In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op...In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.展开更多
In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the ...In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.展开更多
Investors are always willing to receive more data.This has become especially true for the application of modern portfolio theory to the institutional asset allocation process,which requires quantitative estimates of r...Investors are always willing to receive more data.This has become especially true for the application of modern portfolio theory to the institutional asset allocation process,which requires quantitative estimates of risk and return.When long-term data series are unavailable for analysis,it has become common practice to use recent data only.The danger is that these data may not be representative of future performance.Although longer data series are of poorer quality,are difficult to obtain,and may reflect various political and economic regimes,they often paint a very different picture of emerging market performance.This paper presents an application of a stochastic non-linear optimization model of portfolios including transaction costs in the Brazilian financial market.In order to have that,portfolio theory and optimal control were used as theoretical basis.The first strategy tries to allocate the whole available wealth,not considering the risk associated to portfolio(deterministic result).In this case the investor obtained profits of 7.23%a month,taking into account the three risk aversion levels during the whole planning period.On the contrary,the results from the stochastic algorithm obtain profits of 1.34%a month and 18.06%a year,if the investor has low risk aversion.The profits would be 0.88%a month and 11.02%a year for a medium risk aversion investor.And with high risk aversion,the investor obtains 0.62%a month and 7.68%a year.展开更多
This paper employs the PPO(Proximal Policy Optimization) algorithm to study the risk hedging problem of the Shanghai Stock Exchange(SSE) 50ETF options. First, the action and state spaces were designed based on the cha...This paper employs the PPO(Proximal Policy Optimization) algorithm to study the risk hedging problem of the Shanghai Stock Exchange(SSE) 50ETF options. First, the action and state spaces were designed based on the characteristics of the hedging task, and a reward function was developed according to the cost function of the options. Second, combining the concept of curriculum learning, the agent was guided to adopt a simulated-to-real learning approach for dynamic hedging tasks, reducing the learning difficulty and addressing the issue of insufficient option data. A dynamic hedging strategy for 50ETF options was constructed. Finally, numerical experiments demonstrate the superiority of the designed algorithm over traditional hedging strategies in terms of hedging effectiveness.展开更多
A systematic analysis is performed to assess the current situation of transportation and tourism integration in 20 districts and counties located along National Highway 310(Gansu-Qinghai section),and optimization stra...A systematic analysis is performed to assess the current situation of transportation and tourism integration in 20 districts and counties located along National Highway 310(Gansu-Qinghai section),and optimization strategies are explored based on the findings of this analysis.The findings indicate a pressing necessity for further improvement in the practice of transportation and tourism integration in both Gansu and Qinghai provinces.Based on this foundation,a development framework for transportation and tourism integration has been established.This framework simulates a“fast-forward-slow-travel”system in which tourists commence their journey from the origin,traverse through core,secondary,and subsidiary tourist destinations,and ultimately reach the core,secondary,and subsidiary attractions.Furthermore,this study presents optimization recommendations for the integrated development of regional transportation and tourism along the designated route.These suggestions encompass the establishment and optimization of facilities and service points,the planning and design of tourism routes,the promotion of regional synergistic development,the construction of intelligent tourism,and the implementation of green tourism pathways.展开更多
This article presents the physics for determining an appropriate helicon plasma source for the linear experimental advanced device(LEAD)through tripartite mutual verification encompassing theoretical analysis,code sim...This article presents the physics for determining an appropriate helicon plasma source for the linear experimental advanced device(LEAD)through tripartite mutual verification encompassing theoretical analysis,code simulation,and experimental validation.Using the HELIC code,plasma excitation processes were simulated with three antenna configurations:m=1 half-helix,m=1 Boswell,and m=0 single-loop helicon antennas,and complemented by theoretical analysis.Key parameters including plasma impedance(R_(p))and energy deposition profiles along radial(P_(r))and axial(P_(z))directions were comparatively analyzed,revealing significantly enhanced R_(p),P_(r),and P_(z) values for the loop antenna configuration as compared with other configurations.Wave propagation equation solutions predicted a primary plasma generation layer at the antenna center;numerical simulations identified an additional plasma formation region at the antenna boundary,indicative of edge Landau damping effects.Interestingly,stronger axial magnetic fields do not necessarily result in higher plasma densities,especially for m=0 antenna configurations.Experimental validation conducted with an m=0 multi-loop plasma source confirmed these findings.Both theoretical analyses and experimental studies on large-volume plasma generation utilizing this innovative source elucidated the underlying mechanisms responsible for the remarkable low mode transition threshold of 150-watt input power and demonstrated significantly enhanced plasma confinement properties.展开更多
