期刊文献+
共找到17,151篇文章
< 1 2 250 >
每页显示 20 50 100
WHCrop-humid:适用于西南季节性干旱地下水浅埋区的作物模型与应用
1
作者 邢佳诚 何柳月 +1 位作者 薛景元 李俊 《灌溉排水学报》 2025年第8期20-32,共13页
【目的】针对西南季节性干旱地区地下水浅埋的特定环境条件,构建改进的WHCrop-humid作物生长模型,以提高其对该地区作物耗水与产量模拟的精度和适用性。【方法】WHCrop-humid模型增加了对土壤非饱和带-地下水水分交换、地表径流、作物... 【目的】针对西南季节性干旱地区地下水浅埋的特定环境条件,构建改进的WHCrop-humid作物生长模型,以提高其对该地区作物耗水与产量模拟的精度和适用性。【方法】WHCrop-humid模型增加了对土壤非饱和带-地下水水分交换、地表径流、作物根系生长过程的模块,能够更准确地反映地下水对作物生长的贡献、地表径流对土壤水分状况的影响以及光-温-水对作物生长的影响。【结果】基于四川省盐亭农田生态系统国家野外科学观测研究站2005、2006年和2007年3个观测场的玉米动态生长数据,对模型进行率定和验证,结果表明,WHCrop-humid模型可以较好地模拟玉米的实际蒸散发和产量,验证期叶面积指数(LAI)决定系数(R 2)为0.908、归一化均方根误差(NRMSE)为0.117、威尔莫特一致性指数(WIA)为0.974,累积蒸散发R 2为0.986、NRMSE为0.087、WIA为0.988,产量R 2为0.984、NRMSE为0.434、WIA为0.997,模型具有在实践生产中应用于预测作物生长状态、耗水量和产量的价值。【结论】该模型可以为西南季节性干旱地下水浅埋区的作物需耗水和产量评估提供理论依据,有助于促进相似地区的水分生产力提升和农业水管理的可持续发展。 展开更多
关键词 模型 地下水 西南地区 WHCrop-humid 季节性干旱 水分生产力
在线阅读 下载PDF
Flexible and multifunctional humidity sensor based on Au@ZIF-67 nanoparticles for non-contact healthcare monitoring
2
作者 Zhi-Hua Zhao Shi-Xin Ma +4 位作者 Ya-Fang Pan Abu-Bakker-Md Rahmatullah Xiao-Qing Shen Zhi-Gang Shao Lan Wu 《Rare Metals》 2025年第4期2564-2576,共13页
To facilitate real-time monitoring and recording of humidity in the environment and to satisfy the requirement for strain performance in certain applications(such as wearable devices),this paper proposes an in-situ me... To facilitate real-time monitoring and recording of humidity in the environment and to satisfy the requirement for strain performance in certain applications(such as wearable devices),this paper proposes an in-situ method for synthesising Au nanoparticles on ZIF-67.In this study,an Au@ZIF-67 composite humidity-sensitive material was combined with flexible polyethylene terephthalate interdigitated electrodes to create an Au@ZIF-67 flexible humidity sensor.The prepared samples were characterised using X-ray diffraction,X-ray photoelectron spectroscopy,and transmission electron microscopy.The humidity-sensitive properties of the sensor were investigated,and its monitoring capabilities in applications involving respiration,gestures,skin,and baby diapers were tested.The experimental results indicate that compared with a pure ZIF-67 humidity sensor,the Au@ZIF-67(0.1Au@Z)flexible humidity sensor exhibits a 158.07%decrease in baseline resistance and a 51.66%increase in sensitivity to 95%relative humidity,and the hysteresis,response time,and recovery time are significantly reduced.Furthermore,the sensor exhibits excellent characteristics such as high resolution,repeatability,and stability.The obtained results regarding the material properties,humidity sensitivity,and practical application of non-contact humidity monitoring demonstrate that the prepared sensors exhibit excellent and comprehensive performance,indicating their broad prospects in wearable medical devices,wireless Internet of Things,humidity detection in complex environments,and intelligent integrated systems. 展开更多
关键词 FLEXIBLE humidity sensor Au nanoparticles ZIF-67 MULTIFUNCTIONAL
原文传递
Orbital to millennial scale dust activity and humidity interaction in Central Asia during the last glacial period
3
作者 Haoru Wei Yougui Song +7 位作者 Shugang Kang Mingyu Zhang Mengping Xie Yanping Wang Li Han Shukhrat Shukurov Nosir Shukurov Fakhriddin Fayziev 《Geoscience Frontiers》 2025年第4期433-445,共13页
The factors controlling dust activity and humidity in Central Asia and their relationships remain controversial,partly due to a lack of high-resolution geological records for the mid-to-late last glaciation.In this st... The factors controlling dust activity and humidity in Central Asia and their relationships remain controversial,partly due to a lack of high-resolution geological records for the mid-to-late last glaciation.In this study,we established an optically stimulated luminescence chronology for the QSHA profile in the Yili Basin,a region influenced by westerlies.Grain size and trace element data were used as paleoclimatic indicators.We investigated the relationships among Central Asian dust activity,humidity,and westerlies strength on orbital to millennial scale from 37.4 ka to 11.6 ka.Our study reveals that,on orbital timescales,humidity is positively correlated with westerlies strength which controlled by precession.Dust activity is controlled by Siberian High which was regulated by Northern Hemisphere high-latitude temperature.Their responses to low-latitude and high-latitude forcing mechanisms respectively and present an opposite