期刊文献+
共找到519篇文章
< 1 2 26 >
每页显示 20 50 100
Sintering and Mechanical Properties of Magnesium and Fluorine Co-Substituted Hydroxyapatites
1
作者 Samia Nsar Amel Hassine Khaled Bouzouita 《Journal of Biomaterials and Nanobiotechnology》 2013年第1期1-11,共11页
Biological apatites contain several elements as traces. In this work, Magnesium and fluorine co-substituted hydroxyapatites with the general formula Ca9Mg(PO4)6(OH)2-yFy, where y = 0, 0.5, 1, 1.5 and 2 were synthesize... Biological apatites contain several elements as traces. In this work, Magnesium and fluorine co-substituted hydroxyapatites with the general formula Ca9Mg(PO4)6(OH)2-yFy, where y = 0, 0.5, 1, 1.5 and 2 were synthesized by the hydrothermal method. After calcination at 500℃, the samples were pressureless sintered between 950℃ and 1250℃. The substitution of F- for OH- had a strong influence on the densification behavior and mechanical properties of the materials. Below 1200℃, the density steeply decreased for y = 0.5 sample. XRD analysis revealed that compared to hydroxylfluorapatite containing no magnesium, the substituted hydroxyfluorapatites decomposed, and the nature of the decomposition products is tightly dependent on the fluorine content. The hardness, elastic modulus and fracture toughness of these materials were investigated by Vickers’s hardness testing. The highest values were 622 ± 4 GPa, 181 ± 1 GPa and 1.85 ± 0.06 MPa.m1/2, respectively. 展开更多
关键词 HYDROXYAPATITE MAGNESIUM FLUORINE SINTERING MECHANICAL Properties
在线阅读 下载PDF
Dual-surface capped hydroxyapatite nano-amendment with tuned alternate long-short chain configuration for efficient adsorption towards multi-heavy metal ions in complex-contaminated systems
2
作者 GAO Mochou MENG Shan +7 位作者 ZHANG Jinzhong FENG Wenhua DONG Shuo CHEN Jianping ZHAO Yanbao YU Laigui YING Rongrong ZOU Xueyan 《无机化学学报》 北大核心 2025年第7期1427-1438,共12页
Hydroxyapatite nanoparticles(HAP NPs)were synthesized by a one‐step hydrothermal method.The surface of HAP NPs was grafted-SH and-COOH chelating groups via in situ surface‐modification with iminodiacetic acid(IDA)an... Hydroxyapatite nanoparticles(HAP NPs)were synthesized by a one‐step hydrothermal method.The surface of HAP NPs was grafted-SH and-COOH chelating groups via in situ surface‐modification with iminodiacetic acid(IDA)and 3‐mercaptopropyl trimethoxysilane(MPS)to afford dual surface‐capped nano‐amendment HAPIDA/MPS.The structure of HAP‐IDA/MPS was characterized,and its adsorption performance for Hg^(2+),Cu^(2+),Zn^(2+),Ni^(2+),Co^(2+),and Cd^(2+)was evaluated.The total adsorption capacity of 0.10 g HAP‐IDA/MPS nano‐amendment for Hg^(2+),Cu^(2+),Zn^(2+),Ni^(2+),Co^(2+),and Cd^(2+)with an initial mass concentration of 20 mg·L^(-1) reached 13.7 mg·g^(-1),about 4.3 times as much as that of HAP.Notably,HAP‐IDA/MPS nano‐amendment displayed the highest immobilization rate for Hg^(2+),possibly because of its chemical reaction with-SH to form sulfide,possessing the lowest solubility product constant among a variety of metal sulfides. 展开更多
关键词 heavy metal HYDROXYAPATITE nano-amendment configuration tuning synergistic adsorption
在线阅读 下载PDF
Update on synthetic biomaterials combined with fibrin derivatives for regenerative medicine:Applications in bone defect treatment:Systematic review
3
作者 Bruna Trazzi Pagani Marcelie Priscila de Oliveira Rosso +5 位作者 Matheus Bento Medeiros Moscatel Beatriz Flavia de Moraes Trazzi Marcelo Rodrigues da Cunha João Paulo Mardegan Issa Daniela Vieira Buchaim Rogério Leone Buchaim 《World Journal of Orthopedics》 2025年第5期93-106,共14页
BACKGROUND Bone regeneration is a central focus of regenerative medicine,with applications in orthopedics and dentistry,particularly for treating bone defects caused by trauma,infection,or congenital anomalies.Synthet... BACKGROUND Bone regeneration is a central focus of regenerative medicine,with applications in orthopedics and dentistry,particularly for treating bone defects caused by trauma,infection,or congenital anomalies.Synthetic biomaterials,often combined with fibrin derivatives,offer promising solutions for bone healing and restoration.AIM To Explore the increasingly important role of the association of synthetic biomaterials with fibrin in bone regeneration.METHODS Search terms included:“synthetic biomaterials AND fibrin sealant”,“hydroxyapatite AND fibrin sealant”,“tricalcium phosphate AND fibrin sealant”,and“synthetic biomaterials AND platelet-rich fibrin(PRF)”,resulting in 67 articles.After rigorous screening,21 articles met the inclusion criteria.RESULTS The reviewed studies assessed biomaterials like hydroxyapatite(HA),β-tricalcium phosphate(β-TCP),and fibrin-based products.Key findings highlighted the enhanced osteoconductivity and biocompatibility of HA andβ-TCP,especially when combined with fibrin sealants.These composites show significant potential for improving cellular adhesion,promoting osteogenic differentiation,and accelerating bone regeneration.The antimicrobial properties and structural support for cell growth of certain biomaterials indicate a promising potential for clinical applic-ations.CONCLUSION This systematic review emphasizes the growing role of fibrin-based biomaterials in bone regeneration and urges continued research to improve their clinical use for complex bone defects. 展开更多
