Let φ be a Hausdorff measure function and A be an infinite increasing sequence of positive integers. The Hausdorff-type measure φ - mA associated to φ and A is studied. Let X(t)(t ∈ R^N) be certain Gaussian ...Let φ be a Hausdorff measure function and A be an infinite increasing sequence of positive integers. The Hausdorff-type measure φ - mA associated to φ and A is studied. Let X(t)(t ∈ R^N) be certain Gaussian random fields in R^d. We give the exact Hausdorff measure of the graph set GrX([0, 1]N), and evaluate the exact φ - mA measure of the image and graph set of X(t). A necessary and sufficient condition on the sequence A is given so that the usual Hausdorff measure function for X([0, 1] ^N) and GrX([0, 1]^N) are still the correct measure functions. If the sequence A increases faster, then some smaller measure functions will give positive and finite ( φ A)-Hausdorff measure for X([0, 1]^N) and GrX([0, 1]N).展开更多
基金Supported by the National Natural Science Foundation of China (No.10471148), Sci-tech Innovation Item for Excellent Young and Middle-Aged University Teachers and Major Item of Educational Department of Hubei (No.2003A005)Acknowledgements. We wish to express our sincere thanks to Professor Xiao Yimin for suggesting the problem to me and for his subsequent encouragement and help.
文摘Let φ be a Hausdorff measure function and A be an infinite increasing sequence of positive integers. The Hausdorff-type measure φ - mA associated to φ and A is studied. Let X(t)(t ∈ R^N) be certain Gaussian random fields in R^d. We give the exact Hausdorff measure of the graph set GrX([0, 1]N), and evaluate the exact φ - mA measure of the image and graph set of X(t). A necessary and sufficient condition on the sequence A is given so that the usual Hausdorff measure function for X([0, 1] ^N) and GrX([0, 1]^N) are still the correct measure functions. If the sequence A increases faster, then some smaller measure functions will give positive and finite ( φ A)-Hausdorff measure for X([0, 1]^N) and GrX([0, 1]N).