relationship.On millennial timescales,humidity and westerlies strength are positively correlated.During Marine Isotope Stage(MIS)2,humidity and dust activity show synchronous fluctuations,while during MIS 3,they exhibit an inverse relationship.Westerlies strength regulated humidity,which subsequently controlled glacial activity in the Tianshan Mountains,influencing dust activity in Central Asia.Additionally,the QSHA profile recorded seven Dansgaard-Oeschger(D-O)events on millennial timescales,indicating a potential link between Central Asian dust activity and high-latitude temperature variations in the Northern Hemisphere.Our findings provide new insights into dust and humidity interaction during the last glaciation periods in Central Asia and contribute to understanding global dust and hydrological cycles. 展开更多
关键词 Central Asian loess Orbital timescale Millennial timescale Dust activity humidity
在线阅读 下载PDF
High Humidity-resistant and Reversible Mechanochromic Wrinkling Surface Activated by Dual Mechanical Modes
4
作者 Cheng-Jun Yu Bin-Hong Yu Song-Shan Zeng 《Chinese Journal of Polymer Science》 2025年第7期1105-1113,共9页
A high humidity-resistant,dual mechanical responsive,and reversible mechanochromic wrinkling system based on a VHB 4910-polydimethylsiloxane(PDMS)substrate with a thin film consisting of 90 wt%poly(vinyl butyral)(PVB)... A high humidity-resistant,dual mechanical responsive,and reversible mechanochromic wrinkling system based on a VHB 4910-polydimethylsiloxane(PDMS)substrate with a thin film consisting of 90 wt%poly(vinyl butyral)(PVB)and 10 wt%hydroxypropyl cellulose(HPC)has been reported.The wrinkling system exhibited significant optical tuning from transparent to opaque states with 50%changes in transmittance,which was achieved through the dual mechanical modes of pre-stretching and releasing processes or bending.Upon exposure to ethanol vapor or a re-flattening process,wrinkles can be erased,yielding a transparent state.Consequently,the wrinkling system could be reversibly switched between transparency and opacity for 1000 cycles with marginal changes in the optical performance.Owing to the insolubility of PVB in water,the wrinkling patterns exhibited excellent durability in high-humidity environments(relative humidity(RH)=99%).Furthermore,the smart encryption device is also demonstrated via mechano-controlled surface topography by patterning the wrinkling system,suggesting potential applications of the designed structure in smart windows,anti-counterfeiting,dynamic display,optical information encryption,and rewritable surfaces. 展开更多
关键词 Wrinkling surface Mechanochromism Optical modulation High humidity resistance PATTERNING
原文传递
Mitigating the pathway competition between moisture and gas via hierarchical fibrous paper for humidity-adaptive fuel cells
5
作者 Peng He Lei Wang +4 位作者 Hao Tang Quanbo Huang Guodong Ren Ruwei Chen Xiaohui Wang 《Rare Metals》 2025年第5期3234-3243,共10页
Proton exchange membrane fuel cell(PEMFC)is a promising clean energy source,but its performance and stability are vulnerable to the negative effects of humidity conditions.The gas diffusion substrate(GDS)plays a pivot... Proton exchange membrane fuel cell(PEMFC)is a promising clean energy source,but its performance and stability are vulnerable to the negative effects of humidity conditions.The gas diffusion substrate(GDS)plays a pivotal role in regulating the moisture and gas transport.The single pore structure of traditionally designed GDS often leads to the pathway competition between moisture and gas,which effects the efficiency of fuel cells.In this study,we report on a hierarchical fibrous paper with tunable hierarchical pores for a sustainable GDS.This design offers gas permeability under wet conditions,by separating the gas pathway from the moisture pathway,thus mitigating their pathway competition.In addition,this paper forms a multi-scale scaffold that absorbs moisture under high humidity conditions and releases it under dry conditions.It is allowed to maintain an optimal internal humidity and further enhances the humidity adaptability.Furthermore,the carbon footprint is only 15.97%,significantly lower than commercial alternatives.This feature makes it a sustainable solution to stabilize PEMFCs under diverse humidity conditions. 展开更多
关键词 PEMFC Biomass carbon paper substrate Hierarchical porous structure Moisture management humidity adaptability
原文传递