关键词 BIOMATERIALS Bone regeneration Fibrin sealant HYDROXYAPATITE ORTHOPEDICS DENTISTRY Regenerative medicine
暂未订购
Advancing bone regeneration:Clinical implications of synthetic biomaterials and fibrin derivatives
4
作者 Ren-Xian Xie Yi-Xuan Xing Nian-Zhe Sun 《World Journal of Orthopedics》 2025年第8期1-5,共5页
Bone defects caused by trauma,infection,or congenital anomalies remain a significant challenge in orthopedic and dental practice,necessitating innovative strategies to enhance healing and functional restoration.This s... Bone defects caused by trauma,infection,or congenital anomalies remain a significant challenge in orthopedic and dental practice,necessitating innovative strategies to enhance healing and functional restoration.This systematic review by Pagani et al synthesizes evidence on the synergistic role of synthetic biomaterials,such as hydroxyapatite(HA)andβ-tricalcium phosphate(β-TCP),combined with fibrin derivatives in bone regeneration.Analyzing 21 studies,the authors demonstrate that HA andβ-TCP composites exhibit superior osteoconductivity and biocompatibility when integrated with fibrin sealants or plateletrich fibrin,promoting cellular adhesion,osteogenic differentiation,and accelerated healing.While these studies underscore the potential of these biomaterialfibrin hybrids,limitations such as variability in fibrin preparation,lack of longterm data,and insufficient standardization hinder clinical translation.This editorial contextualizes these findings within the evolving landscape of regenerative medicine,emphasizing the need for optimized formulations,interdisciplinary collaboration,and robust clinical trials to bridge laboratory innovation to bedside application. 展开更多
关键词 BIOMATERIALS Bone regeneration Fibrin sealant HYDROXYAPATITE Regenerative medicine
暂未订购
A Novel Three-Dimensional-Printed Polycaprolactone/Nanohydroxyapatite-Nanoclay Scaffold for Bone Tissue Engineering Applications
5
作者 Saba Nazari Seyed Ali Poursamar +2 位作者 Mitra Naeimi Mohammad Rafienia Majid Monajjemi 《Journal of Bionic Engineering》 2025年第4期1863-1880,共18页
The field of bone tissue engineering has experienced an increase in prevalence due to the inherent challenge of the natural regeneration of significant bone deformities.This investigation focused on the preparation of... The field of bone tissue engineering has experienced an increase in prevalence due to the inherent challenge of the natural regeneration of significant bone deformities.This investigation focused on the preparation of Three-Dimensional(3D)-printed Polycaprolactone(PCL)scaffolds with varying proportions of Nanohydroxyapatite(NHA)and Nanoclay(NC),and their physiochemical and biological properties were assessed.The mechanical properties of PCL are satisfactory;however,its hydrophobic nature and long-term degradation hinder its use in scaffold fabrication.NHA and NC have been employed to improve the hydrophilic characteristics,mechanical strength,adhesive properties,biocompatibility,biodegradability,and osteoconductive behavior of PCL.The morphology results demonstrated 3D-printed structures with interconnected rectangular macropores and proper nanoparticle distribution.The sample containing 70 wt%NC showed the highest porosity(65.98±2.54%),leading to an increased degradation rate.The compressive strength ranged from 10.65±1.90 to 84.93±9.93 MPa,which is directly proportional to the compressive strength of cancellous bone(2–12 MPa).The wettability,water uptake,and biodegradability of PCL scaffolds considerably improved as the amount of NC increased.The results of the cellular assays exhibited increased proliferation,viability,and adhesion of MG-63 cells due to the addition of NHA and NC to the scaffolds.Finally,according to the in vitro results,it can be concluded that 3D-printed samples with higher amounts of NC can be regarded as a suitable scaffold for expediting the regeneration process of bone defects. 展开更多
关键词 POLYCAPROLACTONE HYDROXYAPATITE NANOCLAY 3D printing Bone tissue engineering
暂未订购
Effect of Hydroxyapatite Filler in an Aluminosilicate Glass Ionomer Cements
6
作者 Md Alamgir Kabir Md Moshiur Rahman +4 位作者 Humayun Kabir Md Moniruzzaman Khan Khokon Hossen Sooraj H. Nandyala Artemis Stamboulis 《Journal of Materials Science and Chemical Engineering》 2025年第2期83-98,共16页