The study of how to “control forming and performance” during the thermal deformation of metal materials has always been a central theme in academic research, particularly in addressing the processing challenges asso...The study of how to “control forming and performance” during the thermal deformation of metal materials has always been a central theme in academic research, particularly in addressing the processing challenges associated with difficult-to-form alloys that possess unique functionalities. However, neither the currently commonly used phenomenological constitutive model, physical constitutive model, Dynamic Material Model (DMM) thermal processing theoretical model, and Ruano-Wadsworth-Sherby (R-W-S) deformation mechanism map model incorporating dislocation density nor the reported machine learning method has established a universal model that can achieve a quantitative description of the process-microstructure-formability of thermal processing. It is only possible first to use modeling research to obtain the law of thermal deformation behavior of alloys and then use the results of microscopic characterization to verify the theory. The research methods lack the characteristics of diagnosis and prediction optimization. This study proposes a machine learning framework for optimizing the random forest (RF) model based on a multivariate decision tree, including microstructure images and hot working process parameter information. It predicts the critical performance parameters, energy dissipation behavior, optimal processing window, and softening mechanism of ternary shape memory alloy Ni_(47)Ti_(33)Hf_(20) in the hot working process. This model has a certain universality. It enables coupled analysis of image information and process parameter data and introduces the calculation and ranking of feature importance, reflecting the applicability of feature values in model construction. Finally, the visualization technique Grad-CAM describes the correlation between the input microscopic image and the output, generating critical hotspots in the heat map. The model of accuracy in predicting the power dissipation rate is confirmed by the grain misorientation angles, thus realizing the establishment of a mechanism-driven model based on the evolution of critical microscopic structures during the thermal deformation of the alloy, which dramatically improves the interpretability of the machine learning model. This machine learning framework provides valuable guidance for quantitatively predicting the thermal deformation processing-microstructure-formability relationship of the Ni_(47)Ti_(33)Hf_(20) shape memory alloy and can potentially be applied to other alloys.展开更多
This study introduces the Smart Exponential-Threshold-Linear with Double Deep Q-learning Network(SETL-DDQN)and an extended Gumbel distribution method,designed to optimize the Contention Window(CW)in IEEE 802.11 networ...This study introduces the Smart Exponential-Threshold-Linear with Double Deep Q-learning Network(SETL-DDQN)and an extended Gumbel distribution method,designed to optimize the Contention Window(CW)in IEEE 802.11 networks.Unlike conventional Deep Reinforcement Learning(DRL)-based approaches for CW size adjustment,which often suffer from overestimation bias and limited exploration diversity,leading to suboptimal throughput and collision performance.Our framework integrates the Gumbel distribution and extreme value theory to systematically enhance action selection under varying network conditions.First,SETL adopts a DDQN architecture(SETL-DDQN)to improve Q-value estimation accuracy and enhance training stability.Second,we incorporate a Gumbel distribution-driven exploration mechanism,forming SETL-DDQN(Gumbel),which employs the extreme value theory to promote diverse action selection,replacing the conventional-greedy exploration that undergoes early convergence to suboptimal solutions.Both models are evaluated through extensive simulations in static and time-varying IEEE 802.11 network scenarios.The results demonstrate that our approach consistently achieves higher throughput,lower collision rates,and improved adaptability,even under abrupt fluctuations in traffic load and network conditions.In particular,the Gumbel-based mechanism enhances the balance between exploration and exploitation,facilitating faster adaptation to varying congestion levels.These findings position Gumbel-enhanced DRL as an effective and robust solution for CW optimization in wireless networks,offering notable gains in efficiency and reliability over existing methods.展开更多
