The increasing reliance on interconnected Internet of Things(IoT)devices has amplified the demand for robust anonymization strategies to protect device identities and ensure secure communication.However,traditional an...The increasing reliance on interconnected Internet of Things(IoT)devices has amplified the demand for robust anonymization strategies to protect device identities and ensure secure communication.However,traditional anonymization methods for IoT networks often rely on static identity models,making them vulnerable to inference attacks through long-term observation.Moreover,these methods tend to sacrifice data availability to protect privacy,limiting their practicality in real-world applications.To overcome these limitations,we propose a dynamic device identity anonymization framework using Moving Target Defense(MTD)principles implemented via Software-Defined Networking(SDN).In our model,the SDN controller periodically reconfigures the network addresses and routes of IoT devices using a constraint-aware backtracking algorithmthat constructs new virtual topologies under connectivity and performance constraints.This address-hopping scheme introduces continuous unpredictability at the network layer dynamically changing device identifiers,routing paths,and even network topology which thwarts attacker reconnaissance while preserving normal communication.Experimental results demonstrate that our approach significantly reduces device identity exposure and scan success rates for attackers compared to static networks.Moreover,the dynamic schememaintains high data availability and network performance.Under attack conditions it reduced average communication delay by approximately 60% vs.an unprotected network,with minimal overhead on system resources.展开更多
The integration of satellite communication network and cellular network has a great potential to enable ubiquitous connectivity in future communication networks.Among numerous related application scenarios,the direct ...The integration of satellite communication network and cellular network has a great potential to enable ubiquitous connectivity in future communication networks.Among numerous related application scenarios,the direct connection of mobile phone to satellite has attracted increasing attention.However,the spectrum scarcity in the sub-6 GHz band and low spectrum utilization prevents its popularity.To address these problem,in this paper,we propose a dynamic spectrum sharing method for satellite network and cellular network based on beam-hopping.Specifically,we first develop a centralized dynamic spectrum sharing architecture based on beam-hopping,and propose a delay pre-compensation scheme for beam hopping pattern.Then,an optimization problem is formulated to maximize the overall capacity of the integrated network,with considering the service requirements,the fairness between beam positions and mixed co-channel interference,etc.To solve this problem,a polling-based dynamic resource allocation algorithm is proposed.Simulation results confirm that the proposed algorithm can effectively reduce the serious cochannel interference between different beams or different systems,and improve the spectrum utilization rate as well as system capacity.展开更多
基金supported by the National Key Research and Development Program of China(Project No.2022YFB3104300).
文摘The increasing reliance on interconnected Internet of Things(IoT)devices has amplified the demand for robust anonymization strategies to protect device identities and ensure secure communication.However,traditional anonymization methods for IoT networks often rely on static identity models,making them vulnerable to inference attacks through long-term observation.Moreover,these methods tend to sacrifice data availability to protect privacy,limiting their practicality in real-world applications.To overcome these limitations,we propose a dynamic device identity anonymization framework using Moving Target Defense(MTD)principles implemented via Software-Defined Networking(SDN).In our model,the SDN controller periodically reconfigures the network addresses and routes of IoT devices using a constraint-aware backtracking algorithmthat constructs new virtual topologies under connectivity and performance constraints.This address-hopping scheme introduces continuous unpredictability at the network layer dynamically changing device identifiers,routing paths,and even network topology which thwarts attacker reconnaissance while preserving normal communication.Experimental results demonstrate that our approach significantly reduces device identity exposure and scan success rates for attackers compared to static networks.Moreover,the dynamic schememaintains high data availability and network performance.Under attack conditions it reduced average communication delay by approximately 60% vs.an unprotected network,with minimal overhead on system resources.
基金supported in part by the National Key Research and Development Program of China under Grant 2018YFA0701601in part by the National Natural Science Foundation of China under Grant 61922049 and Grant 61941104in part by the Tsinghua University-China Mobile Communications Group Company Ltd.,Joint Institute.
文摘The integration of satellite communication network and cellular network has a great potential to enable ubiquitous connectivity in future communication networks.Among numerous related application scenarios,the direct connection of mobile phone to satellite has attracted increasing attention.However,the spectrum scarcity in the sub-6 GHz band and low spectrum utilization prevents its popularity.To address these problem,in this paper,we propose a dynamic spectrum sharing method for satellite network and cellular network based on beam-hopping.Specifically,we first develop a centralized dynamic spectrum sharing architecture based on beam-hopping,and propose a delay pre-compensation scheme for beam hopping pattern.Then,an optimization problem is formulated to maximize the overall capacity of the integrated network,with considering the service requirements,the fairness between beam positions and mixed co-channel interference,etc.To solve this problem,a polling-based dynamic resource allocation algorithm is proposed.Simulation results confirm that the proposed algorithm can effectively reduce the serious cochannel interference between different beams or different systems,and improve the spectrum utilization rate as well as system capacity.