Reduced humidity sensitivity of the perovskite fabrication via intermediate treatment enabling stable perovskite solar cells
6
作者 Hongyu Xu Qixuan Zhong +5 位作者 Yongqiang Ji Qiuyang Li Haoming Yan Yu Chen Rui Zhu Lichen Zhao 《Journal of Energy Chemistry》 2025年第7期133-141,共9页
High-efficiency formamidinium lead iodide(FAPbI3)-based perovskite solar cells(PSCs)typically involve annealing in humid air during the fabrication process of perovskite films.However,the combined effects of humidity ... High-efficiency formamidinium lead iodide(FAPbI3)-based perovskite solar cells(PSCs)typically involve annealing in humid air during the fabrication process of perovskite films.However,the combined effects of humidity and relatively high temperature often result in the uncontrollable formation of a detrimental PbI_(2)phase in the perovskite films.As a result,the annealing process of perovskite films is highly sensitive to the relative humidity fluctuations of the environment.Under solar illumination,the undesired PbI_(2)tends to decompose,accelerating the degradation of perovskite materials and severely compromising the light stability of PSCs.This issue is particularly critical for the buried interface and bulk of the perovskite films,as these regions absorb the majority of the incident light.Pre-treatment and posttreatment strategies are generally confined to address the PbI_(2)issues at the buried interface and on the surface of the perovskite films,respectively.However,effectively addressing the effects of excess PbI_(2)at buried interface and grain boundaries within bulk in a single step remains challenging.In this study,we propose an intermediate-treatment strategy using phthalylglycyl chloride(PTC),which involves treating the wet films with PTC prior to annealing during the formation process of the perovskite films.This approach protects the grain boundaries of polycrystalline perovskite films in advance,effectively preventing moisture-induced degradation of the perovskites and thus significantly broadening the relative humidity window of annealing process.Our results demonstrate that this strategy can successfully suppress the formation of PbI_(2)at the grain boundaries and buried interface of perovskite films,thereby eliminating the PbI_(2)-induced degradation pathways.Our strategy significantly reduces the sensitivity to humidity fluctuations during annealing for fabricating stable PSCs,ensuring more consistent fabrication of stable PSCs.Consequently,the resulting PSCs achieve a champion power conversion efficiency of 26.1% and demonstrate excellent light stability. 展开更多
关键词 Perovskite solar cells Intermediate-treatment strategy Relative humidity window High stability High efficiency
在线阅读 下载PDF
Mechanical-durable and humidity-resistant dry-processed halide solid-state electrolyte films for all-solid-state battery
7
作者 Mufan Cao Long Pan +10 位作者 Yaping Wang Xianwei Sui Xiong Xiong Liu Shengfa Feng Pengcheng Yuan Min Gao Jiacheng Liu Song-Zhu Kure-Chu Takehiko Hihara Yang Zhou Zheng-Ming Sun 《Chinese Chemical Letters》 2025年第6期657-662,共6页
Halide solid-state electrolytes(HSSEs)with excellent ionic conductivity and high voltage stability are promising for all-solid-state Li-ion batteries(ASSLBs).However,they suffer from poor processability,mechanical dur... Halide solid-state electrolytes(HSSEs)with excellent ionic conductivity and high voltage stability are promising for all-solid-state Li-ion batteries(ASSLBs).However,they suffer from poor processability,mechanical durability and humidity stability,hindering their large-scale applications.Here,we introduce a dry-processing fibrillation strategy using hydrophobic polytetrafluoroethylene(PTFE)binder to encapsulate Li_(3)InCl_(6)(LIC)particles(the most representative HSSE).By manipulating the fibrillating process,only 0.5 wt%PTFE is sufficient to prepare free-standing LIC-PTFE(LIC-P)HSSEs.Additionally,LIC-P demonstrates excellent mechanical durability and humidity resistance.They can maintain their shapes after being exposed to humid atmosphere for 30 min,meanwhile still exhibit high ionic conductivity of>0.2m S/cm at 25℃.Consequently,the LIC-P-based ASSLBs deliver a high specific capacity of 126.6 m Ah/g at0.1 C and long cyclability of 200 cycles at 0.2 C.More importantly,the ASSLBs using moisture-exposed LIC-P can still operate properly by exhibiting a high capacity-retention of 87.7%after 100 cycles under0.2 C.Furthermore,for the first time,we unravel the LIC interfacial morphology evolution upon cycling because the good mechanical durability enables a facile separation of LIC-P from ASSLBs after testing. 展开更多