Hydroxyapatite (HA) is widely explored as a biocompatible filler to enhance the mechanical and functional properties of glass ionomer cements (GICs). HA of particle sizes 15 µm and 30 µm were added as a fill... Hydroxyapatite (HA) is widely explored as a biocompatible filler to enhance the mechanical and functional properties of glass ionomer cements (GICs). HA of particle sizes 15 µm and 30 µm were added as a filler into a matrix, composed of calcium aluminosilicate GICs and Poly-acrylic acid (PAA) in varying ratios. The tested ratios were Glass:PAA = 2:1 and Glass:HA:PAA = 2:0.5:1 to improve the mechanical strength of a conventional GIC. Mechanical properties, including compressive, flexural, and diametral tensile strength were studied at different setting times. The compressive strength (CS) was improved with hydroxyapatite addition and prolonged setting time while diametral tensile strength (DTS) did not follow any specific trend. The flexural strength (FS) of the composite cement was increased with increasing setting time regardless of the particle size of hydroxyapatite. The FTIR spectra of hydroxyapatite of particle sizes 15 μm and 30 μm are similar but for HA-GIC composites, the FTIR spectra, the peak around 1460 cm−1 are due to C-H and the peak at 1553 cm−1 is due to calcium carboxylate with calcium in a bridging mode which would be an excellent material that chemically bonds to the tooth structure, making it effective for both restorative procedures and cavity fillings. Scanning electron microscopy (SEM) microstructural study revealed that the glass particles were wrenched out, which was a cohesive fracture. The X-ray diffraction (XRD) pattern showed that the hydroxyapatite has a crystalline single-phase, hexagonal structure. The sharp peaks between the 2-theta range of 30 - 40 degrees are the same as in enamel powder. The spectra indicate the pure set cement as amorphous since there is no prominent peak, but with the addition of hydroxyapatite filler, the peak in the 2-theta range of 20 - 35 degrees is ascribed to crystalline apatite structure. The results indicate that incorporating hydroxyapatite into GIC significantly enhances its mechanical properties and structural integrity, suggesting its potential as an improved material for dental and restorative applications. 展开更多
关键词 FTIR SEM EDX XRD Hydroxyapatite (HA) Poly-Acrylic Acid (PAA) RBCS Biomaterials CS DTS FS
在线阅读 下载PDF
Indirect 3D printing CDHA scaffolds with hierarchical porous structure to promote osteoinductivity and bone regeneration
7
作者 Wenling Dai Shikui Li +7 位作者 Hengxing Jia Xingchen Zhao Chenxin Liu Changchun Zhou Yumei Xiao Likun Guo Yujiang Fan Xingdong Zhang 《Journal of Materials Science & Technology》 2025年第4期295-307,共13页
Hierarchical porous structure,which include macropores,minor pores,and micropores in scaffolds,are essential in the multiple biological functions of bone repair and regeneration.In this study,patientcustomized calcium... Hierarchical porous structure,which include macropores,minor pores,and micropores in scaffolds,are essential in the multiple biological functions of bone repair and regeneration.In this study,patientcustomized calcium-deficient hydroxyapatite(CDHA)scaffolds with three-level hierarchical porous structure were fabricated by indirect 3D printing technology and particulate leaching method.The sacrificial template scaffolds were fabricated using a photo-curing 3D printer,which provided a prerequisite for the integral structure and interconnected macropores of CDHA scaffolds.Additionally,20 wt%pore former was incorporated into the slurry to enhance the content of smaller pores within the CDHA-2 scaffolds,and then the CDHA-2 scaffolds were sintered to remove the sacrificial template scaffolds and pore former.The obtained CDHA-2 scaffolds exhibited interconnected macropores(300-400μm),minor pores(∼10-100μm),and micropores(<10μm)distributed throughout the scaffolds,which could promote bone tissue ingrowth,increase surface roughness,and enhance protein adsorption of scaffolds.In vitro studies identified that CDHA-2 scaffolds had nanocrystal grains,high specific surface area,and outstanding protein adsorption capacity,which could provide a microenvironment for cell adhesion,spreading,and proliferation.In addition,the murine intramuscular implantation experiment suggested that CDHA-2 scaffolds exhibited excellent osteoinductivity and were superior to traditional BCP ceramics under conditions without the addition of live cells and exogenous growth factors.The rabbit calvarial defect repair results indicated that CDHA-2 scaffolds could enhance in situ bone regeneration.In conclusion,these findings demonstrated that the hierarchical porous structure of CDHA scaffolds was a pivotal factor in modulating osteoinductivity and bone regeneration,and CDHA-2 scaffolds were potential candidates for bone regeneration. 展开更多
