ion migration,delivering a high ion migration activation energy(Ea)of 1.06 eV.The Pb_(2)CuGly_(2)Cl_(4)SC X-ray detector displays extremely low dark current drift of 1.20×10^(-9)nA mm^(-1)s^(-1)V^(-1)under high electric field(120 V mm^(-1))and continuous X-ray irradiation(2.86 Gy),and a high sensitivity of 9,250μC Gy^(-1)cm^(-2)is also achieved.More excitingly,the Pb_(2)CuGly_(2)Cl_(4)nanocrystal can be easily dispersed in water and directly blade-coated on thin-film transistor(TFT)array substrate,and the obtained Pb_(2)CuGly_(2)Cl_(4)-based TFT array detector offers an X-ray imaging capability with spatial resolution of 2.2 lp mm^(-1). 展开更多
关键词 3D perovskitoid Single crystals Suppressed ion migration High operating stability X-ray detector
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部