A kind of n-type HoF_3-doped zinc oxide-based transparent conductive film has been developed by electron beam evaporation and studied under thermal annealing in air and vacuum at temperatures 100–500℃.Effective subs...A kind of n-type HoF_3-doped zinc oxide-based transparent conductive film has been developed by electron beam evaporation and studied under thermal annealing in air and vacuum at temperatures 100–500℃.Effective substitutional dopings of F to O and Ho to Zn are realized for the films with smooth surface morphology and average grain size of about 50 nm.The hall mobility,electron concentration,resistivity and work function for the asdeposited films are 47.89 cm^2/Vs,1.39×10^(20)cm^(-3),9.37×10^(-4)Ω·cm and 5.069 eV,respectively.In addition,the average transmittance in the visible region(400–700 nm)approximates to 87%.The HoF_3:ZnO films annealed in air and vacuum can retain good optoelectronic properties under 300℃,thereinto,more stable electrical properties can be found in the air-annealed films than in the vacuum-annealed films,which is assumed to be a result of improved nano-crystalline lattice quality.The optimized films for most parameters can be obtained at 200℃ for the air-annealing case and at room temperature for the vacuum annealing case.The advisable optoelectronic properties imply that HoF_3:ZnO can facilitate carrier injection and has promising applications in energy and light sources as transparent electrodes.展开更多
The SrS∶HoF 3 Electroluminescent (EL) thin films are prepared at the different substrate temperature by electron beam evaporation. The crystallinity and EL characteristics of the samples are analyzed. It is found th...The SrS∶HoF 3 Electroluminescent (EL) thin films are prepared at the different substrate temperature by electron beam evaporation. The crystallinity and EL characteristics of the samples are analyzed. It is found that the main diffraction peak is (200) at the higher substrate temperature and the main diffraction peak is (111) at the lower substrate temperature. The blue emission intensity and EL brightness of the SrS∶HoF 3 thin films increase with the increase of the substrate temperature. Annealing the samples can change the cyrstal phase and strengthen the blue emission of EL thin film.展开更多
SrS∶HoF 3 thin film was prepared by double source method with electron beam evaporation. The fine structure of electroluminescence (EL) spectrum is found for the symmetry of the SrS∶HoF 3 thin film to be lower. Th...SrS∶HoF 3 thin film was prepared by double source method with electron beam evaporation. The fine structure of electroluminescence (EL) spectrum is found for the symmetry of the SrS∶HoF 3 thin film to be lower. The broadness of red peak is wider than that of ZnS∶HoF 3 thin film. Red EL emission in the SrS∶HoF 3 thin film comes from 5F 3 5I 7+ 5F 5 5I 8 transition. The intensity of blue and red emission increases obviously in the SrS∶HoF 3 EL spectrum and white EL is obtained. The EL mechanism of the SrS∶HoF 3 thin film is dominantly the energy transfer from the crystal host to luminescent centers by 4f 95d electrons.展开更多
The development of hydrogen-bonded organic frameworks(HOFs)faces significant constraints,primarily attributed to their fragile architectures and limited functionalization capabilities.To overcome these limitations,thi...The development of hydrogen-bonded organic frameworks(HOFs)faces significant constraints,primarily attributed to their fragile architectures and limited functionalization capabilities.To overcome these limitations,this work presents a new polymeron-HOF strategy by covalently tethering armor-like polymers onto the surface of HOFs.The application of this approach not only bolsters the stability of HOFs,but also facilitates the customization of their functional expansion in radionuclide sequestration.The optimized HOF-polymer materials display extraordinary ability in radionuclide sequestration,achieving uptake of I^(-)(0.699 g g^(-1)),IO_(3)^(-)(0.285 g g^(-1))and ReO_(4)^(-)(1.616 g g^(-1),setting a world record),fast adsorption kinetics(~100% removal within 45 s),and exceptional regeneration capability(>30 cycles)under continuous flow conditions.These outstanding performances benefit from the internal porous channels and surface imidazolium polymer coatings of HOFs,as proved by density functional theory calculation and molecular dynamics simulations.This work paves the way for the rational design of HOF-based hybrid materials tailored to versatile applications.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 61774154 and 51503196