关键词 Calcium-deficient hydroxyapatite Indirect 3D printing technology Hierarchical porous structure OSTEOINDUCTIVITY Bone regeneration
原文传递
Highly ionic conductive composite membrane electrolyte with vertically aligned structure and radial gradient copolymer for high-performance solid-state lithium metal batteries
8
作者 Sida Xie Ningxin Chen +5 位作者 Jie Deng Ying-Jie Zhu Long Cheng Dandan Li Heng Li Zhaohui Wang 《Journal of Energy Chemistry》 2025年第7期939-950,共12页
Solid-state polymer electrolytes are crucial for advancing solid-state lithium-metal batteries owing to their flexibility,excellent manufacturability,and strong interfacial compatibility.However,their widespread appli... Solid-state polymer electrolytes are crucial for advancing solid-state lithium-metal batteries owing to their flexibility,excellent manufacturability,and strong interfacial compatibility.However,their widespread applications are hindered by low ionic conductivity at room temperature and lithium dendrite growth.Herein,we report a novel solid-state composite membrane electrolyte design that combines the vertically aligned channel structure and copolymer with a radial gradient composition.Within the vertically aligned channels,the composition of poly(vinyl ethylene carbonate-co-poly(ethylene glycol)diacrylate)(P(VEC-PEGDA)varies in a gradient along the radial direction:from the center to the wall of vertically aligned channels,the proportion of vinyl ethylene carbonate(VEC)in the copolymer decreases,while the proportion of poly(ethylene glycol)diacrylate(PEGDA)increases accordingly.It can be functionally divided into a mechanical-reinforcement layer and a fast-ion-conducting layer.The resulting solid-state composite membrane electrolyte achieves a high critical current density of 1.2 mA cm^(-2)and high ionic conductivity of 2.03 mS cm^(-1)at room temperature.Employing this composite membrane electrolyte,a Li//Li symmetric cell exhibits stable cycling for over 1850 h at 0.2 m A cm^(-2)/0.2 m A h cm^(-2),and a Li//LiFePO4(LFP)battery maintains 77.3% capacity retention at 2 C after 300 cycles.Our work provides insight into the rational design of safer and more efficient solidstate batteries through electrolyte structural engineering. 展开更多
关键词 Vertically aligned channel structure Radial gradient copolymer Solid-state polymer electrolyte Ultralong hydroxyapatite nanowires Fast-ion-conducting
在线阅读 下载PDF
Graphene-calcium carbonate coating to improve the degradation resistance and mechanical integrity of a biodegradable implant 被引量:1
9
作者 Lokesh Choudhary Parama Chakraborty Banerjee +5 位作者 R.K.Singh Raman Derrek E.Lobo Christopher D.Easton Mainak Majumder Frank Witte Jörg F.Löffler 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期394-404,共11页
Biodegradable implants are critical for regenerative orthopaedic procedures,but they may suffer from too fast corrosion in human-body environment.This necessitates the synthesis of a suitable coating that may improve ... Biodegradable implants are critical for regenerative orthopaedic procedures,but they may suffer from too fast corrosion in human-body environment.This necessitates the synthesis of a suitable coating that may improve the corrosion resistance of these implants without compromising their mechanical integrity.In this study,an AZ91 magnesium alloy,as a representative for a biodegradable Mg implant material,was modified with a thin reduced graphene oxide(RGO)-calcium carbonate(CaCO_(3))composite coating.Detailed analytical and in-vitro electrochemical characterization reveals that this coating significantly improves the corrosion resistance and mechanical integrity,and thus has the potential to greatly extend the related application field. 展开更多
关键词 Graphene coating Biodegradable implant HYDROXYAPATITE Corrosion Magnesium alloy
在线阅读 下载PDF
Antibacterial HA-coatings on bioresorbable Mg alloy 被引量:1
10
作者 K.V.Nadaraia D.V.Mashtalyar +13 位作者 M.A.Piatkova A.I.Pleshkova I.M.Imshinetskiy M.S.Gerasimenko E.A.Belov V.V.Kumeiko D.N.Kozyrev K.A.Fomenko V.V.Mostovaya B.R.Torpanov A.R.Biktimirov I.S.Osmushko S.L.Sinebryukhov S.V.Gnedenkov 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1965-1985,共21页
