The excitation system of the homopolar inductor machine(HIM)is analyzed and designed to establish the design approach and evaluation criteria of the excitation system.The finite element method is used to calculate the...The excitation system of the homopolar inductor machine(HIM)is analyzed and designed to establish the design approach and evaluation criteria of the excitation system.The finite element method is used to calculate the three-dimensional electromagnetic field in the HIM,and the distribution and characteristics of the magnetic field are described.The analytical method is applied to investigate the design process of the excitation winding.The ratio of the axial length of the armature winding to the excitation winding and the ratio of the axial length of the working air-gap to the non-working air-gap are investigated by the numerical calculation method.A prototype HIM is designed and manufactured,and some experiments are implemented to verify the correctness of the theoretical analysis and numerical calculation results.The research results show that the established design method of the excitation winding is practical and feasible.Under the conditions of constant excitation magnetomotive force or constant excitation power,the optimum range of the axial length ratio of the armature winding and the excitation winding is 0.45 to 0.5.The optimal axial length of the non-working air-gap can be determined by the ratio of the stator inner diameter and pole-pairs.展开更多
Permanent magnet homopolar inductor machine(PMHIM) has attracted much attention in the field of flywheel energy storage system(FESS) due to its merits of simple structure,brushless excitation, and rotor flywheel integ...Permanent magnet homopolar inductor machine(PMHIM) has attracted much attention in the field of flywheel energy storage system(FESS) due to its merits of simple structure,brushless excitation, and rotor flywheel integration. However, the air-gap flux generated by the PM cannot be adjusted, which would cause large electromagnetic losses in the standby operation state of FESS. To solve this problem, a novel mechanically adjusted variable flux permanent magnet homopolar inductor machine with rotating magnetic poles(RMP-PMHIM) is proposed in this paper. The permanent magnet poles are rotated by an auxiliary rotating device and the purpose of changing the air-gap flux is achieved. First, the structure and operation principle of the proposed RMP-PMHIM are explained. Second,the flux weakening principle of the RMP-PMHIM is analyzed and the equivalent magnetic circuit models under different flux weakening states are built. Third, the parameters of the PM and its fixed structure are optimized to obtain the good electromagnetic performance. Fourth, the electromagnetic performance, including the air-gap flux density, back-EMF, flux weakening ability, loss, etc. of the proposed RMP-PMHIM are investigated and compared. Compared with the non-rotating state of the PM of RPM-PMHIM, the air-gap flux density amplitude can be weakened by 99.95% when the PM rotation angle is 90 degrees, and the no-load core loss can be suppressed by 99.98%,which shows that the proposed RPM-PMHIM is a good candidate for the application of FESS.展开更多
When studying the phenomenon of the induced electromotive force, which originates from Faraday’s unipolar inductor, the contrast between Faraday’s view of the magnetic field dynamic lines and the theory of relativit...When studying the phenomenon of the induced electromotive force, which originates from Faraday’s unipolar inductor, the contrast between Faraday’s view of the magnetic field dynamic lines and the theory of relativity is revealed. In order to remove this contradiction, this phenomenon was studied in depth, theoretically and experimentally, using an experimental setup similar to Faraday’s. Calculations of the induced electromotive force, based on relativity on the one hand and on Faraday’s view on the other were made with the help of measurements of the magnetic field components. Accurate magnetic field measurements are confirmed by analytical calculations. Precise-induced electromotive force measurements confirmed Faraday’s view and contradicted the theory of relativity.展开更多