Upconversion luminescent(UCL)materials have broad application prospects in the field of temperature sensing;thus,improving the luminescence performance and temperature measurement sensitivity of upconversion phosphors...Upconversion luminescent(UCL)materials have broad application prospects in the field of temperature sensing;thus,improving the luminescence performance and temperature measurement sensitivity of upconversion phosphors is highly important.In this study,SrAl_(2)Si_(2)O_(8)with good thermal stability was doped with Ho^(3+)and Yb^(3+),and the optimal concentration was determined to be S rAl_(2)Si_(2)O_(8):1%Ho^(3+),12%Yb^(3+)(in mole fraction).A series of(Sr_(0.87-x)Ba_(x))Al_(2)Si_(2)O_(8):1%Ho^(3+),12%Yb^(3+)phosphor samples was prepared by using a cationic substitution strategy and further doping Ba^(2+)to replace the Sr^(2+)lattice in the matrix.The re sults show that the introduction of Ba^(2+)effectively replaces Sr^(2+)and significantly increases the upconversion fluorescence emission intensity of SrAl_(2)Si_(2)O_(8):1%Ho^(3+),12%Yb^(3+)by approximately 2.9times.The temperature sensing properties of SrAl_(2)Si_(2)O_(8):1%Ho^(3+),12%Yb^(3+)and Sr_(0.3)7Ba_(0.5)0Al_(2)Si_(2)O_(8):1%Ho^(3+),12%Yb^(3+)were investigated.The Ho^(3+)-based5F5and5S2/5F4nonthermal coupled energy level fluorescence intensity ratio(FIR)techniques in the Ba_(0.3)7S r_(0.50)Al_(2)Si_(2)O_(8):1%Ho^(3+),12%Yb^(3+)phosphors show a maximum temperature measurement absolute sensitivity of 4.32%/K at 573 K and a maximum relative sensitivity of 1.08%/K at 373 K;these values are 5.8 and 3.2 times greater,respectively,than that of the non-Ba^(2+)-doped SrAl_(2)Si_(2)O_(8):1%Ho^(3+),12%Yb^(3+)phosphor.These results not only confirm the effectiveness of the cation substitution strategy in enhancing the upconversion luminescence performance and temperature sensing characteristics but also provide a scientific basis for the design of high-performance optical temperature sensors.展开更多
The squeeze cast process parameters of AZ80 magnesium alloy were optimized by morphological matrix. Experiments were conducted by varying squeeze pressure, die pre-heat temperature and pressure duration using L9(33)...The squeeze cast process parameters of AZ80 magnesium alloy were optimized by morphological matrix. Experiments were conducted by varying squeeze pressure, die pre-heat temperature and pressure duration using L9(33) orthogonal array of Taguchi method. In Taguchi method, a 3-level orthogonal array was used to determine the signal/noise ratio. Analysis of variance was used to determine the most significant process parameters affecting the mechanical properties. Mechanical properties such as ultimate tensile strength, elongation and hardness of the components were ascertained using multi variable linear regression analysis. Optimal squeeze cast process parameters were obtained.展开更多
Micro-arc oxidation (MAO) process was carried out in a dual electrolyte system of NaAlO 2 and Na 3 PO 4 to develop compact, smooth and corrosion-resistant coatings on ZK60 Mg alloy by single factor experiments. The ...Micro-arc oxidation (MAO) process was carried out in a dual electrolyte system of NaAlO 2 and Na 3 PO 4 to develop compact, smooth and corrosion-resistant coatings on ZK60 Mg alloy by single factor experiments. The microstructural characteristics of coatings were investigated by X-ray diffractometry (XRD) and scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS). Test of mass loss was conducted at a 3.5% NaCl solution to assess the resistance to corrosion. The effect of every element in the dual electrolyte system on voltage—time responses during MAO process and the coating characteristic were also analyzed and discussed systematically via single factor experiments. The results reveal that the main components of NaAlO 2 and Na 3 PO 4 as well as additives of NaOH, NaB4O7 and C6H5Na3O7 demonstrate different effects on MAO process and coating characteristics. By means of single factor experiments, an optimized dual electrolyte system was developed, containing 17.5 g/L NaAlO 2, 5.0 g/LNa3 PO4, 5.0 g/L NaOH, 3.0 g/L NaB4O7 and 4.2g/LC6H5Na3O7 .展开更多
A strain LHB02 with strong antibacterial activity against some aquatic pathogens was screened from the coastal marine sediment in Fujian province, China. LHB02 was identified as Bacillus subtilis, based on its 16S rRN...A strain LHB02 with strong antibacterial activity against some aquatic pathogens was screened from the coastal marine sediment in Fujian province, China. LHB02 was identified as Bacillus subtilis, based on its 16S rRNA sequence, together with the morphological, physiological and biochemical characteristics. The antagonistic activity of strain LHB02 and its optimal fermentation conditions were also investigated. The results showed that LHB02 had strong antagonistic activity against 3 species of vibrios: Vibrio harveyi,Vibrio alginolyticus and Vibrio anguillarum, and the optimum fermentation conditions for the strain LHB02 were as follows: KB culture medium (peptone 20 g, glycerol 10 mL, K2HPO4 1.5 g, MgSO 4 .7H2O 1.5 g, H2O 1 000 mL); temperature, 28 ℃; pH ,7.0; culture time, 36 h; and inoculation amount, 1.5% (v/v).展开更多
This paper presents an optimized SRAM that is repairable and dissipates less power. To improve the yield of SRAMs per wafer,redundancy logic and an E-FUSE box are added to the SRAM and an SR SRAM is set up. In order t...This paper presents an optimized SRAM that is repairable and dissipates less power. To improve the yield of SRAMs per wafer,redundancy logic and an E-FUSE box are added to the SRAM and an SR SRAM is set up. In order to reduce power dissipation,power on/off states and isolation logic are introduced into the SR SRAM and an LPSR SRAM is constructed. The optimized LPSR SRAM64K × 32 is used in SoC and the testing method of the LPSR SRAM64K × 32 is also discussed. The SoC design is successfully implemented in the Chartered 90nm CMOS process. The SoC chip occupies 5. 6mm× 5. 6ram of die area and the power dissipation is 1997mW. The test results indicate that LPSR SRAM64K ×32 obtains 17. 301% power savings and the yield of the LPSR SRAM64K × 32s per wafer is improved by 13. 255%.展开更多
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