In this study,a calcium-phosphate coating was formed on a Mg-Mn-Ce alloy by the plasma electrolytic oxidation(PEO).The antibiotic vancomycin,widely used in the treatment of infections caused by Staphylococcus aureus(S... In this study,a calcium-phosphate coating was formed on a Mg-Mn-Ce alloy by the plasma electrolytic oxidation(PEO).The antibiotic vancomycin,widely used in the treatment of infections caused by Staphylococcus aureus(S.aureus),was impregnated into the coating.Samples with vancomycin showed high bactericidal activity against S.aureus.The mechanical and electrochemical properties of the formed coatings were studied,as well as in vitro cytotoxicity tests and in vivo tests on mature male rats were performed.According to SEM,EDS,XRD and XPS data,coatings had a developed morphology and contained hydroxyapatite,which indicates high biocompatibility.The analysis of roughness of coatings without and with vancomycin did not reveal any differences,confirming the high roughness of the samples.During electrochemical tests,an increase in corrosion resistance by more than two times after the application of PEO coatings was revealed.According to the results of an in vivo study,after 28 days of the implantation of samples with calcium phosphate PEO coating and vancomycin,no signs of inflammation were observed,while an inflammatory reaction developed in the area of implantation of bare alloy,followed by encapsulation.Antibiotic release tests from the coatings show a sharp decrease in the concentration of the released antibiotic on day 7 and then a gradual decrease until day 28.Throughout the experiment,no significant deviations in the condition and behavior of the animals were observed;clinical tests did not reveal a systemic toxic reaction. 展开更多
关键词 Bioactive coatings BIOCOMPATIBILITY Mg alloy Plasma electrolytic oxidation Hydroxyapatite VANCOMYCIN
在线阅读 下载PDF
Ag-doped CNT/HAP nanohybrids in a PLLA bone scaffold show significant antibacterial activity 被引量:1
11
作者 Cijun Shuai Xiaoxin Shi +3 位作者 Kai Wang Yulong Gu Feng Yang Pei Feng 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第2期105-120,共16页
Bacterial infection is a major problem following bone implant surgery.Moreover,poly-l-lactic acid/carbon nanotube/hydroxyapatite(PLLA/CNT/HAP)bone scaffolds possess enhanced mechanical properties and show good bioacti... Bacterial infection is a major problem following bone implant surgery.Moreover,poly-l-lactic acid/carbon nanotube/hydroxyapatite(PLLA/CNT/HAP)bone scaffolds possess enhanced mechanical properties and show good bioactiv-ityregardingbonedefectregeneration.Inthisstudy,wesynthesizedsilver(Ag)-dopedCNT/HAP(CNT/Ag-HAP)nanohybrids via the partial replacing of calcium ions(Ca2+)in the HAP lattice with silver ions(Ag+)using an ion doping technique under hydrothermal conditions.Specifically,the doping process was induced using the special lattice structure of HAP and the abundant surface oxygenic functional groups of CNT,and involved the partial replacement of Ca2+in the HAP lattice by doped Ag+as well as the in situ synthesis of Ag-HAP nanoparticles on CNT in a hydrothermal environment.The result-ing CNT/Ag-HAP nanohybrids were then introduced into a PLLA matrix via laser-based powder bed fusion(PBF-LB)to fabricate PLLA/CNT/Ag-HAP scaffolds that showed sustained antibacterial activity.We then found that Ag+,which pos-sesses broad-spectrum antibacterial activity,endowed PLLA/CNT/Ag-HAP scaffolds with this activity,with an antibacterial effectiveness of 92.65%.This antibacterial effect is due to the powerful effect of Ag+against bacterial structure and genetic material,as well as the physical destruction of bacterial structures due to the sharp edge structure of CNT.In addition,the scaffold possessed enhanced mechanical properties,showing tensile and compressive strengths of 8.49 MPa and 19.72 MPa,respectively.Finally,the scaffold also exhibited good bioactivity and cytocompatibility,including the ability to form apatite layers and to promote the adhesion and proliferation of human osteoblast-like cells(MG63 cells). 展开更多
关键词 Ag-doped Carbon nanotube/hydroxyapatite(CNT/HAP) Antibacterial properties Bone scaffold
在线阅读 下载PDF
Effect of cobalt on the activity of nickel-based/magnesium-substituted hydroxyapatite catalysts for dry reforming of methane
12
作者 Tongming Su Bo Gong +3 位作者 Xinling Xie Xuan Luo Zuzeng Qin Hongbing Ji 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第12期281-291,共11页
The dry reforming of methane(DRM)reaction can directly convert methane(CH_(4))and carbon dioxide(CO_(2))into syngas(H_(2)+CO),which is a promising method for achieving carbon neutralization.In this study,a series of 3... The dry reforming of methane(DRM)reaction can directly convert methane(CH_(4))and carbon dioxide(CO_(2))into syngas(H_(2)+CO),which is a promising method for achieving carbon neutralization.In this study,a series of 3Ni-xCo/Mg1HAP alloy catalysts with different ratio were synthesized by the coprecipitation method,and the optimum Ni-Co ratio for the DRM reaction was studied.A series of characterization methods revealed that after Co was added,the formation of Ni-Co alloys increased the interactions between metals.However,an excess of Co inhibits the entry of Ni into the lattice of Mg_(1)HAP,resulting in metal accumulation on the surface of the support.In addition,the introduction of Co improves the dispersion of Ni metal,which endows the catalyst with better catalytic activity and stability.Raman spectroscopy of the catalyst after the stability test showed that the addition of Co reduced the proportion of graphitic carbon,which was also the main reason for its improved stability. 展开更多