关键词 Halide solid-state electrolytes Dry-process humidity resistance Mechanical durability All solid-state battery
原文传递
Co-doped cryptomelane-type manganese oxide in situ grown on a nickel foam substrate for high humidity ozone decomposition
8
作者 Haoyuan Liang Xu Wang +1 位作者 Hui Wang Zhenping Qu 《Journal of Environmental Sciences》 2025年第2期529-540,共12页
Monolithic catalysts with excellent O_(3)catalytic decomposition performance were prepared by in situ loading of Co-doped KMn_(8)O_(16)on the surface of nickel foam.The triple-layer structure with Co-doped KMn_(8)O_(1... Monolithic catalysts with excellent O_(3)catalytic decomposition performance were prepared by in situ loading of Co-doped KMn_(8)O_(16)on the surface of nickel foam.The triple-layer structure with Co-doped KMn_(8)O_(16)/Ni6MnO_(8)/Ni foam was grown spontaneously on the surface of nickel foam by tuning the molar ratio of KMnO_(4)to Co(NO_(3))_(2)·6H_(2)O precursors.Importantly,the formed Ni6MnO_(8)structure between KMn_(8)O_(16)and nickel foam during in situ synthesis process effectively protected nickel foam from further etching,which significantly enhanced the reaction stability of catalyst.The optimum amount of Co doping in KMn_(8)O_(16)was available when the molar ratio of Mn to Co species in the precursor solution was 2:1.And the Mn2Co1 catalyst had abundant oxygen vacancies and excellent hydrophobicity,thus creating outstanding O_(3)decomposition activity.The O_(3)conversion under dry conditions and relative humidity of 65%,90%over a period of 5 hr was 100%,94%and 80%with the space velocity of 28,000 hr^(−1),respectively.The in situ constructed Co-doped KMn_(8)O_(16)/Ni foam catalyst showed the advantages of low price and gradual applicability of the preparation process,which provided an opportunity for the design of monolithic catalyst for O_(3)catalytic decomposition. 展开更多
关键词 Co-doped cryptomelane-type MANGANESE O_(3)decomposition High humidity Nickel foam Monolithic catalyst
原文传递
Degradation of natural red mudstone subjected to long-term relative humidity cycles
9
作者 Kang Chen Rui Zhang +2 位作者 Shengyang Yuan Jie Ma Huan Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5800-5815,共16页
This paper presents a multi-scale experimental investigation of the weathering degradation of red mudstone.Natural rocks were extracted from the surface ground to 120 m,inwhich three sets of samples were selected to c... This paper presents a multi-scale experimental investigation of the weathering degradation of red mudstone.Natural rocks were extracted from the surface ground to 120 m,inwhich three sets of samples were selected to consider the different initial rock fabrics.The long-term relative humidity(RH)cycles under two amplitudes were imposed on red mudstone to simulate the weathering process.After RH cycles,a series of uniaxial compression tests,Brazilian splitting tests and bender-extender element tests were carried out to examine the reduction in strength and stiffness.The objective of this study is to develop an extended stress-volume framework characterizing the degradation of natural red mudstone both at microscale and macroscale.Accompanied by the irreversible swelling of the rock specimen is the progressive degradation of strength,stiffness and Poisson's ratio.A unified exponential degradation model in terms of the irreversible volumetric strain was thus proposed to capture such a degradation pattern.The effect of the initial rock fabric was evident.The highest degradation rate and potential were identified in slightly weathered specimens.Significant slaking of aggregates and crack propagation were confirmed by scanning electron microscope(SEM)micrographs,which were considered as the main consequence of structure damage leading to degradation of mechanical properties.The structure damage during RH cycles denoted the hysteresis nature in the response to the cycling hydraulic reaction,in turn causing the increase in volumetric strain.Thus,the stress-volume relation rather than the suction relation was found in more reasonable agreement with the experimental results. 展开更多
关键词 Red mudstone Weathering degradation Relative humidity cycles Unified degradation model Microstructure tests
在线阅读 下载PDF
Highly Oxidized Molecules Make a Significant Contribution to Enhanced Aromatic-Derived Secondary Organic Aerosol under a Humid Environment