文摘A kind of n-type HoF_3-doped zinc oxide-based transparent conductive film has been developed by electron beam evaporation and studied under thermal annealing in air and vacuum at temperatures 100–500℃.Effective substitutional dopings of F to O and Ho to Zn are realized for the films with smooth surface morphology and average grain size of about 50 nm.The hall mobility,electron concentration,resistivity and work function for the asdeposited films are 47.89 cm^2/Vs,1.39×10^(20)cm^(-3),9.37×10^(-4)Ω·cm and 5.069 eV,respectively.In addition,the average transmittance in the visible region(400–700 nm)approximates to 87%.The HoF_3:ZnO films annealed in air and vacuum can retain good optoelectronic properties under 300℃,thereinto,more stable electrical properties can be found in the air-annealed films than in the vacuum-annealed films,which is assumed to be a result of improved nano-crystalline lattice quality.The optimized films for most parameters can be obtained at 200℃ for the air-annealing case and at room temperature for the vacuum annealing case.The advisable optoelectronic properties imply that HoF_3:ZnO can facilitate carrier injection and has promising applications in energy and light sources as transparent electrodes.
文摘The SrS∶HoF 3 Electroluminescent (EL) thin films are prepared at the different substrate temperature by electron beam evaporation. The crystallinity and EL characteristics of the samples are analyzed. It is found that the main diffraction peak is (200) at the higher substrate temperature and the main diffraction peak is (111) at the lower substrate temperature. The blue emission intensity and EL brightness of the SrS∶HoF 3 thin films increase with the increase of the substrate temperature. Annealing the samples can change the cyrstal phase and strengthen the blue emission of EL thin film.
文摘SrS∶HoF 3 thin film was prepared by double source method with electron beam evaporation. The fine structure of electroluminescence (EL) spectrum is found for the symmetry of the SrS∶HoF 3 thin film to be lower. The broadness of red peak is wider than that of ZnS∶HoF 3 thin film. Red EL emission in the SrS∶HoF 3 thin film comes from 5F 3 5I 7+ 5F 5 5I 8 transition. The intensity of blue and red emission increases obviously in the SrS∶HoF 3 EL spectrum and white EL is obtained. The EL mechanism of the SrS∶HoF 3 thin film is dominantly the energy transfer from the crystal host to luminescent centers by 4f 95d electrons.
基金supported by the National Natural Science Foundation of China(22171210,21771139,U20A20141,U23A20119)CAS Project for Young Scientists in Basic Research(YSBR-039)+1 种基金Tianjin Research Innovation Project for Postgraduate Students(2022BKY200)C?EM,School of Physical Sciences and Technology,Shanghai Tech University(#EM02161943)for the scientific and financial support of EM facilities。
文摘The development of hydrogen-bonded organic frameworks(HOFs)faces significant constraints,primarily attributed to their fragile architectures and limited functionalization capabilities.To overcome these limitations,this work presents a new polymeron-HOF strategy by covalently tethering armor-like polymers onto the surface of HOFs.The application of this approach not only bolsters the stability of HOFs,but also facilitates the customization of their functional expansion in radionuclide sequestration.The optimized HOF-polymer materials display extraordinary ability in radionuclide sequestration,achieving uptake of I^(-)(0.699 g g^(-1)),IO_(3)^(-)(0.285 g g^(-1))and ReO_(4)^(-)(1.616 g g^(-1),setting a world record),fast adsorption kinetics(~100% removal within 45 s),and exceptional regeneration capability(>30 cycles)under continuous flow conditions.These outstanding performances benefit from the internal porous channels and surface imidazolium polymer coatings of HOFs,as proved by density functional theory calculation and molecular dynamics simulations.This work paves the way for the rational design of HOF-based hybrid materials tailored to versatile applications.