关键词 METHANE Carbon dioxide HYDROXYAPATITE Nickel COBALT
在线阅读 下载PDF
Bio-inspired Hydroxyapatite/Gelatin Transparent Nanocomposites
13
作者 谭军军 WU Mingchen +2 位作者 LI Yuzhe PENG Jiamei 熊焰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期298-308,共11页
Hydroxyapatite(HA)nanoparticles impart outstanding mechanical properties to organicinorganic nanocomposites in bone.Inspired by the composite structure of HA nanoparticles and collagen in bone,a high performance HA/ge... Hydroxyapatite(HA)nanoparticles impart outstanding mechanical properties to organicinorganic nanocomposites in bone.Inspired by the composite structure of HA nanoparticles and collagen in bone,a high performance HA/gelatin nanocomposite was first developed.The nanocomposites have much better mechanical properties(elongation at break 29.9%,tensile strength 90.7 MPa,Young’s modulus 5.24 GPa)than pure gelatin films(elongation at break 9.3%,tensile strength 90.8 MPa,Young’s modulus 2.5 GPa).In addition,the composite films keep a high transmittance in visible wavelength range from 0%to 60%of the HA solid content.These differences in properties are attributed to the homogeneous distribution of HA nanoparticles in the gelatin polymer matrix and the strong interaction between the particle surfaces and the gelatin molecules.This protocol should be promising for HA-based nanocomposites with enhanced mechanical properties for biomedical applications. 展开更多
关键词 HYDROXYAPATITE NANOCOMPOSITES sodium citrate GELATIN colloidal stability
原文传递
Ionic liquid-assisted preparation of hydroxyapatite and its catalytic performance for decarboxylation of itaconic acid
14
作者 Shutong Pang Hualiang An +1 位作者 Xinqiang Zhao Yanji Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期9-15,共7页
The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal... The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal catalyst and a corrosive homogeneous alkali,we prepared a series of hydroxyapatite catalysts by an ionic liquid-assisted hydrothermal method and evaluated their catalytic performance.The results showed that the ionic liquid[Bmim]BF_(4) can affect the crystal growth of hydroxyapatite,provide fluoride ion for fluorination of hydroxyapatite,and adjust the surface acidity and basicity,morphology,textural properties,crystallinity,and composition of hydroxyapatite.The[Bmim]BF4 dosage and hydrothermal temperature can affect the fluoride ion concentration in the hydrothermal system,thus changing the degree of fluoridation of hydroxyapatite.High fluoride-ion concentration can lead to the formation of CaF_(2) and thus significantly decrease the catalytic performance of hydroxyapatite.The hydrothermal time mainly affects the growth of hydroxyapatite crystals on the c axis,leading to different catalytic performance.The suitable conditions for the preparation of this fluoridized hydroxyapatite are as follows:a mass ratio of[Bmim]BF4 to calcium salt=0.2:1,a hydrothermal time of 12 h,and a hydrothermal temperature of 130℃.A maximal methacrylic acid yield of 54.7%was obtained using the fluoridized hydroxyapatite under relatively mild reaction conditions(250℃ and 2 MPa of N_(2))in the absence of a precious-metal catalyst and a corrosive homogeneous alkali. 展开更多
关键词 Ionic liquid HYDROXYAPATITE Itaconic acid Methacrylic Decarboxylation reaction
在线阅读 下载PDF
Effect of Fluoride on the Ion-association of Calcium Phosphate and Crystallization of Hydroxyapatite
15
作者 宋昊月 CAI Meng +1 位作者 袁萍 邹朝勇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期831-838,共8页
Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and t... Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and the formation of ACP nanospheres in a buffer solution with constant ionic strength.However,the stability of ACP increased with increasing fluoride concentration,which was ascribed to the inhibitory effect of fluoride on the aggregation of ACP nanospheres and the nucleation of nanocrystals on the surface of ACP nanospheres.Furthermore,fluoride could inhibit the lateral growth of HAP nanosheets and promote the formation of rod-like crystals.These results further improve our understanding of the crystallization pathway of HAP crystals and the regulatory effects of fluoride. 展开更多
关键词 CRYSTALLIZATION amorphous calcium phosphate HYDROXYAPATITE FLUORIDE
原文传递