Statistical experimental designs were used to optimize the process of phenol degradation by Candida tropicalis Z-04, isolated from phenol-degrading aerobic granules. The most important factors influencing phenol degra...Statistical experimental designs were used to optimize the process of phenol degradation by Candida tropicalis Z-04, isolated from phenol-degrading aerobic granules. The most important factors influencing phenol degradation (p 〈 0.05), as identified by a two-level Plackett-Burman design with 11 variables, were yeast extract, phenol, inoculum size, and temperature. Steepest ascent method was undertaken to determine the optimal regions of these four significant factors. Central composite design (CCD) and response surface analysis were adopted to further investigate the mutual interactions between these variables and to identify their optimal values that would generate maximum phenol degradation. The analysis results indicated that interactions between yeast extract and temperature, phenol and temperature, inocuhim size and temperature affected the response variable (phenol degradation) significantly. The predicted results showed that the maximum removal efficiency of phenol (99.10%) could be obtained under the optimum conditions of yeast extract 0.41 g/L, phenol 1.03 g/L, inoculum size 1.43% (V/V) and temperature 30.04℃. These predicted values were further verified by validation experiments. The excellent correlation between predicted and experimental values confirmed the validity and practicability of this statistical optimum strategy. This study indicated the excellent ability of C. tropicalis Z-04 in degrading high-strength phenol. Optimal conditions obtained in this experiment laid a solid foundation for further use of this microorganism in the treatment of highstrength phenol effluents.展开更多
In the medical computer tomography (CT) field, total variation (TV), which is the l1-norm of the discrete gradient transform (DGT), is widely used as regularization based on the compressive sensing (CS) theory...In the medical computer tomography (CT) field, total variation (TV), which is the l1-norm of the discrete gradient transform (DGT), is widely used as regularization based on the compressive sensing (CS) theory. To overcome the TV model's disadvantageous tendency of uniformly penalizing the image gradient and over smoothing the low-contrast structures, an iterative algorithm based on the l0-norm optimization of the DGT is proposed. In order to rise to the challenges introduced by the l0-norm DGT, the algorithm uses a pseudo-inverse transform of DGT and adapts an iterative hard thresholding (IHT) algorithm, whose convergence and effective efficiency have been theoretically proven. The simulation demonstrates our conclusions and indicates that the algorithm proposed in this paper can obviously improve the reconstruction quality.展开更多
High pressure die casting(HPDC) is a kind of near net shape manufacturing method. However, air entrapment in HPDC parts has serious effects upon the casting quality. In order to reduce the air entrapment defects in a ...High pressure die casting(HPDC) is a kind of near net shape manufacturing method. However, air entrapment in HPDC parts has serious effects upon the casting quality. In order to reduce the air entrapment defects in a AlSi10 MnMg alloy thin-wall longitudinal load-bearing beam produced by HPDC, different gating systems were designed and simulated by software Flow-3D to evaluate the entrapped air. Simulation results showed that when the beam is produced by the original designed gating system with a middle ingate, there exist obvious air entrapments in the critical area; the volume of air entrapment was reduced by replacing the middle ingate to an overflow well, and the filling of molten metal became more stable. When the middle ingate was removed for further improvement, the volume of air entrapment was decreased drastically. The parts with glossy surface and good microstructure have been successfully produced by using the final optimized gating system based on simulation results.展开更多
Submerged arc welding(SAW), owing to its high deposition rate and high welding quality, is widely used in the fabrication of pressure vessel, marine vessel, pipelines and offshore structures. However, selection of an ...Submerged arc welding(SAW), owing to its high deposition rate and high welding quality, is widely used in the fabrication of pressure vessel, marine vessel, pipelines and offshore structures. However, selection of an optimum combination of welding parameters is critical in achieving high weld quality and productivity. In this work, initially, the SAW experiments were performed using fractional factorial design to analyze the effect of direct and indirect input parameters, namely, welding voltage, wire feed rate,welding speed, nozzle to plate distance, flux condition, and plate thickness on weld bead geometrical responses viz. bead width, reinforcement, and penetration. The bead on plate technique was used to deposit weld metal on AISI 1023 steel plates. The effect of SAW input parameters on response variables were analyzed using main and interaction effects. The linear regression was used to develop the mathematical models for the response variable. Then, the multi-objective optimization of input parameters was carried out using desirability approach, genetic algorithm and Jaya algorithm. The Jaya algorithm offered better optimization results as compared to desirability approach, genetic algorithm.展开更多
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe...Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.展开更多
基金Supported by the National Natural Science Foundation of China(12071133)Natural Science Foundation of Henan Province(252300421993)Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110005)。
文摘In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.