10
作者 Zhaomin YANG Kun LI Lin DU 《Advances in Atmospheric Sciences》 2025年第4期641-652,共12页
Enhanced mass concentrations of aromatic-derived secondary organic aerosol(SOA)are frequently observed during humid-haze events.However,the influencing mechanism of relative humidity(RH)in aromatic-derived SOA formati... Enhanced mass concentrations of aromatic-derived secondary organic aerosol(SOA)are frequently observed during humid-haze events.However,the influencing mechanism of relative humidity(RH)in aromatic-derived SOA formation remains incompletely understood.Here,the RH dependence of SOA formation in the presence of NOx was explored by a series of chamber experiments for toluene(TOL)and 1,3,5-trimethylbenzene(TMB)photooxidation.The yield of TOL SOA and TMB SOA increased by 221%and 52%with increasing RH from~8%to~70%,respectively.Analytical results from a high-resolution mass spectrometer showed that SOA constituents with high oxygen content(O/C>0.6)were more abundant in SOA formed in the~70%RH experiment.The elevated yields and O/C of SOA could be attributed to the promoted formation and particle-phase diffusivity of highly oxidized molecules.In addition,in comparison with TMB,TOL could produce more unsaturated aldehydes,which are oxidized into carboxylic acids with high O/C,leading to a more sensitive response of TOL SOA formation to the change in RH.Our work provides mechanistic insights into RH roles in aromatic SOA formation and is helpful for a better understanding of humid-haze events. 展开更多
关键词 secondary organic aerosol aromatic hydrocarbons highly oxidized molecules relative humidity
在线阅读 下载PDF
Effect of rare earth doping on structural,optical,dielectric,and humidity properties of Cu-Mg-Zn ferrites
11
作者 Tuğba Şaşmaz Kuru Mehmet Kuru 《Journal of Rare Earths》 2025年第10期2257-2268,I0007,共13页
Rare earth(RE)doped ferrites with the chemical formula Cu_(0.3)Zn_(0.3)Mg_(0.4)T_(x)Fe_(2-x)O_(4)(x=0,0.1;T=La,Ce,Sr)were synthesized by chemical co-precipitation method.The structural,optical,electrical and humidity ... Rare earth(RE)doped ferrites with the chemical formula Cu_(0.3)Zn_(0.3)Mg_(0.4)T_(x)Fe_(2-x)O_(4)(x=0,0.1;T=La,Ce,Sr)were synthesized by chemical co-precipitation method.The structural,optical,electrical and humidity sensing properties of Cu-Mg-Zn ferrites with rare earth element doping were investigated.Single-phase cubic spinel structure was confirmed via X-ray diffraction(XRD),and the crystal size ranges fro m 22.12 to 63.17 nm according to the Scherrer formula and from 25.66 to 67.46 nm according to the Williamson-Hall method.Po rous structure and elemental characterization of the samples were investigated by scanning electron microscopy(SEM).The optic band gap varies between 2.21 and 2.49 eV.Electrical measurements were conducted in the frequency range of 1 Hz-20 MHz and temperature range of 25-400℃.It has been determined that the dielectric results are consistent with the Maxwell-Wagner method and exhibit a non-Debye relaxation model,as observed from the Nyquist plots.At a minimum frequency value of 1 Hz,the dielectric constants for pure,Ce,Sr,and La samples are 9×10^(4),5×10^(4),1×10^(8),and 2×10^(5) at 25℃,and 1.85×10^(8),1.34×10^(8),1.15×10^(10),and 4.4×10^(8)at 400℃.In the same order,for the maximum frequency value of 20 MHz,the dielectric constants at 25℃are 169,166,3799,and 60,while at 400℃they are 734,624,12108,and 774.The La doped sample's low dielectric loss makes it suitable for high-frequency applications.Humidity measurements were performed at room temperature and in the 5%-95%relative humidity range.The humidity properties of the samples were investigated through humidity mapping,sensitivity,hysteresis,and long-term stability tests.Compared to other samples,the results indicate that Ce exhibits better humidity performance with 99%sensitivity and the highest repeatability(91.2%).These results show that Ce-doped ferrite can be used as a low-cost,high-performance humidity sensor. 展开更多
关键词 Cu-Mg-Zn ferrites humidity sensing Dielectric and impedance spectroscopy Rare earths
原文传递
Test and Evaluation of Relative Humidity Forecast in Each Competition Area of the "14 th National Winter Games" by Intelligent Forecasting Methods
12
作者 Sitong LIU Xuefeng YANG 《Meteorological and Environmental Research》 2025年第1期37-40,共4页