Facile and effective synthesis strategy for terbium-doped hydroxyapatite toward photoelectric devices and flexible functional fibers
16
作者 Xiao-Dong Zhang Kun Nie +10 位作者 Zi-Yao Hu Ran-Ran Zhou Xiu-Qiang Duan Wu-Bin Dai Song-Song Nie Song-Jun Yao Luo-Xin Wang Le-Fu Mei Hua Wang Yi-Yi Yao Xiao-Xue Ma 《Rare Metals》 SCIE EI CAS CSCD 2024年第4期1713-1723,共11页
As a material with good biocompatibility,hydroxyapatite(HAP)can have optical properties after doping with various rare earth ions.As a biocompatible fluorescent material,doped HAP could have broad applications in biol... As a material with good biocompatibility,hydroxyapatite(HAP)can have optical properties after doping with various rare earth ions.As a biocompatible fluorescent material,doped HAP could have broad applications in biological probes,drug delivery,optoelectronic materials,fluorescence anti-counterfeiting,and other aspects.In this paper,we put forward the preparation of HAP doped with terbium(Ⅲ)ions(Tb^(3+))by hydrothermal co-precipitation.By controlling the Tb^(3+)doping content in reaction and the reaction time,the changes in HAP's structure,morphology,and luminescence properties under different conditions were studied.When the doping amount of Tb^(3+)reached an optimal value,the dipole-quadrupole would occur and the concentration would be quenched.The control experiment showed that the optimal Tb3+content was 7.5×10^(-5)mol,which showed the best fluorescence performance.HAP,a non-luminous material,was rarely used in the field of fluorescent anti-counterfeiting and photoelectric devices.We proposed to prepare a luminescent aramid/polyphenylene sulfide(ACFs/PPS)fiber paper and a new light-emitting diode(LED)using the Tb-doped HAP phosphor.The composite sample exhibited an excellent stability and fluorescence performance,which also demonstrated a possibility of HAP applications in anticounterfeiting and photoelectric.The introduction of Tb3+dopant HAP was done to give HAP optical properties and broaden the application range of HAP. 展开更多
关键词 HYDROXYAPATITE Rare earth luminescence Photoelectric device ARAMID Polyphenylene sulfide fiber paper Luminescent fiber
原文传递
Bioactivated polyetheretherketone scaffold able to generate mild heat for promoting bone regeneration via activating MAPK/ERK signaling pathway
17
作者 Ce Zhu Miaomiao He +6 位作者 Juehan Wang Yong Huang Wei Deng Limin Liu Ganjun Feng Li Zhang Yueming Song 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第23期188-199,共12页
Photothermal therapy(PTT)is a desirable way to attain on-demand hyperthermia owing to the heat gen-erated by photothermal materials absorbing near-infrared light.The mild heat(42±0.5℃)can not only accelerate bon... Photothermal therapy(PTT)is a desirable way to attain on-demand hyperthermia owing to the heat gen-erated by photothermal materials absorbing near-infrared light.The mild heat(42±0.5℃)can not only accelerate bone tissue regeneration but also promote the release of bioactive ions from biomaterials.Based on this one-stone-two-birds strategy,a 3D printed PEEK-graphene composite scaffold(PG)with hydroxyapatite(HA)coating(PGH)for photothermally remote control of bone regeneration was well de-signed in this study.The results showed that the HA coating on PGH could release Ca^(2+)and PO_(4)^(3-)ions easily under NIR irradiation,which was ascribed to the mild heat generated from graphene in the com-posite scaffold.The mild heat and the boosted Ca^(2+)/PO_(4)^(3-)release could synergistically enhance the bone regeneration ability both in vitro and in vivo.The underlying mechanism was further explored and con-firmed to be closely related to the upregulation of HSP 70,by which the MAPK/ERK signaling pathway was activated selectively.The favorable results demonstrate that the 3D-printed PEEK/graphene composite scaffold is promising in the applications of bone defect repair. 展开更多
关键词 Polyetheretherketone(PEEK) Hydroxyapatite(HA) Photothermal therapy(PTT) Mild heat Bone regeneration
原文传递
Influence of anodization conditions on deposition of hydroxyapatite on α/β Ti alloys for osseointegration:Atomic force microscopy analysis
18
作者 Rania E.HAMMAM Engie M.SAFWAT +2 位作者 Soha A.ABDEL-GAWAD Madiha SHOEIB Shimaa EL-HADAD 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3629-3649,共21页