基金Supported by the Beijing Municipal Science&Technology Commission(Z211100004421012),the Key Reaserch and Development Pro⁃gram of China(2022YFF0605902)。
文摘In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.
文摘Investors are always willing to receive more data.This has become especially true for the application of modern portfolio theory to the institutional asset allocation process,which requires quantitative estimates of risk and return.When long-term data series are unavailable for analysis,it has become common practice to use recent data only.The danger is that these data may not be representative of future performance.Although longer data series are of poorer quality,are difficult to obtain,and may reflect various political and economic regimes,they often paint a very different picture of emerging market performance.This paper presents an application of a stochastic non-linear optimization model of portfolios including transaction costs in the Brazilian financial market.In order to have that,portfolio theory and optimal control were used as theoretical basis.The first strategy tries to allocate the whole available wealth,not considering the risk associated to portfolio(deterministic result).In this case the investor obtained profits of 7.23%a month,taking into account the three risk aversion levels during the whole planning period.On the contrary,the results from the stochastic algorithm obtain profits of 1.34%a month and 18.06%a year,if the investor has low risk aversion.The profits would be 0.88%a month and 11.02%a year for a medium risk aversion investor.And with high risk aversion,the investor obtains 0.62%a month and 7.68%a year.
基金supported by the Foundation of Key Laboratory of System Control and Information Processing,Ministry of Education,China,Scip20240111Aeronautical Science Foundation of China,Grant 2024Z071108001the Foundation of Key Laboratory of Traffic Information and Safety of Anhui Higher Education Institutes,Anhui Sanlian University,KLAHEI18018.
文摘This paper employs the PPO(Proximal Policy Optimization) algorithm to study the risk hedging problem of the Shanghai Stock Exchange(SSE) 50ETF options. First, the action and state spaces were designed based on the characteristics of the hedging task, and a reward function was developed according to the cost function of the options. Second, combining the concept of curriculum learning, the agent was guided to adopt a simulated-to-real learning approach for dynamic hedging tasks, reducing the learning difficulty and addressing the issue of insufficient option data. A dynamic hedging strategy for 50ETF options was constructed. Finally, numerical experiments demonstrate the superiority of the designed algorithm over traditional hedging strategies in terms of hedging effectiveness.
文摘A systematic analysis is performed to assess the current situation of transportation and tourism integration in 20 districts and counties located along National Highway 310(Gansu-Qinghai section),and optimization strategies are explored based on the findings of this analysis.The findings indicate a pressing necessity for further improvement in the practice of transportation and tourism integration in both Gansu and Qinghai provinces.Based on this foundation,a development framework for transportation and tourism integration has been established.This framework simulates a“fast-forward-slow-travel”system in which tourists commence their journey from the origin,traverse through core,secondary,and subsidiary tourist destinations,and ultimately reach the core,secondary,and subsidiary attractions.Furthermore,this study presents optimization recommendations for the integrated development of regional transportation and tourism along the designated route.These suggestions encompass the establishment and optimization of facilities and service points,the planning and design of tourism routes,the promotion of regional synergistic development,the construction of intelligent tourism,and the implementation of green tourism pathways.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE03100002)the National Natural Science Foundation of China(Grant Nos.12435015 and 12075241)。
文摘This article presents the physics for determining an appropriate helicon plasma source for the linear experimental advanced device(LEAD)through tripartite mutual verification encompassing theoretical analysis,code simulation,and experimental validation.Using the HELIC code,plasma excitation processes were simulated with three antenna configurations:m=1 half-helix,m=1 Boswell,and m=0 single-loop helicon antennas,and complemented by theoretical analysis.Key parameters including plasma impedance(R_(p))and energy deposition profiles along radial(P_(r))and axial(P_(z))directions were comparatively analyzed,revealing significantly enhanced R_(p),P_(r),and P_(z) values for the loop antenna configuration as compared with other configurations.Wave propagation equation solutions predicted a primary plasma generation layer at the antenna center;numerical simulations identified an additional plasma formation region at the antenna boundary,indicative of edge Landau damping effects.Interestingly,stronger axial magnetic fields do not necessarily result in higher plasma densities,especially for m=0 antenna configurations.Experimental validation conducted with an m=0 multi-loop plasma source confirmed these findings.Both theoretical analyses and experimental studies on large-volume plasma generation utilizing this innovative source elucidated the underlying mechanisms responsible for the remarkable low mode transition threshold of 150-watt input power and demonstrated significantly enhanced plasma confinement properties.
