2D needle-punched fiber felt was infiltrated by a kind of rapid isothermal chemical vapor infiltration technique. The infiltration process and texture transition of the infiltrated C/C composites were investigated. Th...2D needle-punched fiber felt was infiltrated by a kind of rapid isothermal chemical vapor infiltration technique. The infiltration process and texture transition of the infiltrated C/C composites were investigated. The porosity and the variations of the cumulative pore volume were determined by mercury porosimetry. The texture of matrix carbon was studied under a polarized light microscope. The results show that the relative mass gain of the sample increases directly as the infiltration time at the initial stage until 20 h, and subsequently the increasing rate of the relative mass gain decreases gradually with the prolonging of infiltration time. Three layers of pyrocarbon were formed around fibers. Low-textured pyrocarbon was obtained at the initial stage. With the densification going on, high-textured pyrocarbon was formed on the surface of low-textured pyrocarbon. Then, low-textured pyrocarbon was produced again during the final stage of densification. The texture transition is ascribed to the variation of the ratio of cumulative inner surface area to volume of pores and the gas partial pressure in pores.展开更多
The chemical vapor infiltration(CVI) process in fabrication of carbon-carbon composites is very complex and highly inefficient, which adds considerably to the cost of fabrication and limits the application of the mate...The chemical vapor infiltration(CVI) process in fabrication of carbon-carbon composites is very complex and highly inefficient, which adds considerably to the cost of fabrication and limits the application of the material. This paper tries to use a supervised artificial neural network(ANN) to model the nonlinear relationship between parameters of isothermal CVI(ICVI) processes and physical properties of C/C composites. A model for preprocessing dataset and selecting its topology is developed using the Levenberg-Marquardt training algorithm and trained with comprehensive dataset of tubal C/C components collected from experimental data and abundant simulated data obtained by the finite element method. A basic repository on the domain knowledge of CVI processes is established via sufficient data mining by the network. With the help of the repository stored in the trained network, not only the time-dependent effects of parameters in CVI processes but also their coupling effects can be analyzed and predicted. The results show that the ANN system is effective and successful for optimizing CVI processes in fabrication of C/C composites.展开更多
Chemical vapor infiltration of carbon fiber felts with uniform initial bulk density of 0.47 g·cm-3 was investigated at the ethanol partial pressures of 5-20 kPa,as well as the temperatures of 1050,1100,1150 and 1...Chemical vapor infiltration of carbon fiber felts with uniform initial bulk density of 0.47 g·cm-3 was investigated at the ethanol partial pressures of 5-20 kPa,as well as the temperatures of 1050,1100,1150 and 1200°C.Ethanol,diluted by nitrogen,was employed as the precursor of pyrolytic carbon.Polarized light microscopy(PLM),scanning electron microscopy and X-ray diffraction were adopted to study the texture of pyrolytic carbon deposited at various temperatures.A change from medium-to high-textured pyrolytic carbon was observed in the sample infiltrated at 1050°C.Whereas,homogeneous high-textured pyrolytic carbons were deposited at the temperatures of 1100,1150 and 1200°C.Extinction angles of 19°-21° were determined for different regions in the samples densified at the temperatures ranging from 1100 to 1200°C.Scanning electron microscopy of the fracture surface after bending test indicated that the prepared carbon/carbon composite samples exhibited a pseudo-plastic fracture behavior.In addition,fracture behavior of the carbon/carbon samples was obviously effected by their infiltration temperature.The fracture mode of C/C composites was transformed from shearing failure to tensile breakage with increasing infiltration temperature. Results of this study show that ethanol is a promising carbon source to synthesize carbon/carbon composites with homogeneously high-textured pyrolytic carbon over a wide range of temperatures(from 1100 to 1200°C).展开更多
基金supported by the National Natural Sci-ence Foundation of China (No. 50372050)the Foundation of Distinguished Young Scholars (No. 50225210)
文摘2D needle-punched fiber felt was infiltrated by a kind of rapid isothermal chemical vapor infiltration technique. The infiltration process and texture transition of the infiltrated C/C composites were investigated. The porosity and the variations of the cumulative pore volume were determined by mercury porosimetry. The texture of matrix carbon was studied under a polarized light microscope. The results show that the relative mass gain of the sample increases directly as the infiltration time at the initial stage until 20 h, and subsequently the increasing rate of the relative mass gain decreases gradually with the prolonging of infiltration time. Three layers of pyrocarbon were formed around fibers. Low-textured pyrocarbon was obtained at the initial stage. With the densification going on, high-textured pyrocarbon was formed on the surface of low-textured pyrocarbon. Then, low-textured pyrocarbon was produced again during the final stage of densification. The texture transition is ascribed to the variation of the ratio of cumulative inner surface area to volume of pores and the gas partial pressure in pores.
基金supported by the National Natural Science Foundation of China(Grant No.50072019)the Aeronautical Foundation of China under Grant No.99G53092
文摘The chemical vapor infiltration(CVI) process in fabrication of carbon-carbon composites is very complex and highly inefficient, which adds considerably to the cost of fabrication and limits the application of the material. This paper tries to use a supervised artificial neural network(ANN) to model the nonlinear relationship between parameters of isothermal CVI(ICVI) processes and physical properties of C/C composites. A model for preprocessing dataset and selecting its topology is developed using the Levenberg-Marquardt training algorithm and trained with comprehensive dataset of tubal C/C components collected from experimental data and abundant simulated data obtained by the finite element method. A basic repository on the domain knowledge of CVI processes is established via sufficient data mining by the network. With the help of the repository stored in the trained network, not only the time-dependent effects of parameters in CVI processes but also their coupling effects can be analyzed and predicted. The results show that the ANN system is effective and successful for optimizing CVI processes in fabrication of C/C composites.
基金supported by the National Natural Science Foundation of China(Grant No.50972120)the Foundation of Sciences of Northwestern Polytechnical University(Grant No.W018109)the Foundation of State Key Laboratory of Solidification Processing(Grant No.G8QT0222)
文摘Chemical vapor infiltration of carbon fiber felts with uniform initial bulk density of 0.47 g·cm-3 was investigated at the ethanol partial pressures of 5-20 kPa,as well as the temperatures of 1050,1100,1150 and 1200°C.Ethanol,diluted by nitrogen,was employed as the precursor of pyrolytic carbon.Polarized light microscopy(PLM),scanning electron microscopy and X-ray diffraction were adopted to study the texture of pyrolytic carbon deposited at various temperatures.A change from medium-to high-textured pyrolytic carbon was observed in the sample infiltrated at 1050°C.Whereas,homogeneous high-textured pyrolytic carbons were deposited at the temperatures of 1100,1150 and 1200°C.Extinction angles of 19°-21° were determined for different regions in the samples densified at the temperatures ranging from 1100 to 1200°C.Scanning electron microscopy of the fracture surface after bending test indicated that the prepared carbon/carbon composite samples exhibited a pseudo-plastic fracture behavior.In addition,fracture behavior of the carbon/carbon samples was obviously effected by their infiltration temperature.The fracture mode of C/C composites was transformed from shearing failure to tensile breakage with increasing infiltration temperature. Results of this study show that ethanol is a promising carbon source to synthesize carbon/carbon composites with homogeneously high-textured pyrolytic carbon over a wide range of temperatures(from 1100 to 1200°C).