由于受涡流效应的影响,实心磁路磁轴承(solid-coreactive magnetic bearing,AMB)系统表现出分数阶特性,用传统磁路模型进行描述存在较大误差。以往磁轴承的辨识多集中在对整数阶模型中参数的辨识,对未知模型结构的分数阶模型辨识很少涉...由于受涡流效应的影响,实心磁路磁轴承(solid-coreactive magnetic bearing,AMB)系统表现出分数阶特性,用传统磁路模型进行描述存在较大误差。以往磁轴承的辨识多集中在对整数阶模型中参数的辨识,对未知模型结构的分数阶模型辨识很少涉及。为了辨识出实心磁轴承的精确分数阶模型,在等比例分数阶模型基础上推导了一般形式分数阶模型辨识的加权最小二乘算法;提出了模型结构的确定原则、步骤及获取最优模型的误差准则,并对一台实心同极磁轴承进行了闭环频域辨识。结果表明,辨识的分数阶模型与实际系统误差很小,可为设计高性能控制器提供有价值的参考。展开更多
基金The National Natural Science Foundation of China(No.51977035)。
文摘The excitation system of the homopolar inductor machine(HIM)is analyzed and designed to establish the design approach and evaluation criteria of the excitation system.The finite element method is used to calculate the three-dimensional electromagnetic field in the HIM,and the distribution and characteristics of the magnetic field are described.The analytical method is applied to investigate the design process of the excitation winding.The ratio of the axial length of the armature winding to the excitation winding and the ratio of the axial length of the working air-gap to the non-working air-gap are investigated by the numerical calculation method.A prototype HIM is designed and manufactured,and some experiments are implemented to verify the correctness of the theoretical analysis and numerical calculation results.The research results show that the established design method of the excitation winding is practical and feasible.Under the conditions of constant excitation magnetomotive force or constant excitation power,the optimum range of the axial length ratio of the armature winding and the excitation winding is 0.45 to 0.5.The optimal axial length of the non-working air-gap can be determined by the ratio of the stator inner diameter and pole-pairs.
基金supported in part by the National Natural Science Foundation of China under Grant 52007055in part by the Natural Science Foundation of Hunan Province of China under Grant 2021JJ40099。
文摘Permanent magnet homopolar inductor machine(PMHIM) has attracted much attention in the field of flywheel energy storage system(FESS) due to its merits of simple structure,brushless excitation, and rotor flywheel integration. However, the air-gap flux generated by the PM cannot be adjusted, which would cause large electromagnetic losses in the standby operation state of FESS. To solve this problem, a novel mechanically adjusted variable flux permanent magnet homopolar inductor machine with rotating magnetic poles(RMP-PMHIM) is proposed in this paper. The permanent magnet poles are rotated by an auxiliary rotating device and the purpose of changing the air-gap flux is achieved. First, the structure and operation principle of the proposed RMP-PMHIM are explained. Second,the flux weakening principle of the RMP-PMHIM is analyzed and the equivalent magnetic circuit models under different flux weakening states are built. Third, the parameters of the PM and its fixed structure are optimized to obtain the good electromagnetic performance. Fourth, the electromagnetic performance, including the air-gap flux density, back-EMF, flux weakening ability, loss, etc. of the proposed RMP-PMHIM are investigated and compared. Compared with the non-rotating state of the PM of RPM-PMHIM, the air-gap flux density amplitude can be weakened by 99.95% when the PM rotation angle is 90 degrees, and the no-load core loss can be suppressed by 99.98%,which shows that the proposed RPM-PMHIM is a good candidate for the application of FESS.
文摘When studying the phenomenon of the induced electromotive force, which originates from Faraday’s unipolar inductor, the contrast between Faraday’s view of the magnetic field dynamic lines and the theory of relativity is revealed. In order to remove this contradiction, this phenomenon was studied in depth, theoretically and experimentally, using an experimental setup similar to Faraday’s. Calculations of the induced electromotive force, based on relativity on the one hand and on Faraday’s view on the other were made with the help of measurements of the magnetic field components. Accurate magnetic field measurements are confirmed by analytical calculations. Precise-induced electromotive force measurements confirmed Faraday’s view and contradicted the theory of relativity.
文摘由于受涡流效应的影响,实心磁路磁轴承(solid-coreactive magnetic bearing,AMB)系统表现出分数阶特性,用传统磁路模型进行描述存在较大误差。以往磁轴承的辨识多集中在对整数阶模型中参数的辨识,对未知模型结构的分数阶模型辨识很少涉及。为了辨识出实心磁轴承的精确分数阶模型,在等比例分数阶模型基础上推导了一般形式分数阶模型辨识的加权最小二乘算法;提出了模型结构的确定原则、步骤及获取最优模型的误差准则,并对一台实心同极磁轴承进行了闭环频域辨识。结果表明,辨识的分数阶模型与实际系统误差很小,可为设计高性能控制器提供有价值的参考。