文摘The study of how to “control forming and performance” during the thermal deformation of metal materials has always been a central theme in academic research, particularly in addressing the processing challenges associated with difficult-to-form alloys that possess unique functionalities. However, neither the currently commonly used phenomenological constitutive model, physical constitutive model, Dynamic Material Model (DMM) thermal processing theoretical model, and Ruano-Wadsworth-Sherby (R-W-S) deformation mechanism map model incorporating dislocation density nor the reported machine learning method has established a universal model that can achieve a quantitative description of the process-microstructure-formability of thermal processing. It is only possible first to use modeling research to obtain the law of thermal deformation behavior of alloys and then use the results of microscopic characterization to verify the theory. The research methods lack the characteristics of diagnosis and prediction optimization. This study proposes a machine learning framework for optimizing the random forest (RF) model based on a multivariate decision tree, including microstructure images and hot working process parameter information. It predicts the critical performance parameters, energy dissipation behavior, optimal processing window, and softening mechanism of ternary shape memory alloy Ni_(47)Ti_(33)Hf_(20) in the hot working process. This model has a certain universality. It enables coupled analysis of image information and process parameter data and introduces the calculation and ranking of feature importance, reflecting the applicability of feature values in model construction. Finally, the visualization technique Grad-CAM describes the correlation between the input microscopic image and the output, generating critical hotspots in the heat map. The model of accuracy in predicting the power dissipation rate is confirmed by the grain misorientation angles, thus realizing the establishment of a mechanism-driven model based on the evolution of critical microscopic structures during the thermal deformation of the alloy, which dramatically improves the interpretability of the machine learning model. This machine learning framework provides valuable guidance for quantitatively predicting the thermal deformation processing-microstructure-formability relationship of the Ni_(47)Ti_(33)Hf_(20) shape memory alloy and can potentially be applied to other alloys.
文摘This study introduces the Smart Exponential-Threshold-Linear with Double Deep Q-learning Network(SETL-DDQN)and an extended Gumbel distribution method,designed to optimize the Contention Window(CW)in IEEE 802.11 networks.Unlike conventional Deep Reinforcement Learning(DRL)-based approaches for CW size adjustment,which often suffer from overestimation bias and limited exploration diversity,leading to suboptimal throughput and collision performance.Our framework integrates the Gumbel distribution and extreme value theory to systematically enhance action selection under varying network conditions.First,SETL adopts a DDQN architecture(SETL-DDQN)to improve Q-value estimation accuracy and enhance training stability.Second,we incorporate a Gumbel distribution-driven exploration mechanism,forming SETL-DDQN(Gumbel),which employs the extreme value theory to promote diverse action selection,replacing the conventional-greedy exploration that undergoes early convergence to suboptimal solutions.Both models are evaluated through extensive simulations in static and time-varying IEEE 802.11 network scenarios.The results demonstrate that our approach consistently achieves higher throughput,lower collision rates,and improved adaptability,even under abrupt fluctuations in traffic load and network conditions.In particular,the Gumbel-based mechanism enhances the balance between exploration and exploitation,facilitating faster adaptation to varying congestion levels.These findings position Gumbel-enhanced DRL as an effective and robust solution for CW optimization in wireless networks,offering notable gains in efficiency and reliability over existing methods.