Based on ground observation data of relative humidity,the prediction performance of STNF and MIFS in each competition area during February 13-26,2024 was tested and evaluated by using two intelligent forecasting metho... Based on ground observation data of relative humidity,the prediction performance of STNF and MIFS in each competition area during February 13-26,2024 was tested and evaluated by using two intelligent forecasting methods(STNF and MIFS).The results show that STNF had better performance in forecasting relative humidity in high-altitude areas,and was suitable for fine forecasting under complex terrain.MIFS improved the short-term forecast of some low-altitude stations,but the long-term reliability was insufficient.STNF method performed better than MIFS during 0-24 h.As the prediction time extended to 24-72 h,the errors of both methods showed a systematic increase trend.STNF had higher precision,lower root mean square error and smaller mean error in most regions under the background of most weather systems,showing its superiority as a forecasting method of relative humidity.However,the precision of MIFS was slightly higher than that of STNF in Liangcheng without system background,revealing that MIFS may also be an effective option in some specific conditions. 展开更多
关键词 Intelligent forecast Relative humidity Model test
在线阅读 下载PDF
Study on the Impact of Humidity Control Strategy on Energy Saving Effect of Centralized Central Air Conditioning System
13
作者 Xiaolian Lin 《Journal of Electronic Research and Application》 2025年第4期303-309,共7页
As an indispensable part of modern buildings,centralized central air conditioning systems play an important role in maintaining the comfort and air quality of the indoor environment.However,with the increasing energy ... As an indispensable part of modern buildings,centralized central air conditioning systems play an important role in maintaining the comfort and air quality of the indoor environment.However,with the increasing energy consumption,how to improve the energy efficiency ratio of air conditioning systems and reduce energy consumption has become an important issue in research and practice.The purpose of this paper is to discuss the impact of humidity control strategies on energy saving in centralized central air conditioning systems,with a view to providing a theoretical basis and practical guidance for realizing building energy efficiency. 展开更多
关键词 Centralized central air conditioning system Energy saving potential humidity control strategy Energy saving effect assessment
在线阅读 下载PDF
Short Communication: Enhancing the Drying Process of Microbial-Based Products with a Dehumidifier
14
作者 Nor Hidayah Bohari Elya Masya Mohd Fishal +2 位作者 Ili Bazilah Abd Razak Muhammad Ashraf Arif Mohd Nasir Cik Mohd Rizuan Zainal Abidin 《Advances in Microbiology》 CAS 2024年第6期333-339,共7页
The development of microbial-based products requires certain criteria for them to be successfully commercialized. The product must meet the following desirable criteria: effectiveness, contamination free, stability, c... The development of microbial-based products requires certain criteria for them to be successfully commercialized. The product must meet the following desirable criteria: effectiveness, contamination free, stability, cost-effectiveness, and a prolonged shelf life. Controlling the drying process is crucial for ensuring the stability and durability of the product. The traditional approach, which involved mechanical and natural drying, led to decreased productivity and quality. The objective of this research endeavour was to achieve a dry process enhancement while preserving the microbial quality of Trichoderma asperellum (M103). The temperature and relative humidity during the drying period were monitored under two conditions: with and without a dehumidifier. The results demonstrate that the dehumidifier increases drying period efficiency by up to 63%. 展开更多
关键词 DEhumidIFIER DRYING Relative humidity Microbial-Based Product
在线阅读 下载PDF
Effect of relative humidity on the desulfurization performance of calcium-based desulfurizer 被引量:1
15
作者 Juan Lǖ Yu Fu +3 位作者 Haiyan Yu HuanWang Zhe Wang Haiyan Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第4期179-188,共10页
