Let T:T^(d)→T^(d),defined by Tx=AX(mod 1),where A is a d×d integer matrix with eigenvalues 1<|λ_(1)|≤|λ_(2)|≤…≤|λ_(d)|,We investigate the Hausdorff dimension of the recurrence set R(ψ)={x∈T^(d):T^(n)...Let T:T^(d)→T^(d),defined by Tx=AX(mod 1),where A is a d×d integer matrix with eigenvalues 1<|λ_(1)|≤|λ_(2)|≤…≤|λ_(d)|,We investigate the Hausdorff dimension of the recurrence set R(ψ)={x∈T^(d):T^(n)x∈B(x,ψ(n))for infinitely many n}forα≥log|λ_(d)/λ_(1)|,whereψis a positive decreasing function defined onℕand its lower order at infinity isα=lim inf_(n→∞)-logψ(n)/n.In the case that A is diagonalizable overℚwith integral eigenvalues,we obtain the dimension formula.展开更多
基金supported by the Science Foundation of China University of Petroleum,Beijing(2462023SZBH013)the China Postdoctoral Science Foundation(2023M743878)+2 种基金the Postdoctoral Fellowship Program of CPSF(GZB20240848)supported partially by the NSFC(12271176)the Guangdong Natural Science Foundation(2024A1515010946).
文摘Let T:T^(d)→T^(d),defined by Tx=AX(mod 1),where A is a d×d integer matrix with eigenvalues 1<|λ_(1)|≤|λ_(2)|≤…≤|λ_(d)|,We investigate the Hausdorff dimension of the recurrence set R(ψ)={x∈T^(d):T^(n)x∈B(x,ψ(n))for infinitely many n}forα≥log|λ_(d)/λ_(1)|,whereψis a positive decreasing function defined onℕand its lower order at infinity isα=lim inf_(n→∞)-logψ(n)/n.In the case that A is diagonalizable overℚwith integral eigenvalues,we obtain the dimension formula.