基金Project supported by the National Natural Science Foundation of China(12264050)Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01C727)Talent Project of Tianchi Doctoral Program in Xinjiang Uygur Autonomous Region(0301050903)。
文摘Upconversion luminescent(UCL)materials have broad application prospects in the field of temperature sensing;thus,improving the luminescence performance and temperature measurement sensitivity of upconversion phosphors is highly important.In this study,SrAl_(2)Si_(2)O_(8)with good thermal stability was doped with Ho^(3+)and Yb^(3+),and the optimal concentration was determined to be S rAl_(2)Si_(2)O_(8):1%Ho^(3+),12%Yb^(3+)(in mole fraction).A series of(Sr_(0.87-x)Ba_(x))Al_(2)Si_(2)O_(8):1%Ho^(3+),12%Yb^(3+)phosphor samples was prepared by using a cationic substitution strategy and further doping Ba^(2+)to replace the Sr^(2+)lattice in the matrix.The re sults show that the introduction of Ba^(2+)effectively replaces Sr^(2+)and significantly increases the upconversion fluorescence emission intensity of SrAl_(2)Si_(2)O_(8):1%Ho^(3+),12%Yb^(3+)by approximately 2.9times.The temperature sensing properties of SrAl_(2)Si_(2)O_(8):1%Ho^(3+),12%Yb^(3+)and Sr_(0.3)7Ba_(0.5)0Al_(2)Si_(2)O_(8):1%Ho^(3+),12%Yb^(3+)were investigated.The Ho^(3+)-based5F5and5S2/5F4nonthermal coupled energy level fluorescence intensity ratio(FIR)techniques in the Ba_(0.3)7S r_(0.50)Al_(2)Si_(2)O_(8):1%Ho^(3+),12%Yb^(3+)phosphors show a maximum temperature measurement absolute sensitivity of 4.32%/K at 573 K and a maximum relative sensitivity of 1.08%/K at 373 K;these values are 5.8 and 3.2 times greater,respectively,than that of the non-Ba^(2+)-doped SrAl_(2)Si_(2)O_(8):1%Ho^(3+),12%Yb^(3+)phosphor.These results not only confirm the effectiveness of the cation substitution strategy in enhancing the upconversion luminescence performance and temperature sensing characteristics but also provide a scientific basis for the design of high-performance optical temperature sensors.
基金Project (50975263) supported by the National Natural Science Foundation of ChinaProject (2011DFA50520) supported by International Science Technology Cooperation Program of China
文摘The squeeze cast process parameters of AZ80 magnesium alloy were optimized by morphological matrix. Experiments were conducted by varying squeeze pressure, die pre-heat temperature and pressure duration using L9(33) orthogonal array of Taguchi method. In Taguchi method, a 3-level orthogonal array was used to determine the signal/noise ratio. Analysis of variance was used to determine the most significant process parameters affecting the mechanical properties. Mechanical properties such as ultimate tensile strength, elongation and hardness of the components were ascertained using multi variable linear regression analysis. Optimal squeeze cast process parameters were obtained.
基金Project(JSAWT-09-02)supported by the Key Laboratory of Advanced Welding Technology of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Micro-arc oxidation (MAO) process was carried out in a dual electrolyte system of NaAlO 2 and Na 3 PO 4 to develop compact, smooth and corrosion-resistant coatings on ZK60 Mg alloy by single factor experiments. The microstructural characteristics of coatings were investigated by X-ray diffractometry (XRD) and scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS). Test of mass loss was conducted at a 3.5% NaCl solution to assess the resistance to corrosion. The effect of every element in the dual electrolyte system on voltage—time responses during MAO process and the coating characteristic were also analyzed and discussed systematically via single factor experiments. The results reveal that the main components of NaAlO 2 and Na 3 PO 4 as well as additives of NaOH, NaB4O7 and C6H5Na3O7 demonstrate different effects on MAO process and coating characteristics. By means of single factor experiments, an optimized dual electrolyte system was developed, containing 17.5 g/L NaAlO 2, 5.0 g/LNa3 PO4, 5.0 g/L NaOH, 3.0 g/L NaB4O7 and 4.2g/LC6H5Na3O7 .
基金supported by the Scientific Research Foundation of Xiamen Marine Research and Development Institute (No. K10102 (1))
文摘A strain LHB02 with strong antibacterial activity against some aquatic pathogens was screened from the coastal marine sediment in Fujian province, China. LHB02 was identified as Bacillus subtilis, based on its 16S rRNA sequence, together with the morphological, physiological and biochemical characteristics. The antagonistic activity of strain LHB02 and its optimal fermentation conditions were also investigated. The results showed that LHB02 had strong antagonistic activity against 3 species of vibrios: Vibrio harveyi,Vibrio alginolyticus and Vibrio anguillarum, and the optimum fermentation conditions for the strain LHB02 were as follows: KB culture medium (peptone 20 g, glycerol 10 mL, K2HPO4 1.5 g, MgSO 4 .7H2O 1.5 g, H2O 1 000 mL); temperature, 28 ℃; pH ,7.0; culture time, 36 h; and inoculation amount, 1.5% (v/v).