Low desulfurization efficiency impedes the wide application of dry desulfurization technology,which is a low-cost and simple process,and one significant solution is the development and manufacture of high-performance ... Low desulfurization efficiency impedes the wide application of dry desulfurization technology,which is a low-cost and simple process,and one significant solution is the development and manufacture of high-performance desulfurizers.In this study,firstly,a steam jet mill was used to digest quicklime;then,we utilized numerical simulation to study the flow field distribution and analyze the driving factors of quicklime digestion;and lastly,the desulfurization performance of the desulfurizer was evaluated under different relative humidities.The results show that the desulfurizer prepared via the steam jet mill had better apparent activity than traditional desulfurizers.Also,the entire jet flow field of the steam jet mill is in a supersonic and highly turbulent flow state,with high crushing intensity and good particle acceleration performance.Sufficient contact with the nascent surface maximizes the formation of slaked lime.The experiments demonstrated that the operating time with 100%desulfurization efficiency and the“break-through”time for the desulfurizer prepared via the steam jet mill is longer than that of traditional desulfurizers,and has significant advantages,especially at low flue gas relative humidity.Compared with traditional desulfurizers,the desulfurizer prepared via steam jet mill expands the range of acceptable flue gas temperature,and the failure temperature is 1.625 times that of traditional desulfurizers.This work breaks through the technical bottleneck of low dry desulfurization efficiency,which is an important step in pushing forward the application of dry desulfurization. 展开更多
关键词 Dry desulfurization Relative humidity Desulfurization efficiency High-efficiency desulfurizer Quicklime digestion
原文传递
Relationship of Ambient Humidity with Cardiovascular Diseases:A Prospective Study of 24,510 Adults in a General Population 被引量:1
16
作者 Congyi Zheng Jiamin Wu +12 位作者 Haosu Tang Xin Wang Ye Tian Xue Cao Yixin Tian Runqing Gu Yuxin Song Xuyan Pei Jiayuan Qiu Zujiao Nie Minmei He Gang Huang Zengwu Wang 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第12期1352-1361,共10页
Objective This study aimed to explore the association between humidity exposure and the risk of cardiovascular disease(CVD),utilizing follow-up data and relative humidity(RH)metric assessments.Methods We extracted the... Objective This study aimed to explore the association between humidity exposure and the risk of cardiovascular disease(CVD),utilizing follow-up data and relative humidity(RH)metric assessments.Methods We extracted the baseline data from the China Hypertension Survey(CHS)of 24,510 enrolled participants aged≥35 years without a history of CVD between 2012 and 2015 and followed them up from 2018 to 2019.The National Meteorological Information Center(NMIC)of the China Meteorological Administration(CMA)provided the quality-controlled relative humidity(RH)datasets.Cox proportional hazards models were used to estimate hazard ratios(HRs)for CVD in relation to RH.Results During the follow-up period(2018-2019),973 patients with CVD were identified.The HR of CVD risk was 1.17(95%CI:1.04-1.31)per 10%increase in summer mean RH.Compared with participants in the 3rd quintile group,those in the 1st and 5th quintiles of RH had a higher risk of CVD.For summer mean RH,the HRs(95%CIs)for the 1st and 5th quintiles were 1.34(1.04-1.71)and 1.44(1.14-1.83),respectively.The relationship(“U”shape)between summer mean RH and the risk of CVD was nonlinear.Stratified analyses indicated that the risk of CVD was substantially influenced by the summer mean RH in female,older individuals,and those in southern China.Conclusion Unsuitable(too high or low)humidity environments affect the risk of CVD.Our study highlights those future policies for adapting to climate change should consider the humidity-CVD relationship. 展开更多
关键词 Relative humidity Cardiovascular disease Risk factors Climate change
暂未订购
Gypsum-based Silica Gel Humidity-controlling Composite Materials:Preparation,Characterization,and Performance 被引量:1
17
作者 李曦 冉茂宇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期337-344,共8页
Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based compos... Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions. 展开更多
关键词 humidity controlling composite materials GYPSUM silica gel
原文传递
Effect of Humidity on Formaldehyde Oxidation over Ce_(0.8)Zr_(0.2)O_(y)Catalyst 被引量:1
18
作者 TANG Ruijiu YANG Zonglin +4 位作者 LIU Xiang JIA Lijuan WANG Fang DUAN Kaijiao LIU Tiancheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1108-1115,共8页
