近年来存储行业经历了巨大的变革,以固态硬盘(solid state drive, SSD)为代表的半导体存储设备迅猛发展,在性能上显著超越了通过磁头移动寻址的机械硬盘(hard disk drive, HDD).目前支持SSD的2种协议主要包括非易失性内存主机控制器接...近年来存储行业经历了巨大的变革,以固态硬盘(solid state drive, SSD)为代表的半导体存储设备迅猛发展,在性能上显著超越了通过磁头移动寻址的机械硬盘(hard disk drive, HDD).目前支持SSD的2种协议主要包括非易失性内存主机控制器接口规范(nonvolatile memory express, NVMe)协议与串行SCSI(serial attached small computer system interface, SAS)协议,即SAS. NVMe是专为SSD设计的高性能存储协议,能够很大限度地发挥SSD的性能;而SAS协议则充分考虑数据中心的需求,在提供高可靠性与高可扩展性的同时,兼顾了系统性能与成本的平衡.相对于日益增速的存储介质,针对慢速存储设备所设计的软件栈在一次I/O过程中所耗费的时间开销愈发显著.针对该问题学界及工业界都相继提出了众多解决方案,例如Intel提出的高性能存储开发包(storage performance development kit, SPDK)通过将设备驱动实现在用户空间,并采用轮询感知I/O完成等方式大幅度缩短了NVMe SSD对应用程序的响应时间,极大地提升了整个系统的整体性能.然而之前的研究工作针对SAS SSD存储软件栈的优化非常有限,为此在用户空间实现了针对SAS SSD的软件栈优化.实验结果表明,该优化能够有效缩短存储设备对应用程序的响应时间,提高应用对存储设备的访存效率.此外,为了准确评估I/O栈中存储设备的时间开销,硬件性能测试工具HwPerfIO被提出,能够消除大部分软件开销的影响以测得更加准确的存储设备性能.展开更多
为探究城市快速扩张及碳排放加剧所引发的城市环境问题,并厘清“三生空间”(生产-生活-生态空间)分布与城市韧性之间的关系,本研究基于“三生空间”视角,构建顾及碳排放、兴趣点(point of interest,POI)数据及夜间灯光数据的“三生空间...为探究城市快速扩张及碳排放加剧所引发的城市环境问题,并厘清“三生空间”(生产-生活-生态空间)分布与城市韧性之间的关系,本研究基于“三生空间”视角,构建顾及碳排放、兴趣点(point of interest,POI)数据及夜间灯光数据的“三生空间”及城市韧性评价体系,依据空间耦合协调度及城市韧性测度进一步评估空间格局合理性及城市风险承受力。结果表明:(1)2010—2022年,辽东半岛的生产空间高值面积增加了1228 km^(2),生态空间减少了222 km^(2),生活空间增加了449 km^(2)。(2)2010—2022年,城市韧性整体呈先上升后下降的趋势,生产韧性降幅为29.4%,生活韧性降幅为10.29%,生态韧性的降幅为14.16%。生产韧性对总体城市韧性的影响较大,生态韧性对城市总体韧性的作用次于生活韧性。(3)辽东半岛耦合协调度水平大多数区域以高度正相关为主,整体呈现空间聚集状态。城市韧性中生态韧性的聚集度高于生产韧性和生活韧性。因此,辽东半岛“三生空间”分布差异较大,生态空间逐步减少,生产空间快速扩张,辽东半岛应提高生态环境保护力度,完善并平衡“三生空间”格局。展开更多
应用经硅烷偶联处理后的纳米氧化镁(MgO)粉末与低密度聚乙烯(low density polyethylene,LDPE)共混,制得MgO/LDPE复合介质。高成分衬度扫描电镜(scanningelectron microscope,SEM)中图像表明,粒径为100 nm左右的MgO纳米粒子均匀的分散于...应用经硅烷偶联处理后的纳米氧化镁(MgO)粉末与低密度聚乙烯(low density polyethylene,LDPE)共混,制得MgO/LDPE复合介质。高成分衬度扫描电镜(scanningelectron microscope,SEM)中图像表明,粒径为100 nm左右的MgO纳米粒子均匀的分散于介质中。通过电声脉冲法(pulsed electro-acoustic,PEA)测试发现,当纳米MgO填料的质量分数为4%时,可以有效抑制空间电荷的注入,伏安特性的实验结果表明,复合介质拥有更高的空间电荷注入阈值场强。通过电树枝实验,发现复合介质可以抑制电树枝的引发和生长。最后,对实验结果进行了分析,探讨了纳米复合介质抑制空间电荷和树枝化生长的机制。纳米颗粒与基体材料界面电荷行为可能是复合介质电学性能改善的原因。展开更多
文摘近年来存储行业经历了巨大的变革,以固态硬盘(solid state drive, SSD)为代表的半导体存储设备迅猛发展,在性能上显著超越了通过磁头移动寻址的机械硬盘(hard disk drive, HDD).目前支持SSD的2种协议主要包括非易失性内存主机控制器接口规范(nonvolatile memory express, NVMe)协议与串行SCSI(serial attached small computer system interface, SAS)协议,即SAS. NVMe是专为SSD设计的高性能存储协议,能够很大限度地发挥SSD的性能;而SAS协议则充分考虑数据中心的需求,在提供高可靠性与高可扩展性的同时,兼顾了系统性能与成本的平衡.相对于日益增速的存储介质,针对慢速存储设备所设计的软件栈在一次I/O过程中所耗费的时间开销愈发显著.针对该问题学界及工业界都相继提出了众多解决方案,例如Intel提出的高性能存储开发包(storage performance development kit, SPDK)通过将设备驱动实现在用户空间,并采用轮询感知I/O完成等方式大幅度缩短了NVMe SSD对应用程序的响应时间,极大地提升了整个系统的整体性能.然而之前的研究工作针对SAS SSD存储软件栈的优化非常有限,为此在用户空间实现了针对SAS SSD的软件栈优化.实验结果表明,该优化能够有效缩短存储设备对应用程序的响应时间,提高应用对存储设备的访存效率.此外,为了准确评估I/O栈中存储设备的时间开销,硬件性能测试工具HwPerfIO被提出,能够消除大部分软件开销的影响以测得更加准确的存储设备性能.