文摘This paper presents an optimized SRAM that is repairable and dissipates less power. To improve the yield of SRAMs per wafer,redundancy logic and an E-FUSE box are added to the SRAM and an SR SRAM is set up. In order to reduce power dissipation,power on/off states and isolation logic are introduced into the SR SRAM and an LPSR SRAM is constructed. The optimized LPSR SRAM64K × 32 is used in SoC and the testing method of the LPSR SRAM64K × 32 is also discussed. The SoC design is successfully implemented in the Chartered 90nm CMOS process. The SoC chip occupies 5. 6mm× 5. 6ram of die area and the power dissipation is 1997mW. The test results indicate that LPSR SRAM64K ×32 obtains 17. 301% power savings and the yield of the LPSR SRAM64K × 32s per wafer is improved by 13. 255%.
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金supported by the National Natural Science Foundation of China (No.50778110)
文摘Statistical experimental designs were used to optimize the process of phenol degradation by Candida tropicalis Z-04, isolated from phenol-degrading aerobic granules. The most important factors influencing phenol degradation (p 〈 0.05), as identified by a two-level Plackett-Burman design with 11 variables, were yeast extract, phenol, inoculum size, and temperature. Steepest ascent method was undertaken to determine the optimal regions of these four significant factors. Central composite design (CCD) and response surface analysis were adopted to further investigate the mutual interactions between these variables and to identify their optimal values that would generate maximum phenol degradation. The analysis results indicated that interactions between yeast extract and temperature, phenol and temperature, inocuhim size and temperature affected the response variable (phenol degradation) significantly. The predicted results showed that the maximum removal efficiency of phenol (99.10%) could be obtained under the optimum conditions of yeast extract 0.41 g/L, phenol 1.03 g/L, inoculum size 1.43% (V/V) and temperature 30.04℃. These predicted values were further verified by validation experiments. The excellent correlation between predicted and experimental values confirmed the validity and practicability of this statistical optimum strategy. This study indicated the excellent ability of C. tropicalis Z-04 in degrading high-strength phenol. Optimal conditions obtained in this experiment laid a solid foundation for further use of this microorganism in the treatment of highstrength phenol effluents.
文摘In the medical computer tomography (CT) field, total variation (TV), which is the l1-norm of the discrete gradient transform (DGT), is widely used as regularization based on the compressive sensing (CS) theory. To overcome the TV model's disadvantageous tendency of uniformly penalizing the image gradient and over smoothing the low-contrast structures, an iterative algorithm based on the l0-norm optimization of the DGT is proposed. In order to rise to the challenges introduced by the l0-norm DGT, the algorithm uses a pseudo-inverse transform of DGT and adapts an iterative hard thresholding (IHT) algorithm, whose convergence and effective efficiency have been theoretically proven. The simulation demonstrates our conclusions and indicates that the algorithm proposed in this paper can obviously improve the reconstruction quality.
基金supported by the Major Project of NSFC(51690161)the Student Innovation Program Major Project of Northeastern University(ZD1708)
文摘High pressure die casting(HPDC) is a kind of near net shape manufacturing method. However, air entrapment in HPDC parts has serious effects upon the casting quality. In order to reduce the air entrapment defects in a AlSi10 MnMg alloy thin-wall longitudinal load-bearing beam produced by HPDC, different gating systems were designed and simulated by software Flow-3D to evaluate the entrapped air. Simulation results showed that when the beam is produced by the original designed gating system with a middle ingate, there exist obvious air entrapments in the critical area; the volume of air entrapment was reduced by replacing the middle ingate to an overflow well, and the filling of molten metal became more stable. When the middle ingate was removed for further improvement, the volume of air entrapment was decreased drastically. The parts with glossy surface and good microstructure have been successfully produced by using the final optimized gating system based on simulation results.
文摘Submerged arc welding(SAW), owing to its high deposition rate and high welding quality, is widely used in the fabrication of pressure vessel, marine vessel, pipelines and offshore structures. However, selection of an optimum combination of welding parameters is critical in achieving high weld quality and productivity. In this work, initially, the SAW experiments were performed using fractional factorial design to analyze the effect of direct and indirect input parameters, namely, welding voltage, wire feed rate,welding speed, nozzle to plate distance, flux condition, and plate thickness on weld bead geometrical responses viz. bead width, reinforcement, and penetration. The bead on plate technique was used to deposit weld metal on AISI 1023 steel plates. The effect of SAW input parameters on response variables were analyzed using main and interaction effects. The linear regression was used to develop the mathematical models for the response variable. Then, the multi-objective optimization of input parameters was carried out using desirability approach, genetic algorithm and Jaya algorithm. The Jaya algorithm offered better optimization results as compared to desirability approach, genetic algorithm.
基金supported by a Horizontal Project on the Development of a Hybrid Energy Storage Simulation Model for Wind Power Based on an RT-LAB Simulation System(PH2023000190)the Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.