Integrating titanium-based implants with the surrounding bone tissue remains challenging.This study aims to explore the impact of different anodization voltages(20−80 V)on the surface topography of two-phase(α/β)Ti ... Integrating titanium-based implants with the surrounding bone tissue remains challenging.This study aims to explore the impact of different anodization voltages(20−80 V)on the surface topography of two-phase(α/β)Ti alloys and to produce TiO_(2) films with enhanced bone formation abilities.Scanning electron microscopy coupled with energy dispersive spectroscopy(SEM−EDS)and atomic force microscopy(AFM)were applied to investigate the morphological,chemical,and surface topography of the prepared alloys and to confirm the growth of hydroxyapatite(HA)on their surfaces.Results disclosed that the surface roughness of TiO_(2) films formed on Ti−6Al−7Nb alloys was superior to that of Ti−6Al−4V alloys.Ti−6Al−7Nb alloy anodized at 80 V had the highest yields of HA after immersion in simulated body fluid with enhanced HA surface coverage.The developed HA layer had a mean thickness of(128.38±18.13)μm,suggesting its potential use as an orthopedic implantable material due to its promising bone integration and,hence,remarkable stability inside the human body. 展开更多
关键词 material science electrochemical anodization process atomic force microscopy α/βTi alloys hydroxyapatite deposition
在线阅读 下载PDF
Characterization of Hydroxyapatite Extracted from Crab Shell Using the Hydrothermal Method with Varying Holding Times
19
作者 Deni Fajar Fitriyana Rifky Ismail +2 位作者 Athanasius Priharyoto Bayuseno Januar Parlaungan Siregar Tezara Cionita 《Journal of Renewable Materials》 EI CAS 2024年第6期1145-1163,共19页
Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_... Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_(3) content,and have not been widely utilized in the synthesis of HA.This study aims to synthesize and analyze HA derived from crab shells using the hydrothermal method with different durations of holding time.This study utilized precipitated calcium carbonate(PCC)derived from crab shells.With a hydrothermal reactor set at 160℃ and varying holding times of 14(HA_14),16(HA_16),and 18(HA_18)h,a PCC and(NH4)2HPO4 mixture was used to synthesize HA.The synthesis results were analyzed using scanning electron microscopy(SEM),fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)tests.This study has accomplished the synthesis of HA from crab shells.Nonetheless,the final product of synthesis still contained CaCO_(3) as an impurity.The prolonged hydrothermal holding time of 14 to 18 h resulted in a reduction of impurities while increasing the percentage of crystal weight and crystallite size of HA.Specimen CH_18 is the best-quality product generated in this study.This specimen produced HA with the highest percentage of crystal weight and crystallite size compared to the other specimens.Furthermore,specimen CH_18 exhibited the lowest concentration of impurities.The Ca/P ratio in this specimen was also the closest to 1.67.The Ca/P ratio,crystallite size,and crystal weight percentage of this specimen are 1.54,19.06 nm,and 99.1%,respectively. 展开更多
关键词 HYDROXYAPATITE crab shells CaCO_(3) HYDROTHERMAL holding time
在线阅读 下载PDF
In vitro degradation and in vivo osteogenesis of Mg-Zn-Nd-Zr/HA composites prepared by friction stir processing
20
作者 Wen Zhang Jiarui Lu +5 位作者 Lili Tan Dingrui Ni Ran Zhang Qing Zhou Ke Yang Qiang Wang 《Journal of Magnesium and Alloys》 CSCD 2024年第12期4937-4952,共16页
Biodegradable magnesium-matrix composites(BMMCs)added with bone-like compounds such as hydroxyapatite(HA)have promising orthopedic application potential,but the in vivo results of BMMCs are insufficient,and the differ... Biodegradable magnesium-matrix composites(BMMCs)added with bone-like compounds such as hydroxyapatite(HA)have promising orthopedic application potential,but the in vivo results of BMMCs are insufficient,and the difference between in vitro and in vivo are not clarified.In this work,Mg-Zn-Nd-Zr/(10/15/20wt%)HA(Ca_(10)(PO_(4))_(6)OH_(2))composites were prepared through friction stirring processing(FSP).It was found that corrosion rate of the composites increased with increase of the HA content,where the corrosion rate from hydrogen evolution of the Mg/10wt%HA was about 0.107 mm/y,showing better corrosion resistance compared with other BMMCs,and the agglomeration of HA powders significantly aggravated the localized corrosion.The ALP specific activity of the MC3T3-E1 cells cultured for14 days with Mg/10wt%HA(2.12 IU/mg)was higher than that of the matrix(1.85 IU/mg),but there was no difference with the FSP group(2.13 IU/mg).In the early implantation of the rabbit femur,bone volume fraction(BV/TV)of Mg/10wt%HA was 10.69,which was higher than that of the FSP group(6.35).The histological staining showed that the Mg/10wt%HA implant was surrounded by more trabecular bone tissue,exhibiting better osteoinductive regeneration.The Mg-Zn-Nd-Zr/HA composites exhibit higher osteogenic activity in vivo differently from in vitro osteogenic expression. 展开更多
关键词 Biodegradable Mg-based composite Friction stir processing HYDROXYAPATITE OSTEOGENESIS In vivo biodegradation
在线阅读 下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部