In the preparation of a series of Ce_(0.8)Zr_(0.2)O_(y)catalysts catalyzing the removal of formaldehyde,BET,H2-TPR,IR,SEM,XPS,and XRD were used to characterize the catalyst,and the influence of humidity on the catalys... In the preparation of a series of Ce_(0.8)Zr_(0.2)O_(y)catalysts catalyzing the removal of formaldehyde,BET,H2-TPR,IR,SEM,XPS,and XRD were used to characterize the catalyst,and the influence of humidity on the catalyst activity was studied by adjusting the humidity during the process.The experimental results showed that the formaldehyde removal rate increased with the increase of humidity.When the humidity was higher than 50%,the formaldehyde removal rate decreased by 3%over that when the humidity was 50%.The characterization results showed that humidity facilitated the activation of oxygen and the formation of hydroxyl groups,which both promoted the formation and oxidative decomposition of intermediates and prevented the deposition of intermediates that clogged the pores,allowing more formaldehyde to be adsorbed and oxidized,which increased the activity of the catalyst.This provides new mechanistic evidence for the oxidation of formaldehyde and helps in the development of relatively low-cost materials for formaldehyde purification. 展开更多
关键词 FORMALDEHYDE humidity Ce_(0.8)Zr_(0.2)O_(y) catalytic oxidation
原文传递
Study on Calculations of Humidification Tower with Humid Air Turbine Cycle at High Temperature and Pressure 被引量:1
19
作者 丁皓 陆小华 +1 位作者 吉晓燕 秦建华 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第4期532-536,共5页
Humidification is an important step in humid air turbine system. The calculation on humidification is carried out at 423.15—573.15K, 5—15MPa. The results suggest that to produce high-enthalpy moist air, high water t... Humidification is an important step in humid air turbine system. The calculation on humidification is carried out at 423.15—573.15K, 5—15MPa. The results suggest that to produce high-enthalpy moist air, high water temperature and large water flow are needed. The water temperature is the most sensitive parameter to the humidification tower. And it is better for the humidification tower to work at temperature higher than 523 K when the system pressure is higher than 5 MPa. The comparison between the model used in this paper and ideal model shows that the ideal model can be used in simulation to simply the calculation when the temperature is lower than 473 K and pressure is lower than 5 MPa. 展开更多
关键词 humidIFIER humidIFICATION humid air TURBINE humidity gas-liquid equilibrium
在线阅读 下载PDF
Impacts of high temperature,relative air humidity,and vapor pressure deficit on the seed set of contrasting maize genotypes during flowering
20
作者 Xin Dong Baole Li +8 位作者 Zhenzhen Yan Ling Guan Shoubing Huang Shujun Li Zhiyun Qi Ling Tang Honglin Tian Zhongjun Fu Hua Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期2955-2969,共15页
Heat stress is a major constraint to current and future maize production at the global scale.Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering,but their re... Heat stress is a major constraint to current and future maize production at the global scale.Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering,but their relative contributions to seed set are unclear.In this study,a 2-year field experiment including three sowing dates in each year and 20 inbred lines was conducted.Seed set,kernel number per ear,and grain yield were all reduced by more than 80%in the third sowing dates compared to the first sowing dates.Pollen viability,silk emergence ratio,and anthesis-silking interval were the key determinants of seed set under heat stress;and their correlation coefficients were 0.89^(***),0.65^(***),and-0.72^(***),respectively.Vapor pressure deficit(VPD)and relative air humidity(RH)both had significant correlations with pollen viability and the silk emergence ratio.High RH can alleviate the impacts of heat on maize seed set by maintaining high pollen viability and a high silk emergence ratio.Under a warming climate from 2020 to 2050,VPD will decrease due to the increased RH.Based on their pollen viability and silk emergence ratios,the 20 genotypes fell into four different groups.The group with high pollen viability and a high silk emergence ratio performed better under heat stress,and their performance can be further improved by combining the improved flowering pattern traits. 展开更多
关键词 MAIZE pollen viability silk emergence heat stress relative humidity
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部