This paper proposes an intelligent vehicle auxiliary handling system based on Internet of Things(IoT)technology,featuring an innovative holding mechanism design that adjusts to the length and width of various vehicles...This paper proposes an intelligent vehicle auxiliary handling system based on Internet of Things(IoT)technology,featuring an innovative holding mechanism design that adjusts to the length and width of various vehicles.The system combines precise positioning using satellite tracking technology,intelligent recognition via OpenCV,and the interconnectivity of IoT.This intelligent vehicle auxiliary handling system can independently identify vehicle positions and plan optimal handling paths,eliminating the traditional reliance on manual operation.It offers efficient and accurate handling,setting a new trend in the handling industry.Additionally,the system integrates seamlessly with parking lot management systems,providing real-time updates on vehicle locations and statuses.This allows managers to monitor the parking lot operations clearly and efficiently.This intelligent coordination greatly enhances overall work efficiency and streamlines parking management.Overall,the innovative design of the intelligent vehicle auxiliary handling system represents a significant breakthrough in both function and performance,gaining user favor with its smooth operation.Looking ahead,continued technological advancements and the expansion of application fields will bring even more vitality and intelligence to societal development.展开更多
The Main Optical Telescope (MOT) is an important payload of the Space Solar Telescope (SST) with various instruments and observation modes. Its real-time data handling and management and control tasks are arduous. Bas...The Main Optical Telescope (MOT) is an important payload of the Space Solar Telescope (SST) with various instruments and observation modes. Its real-time data handling and management and control tasks are arduous. Based on the advanced techniques of foreign countries, an improved structure of onboard data handling systems feasible for SST, is proposed. This article concentrated on the development of a Central Management & Control Unit (MCU) based on FPGA and DSP. Through reconfigurating the FPGA and DSP programs, the prototype could perform different tasks. Thus the inheritability of the whole system is improved. The completed dual-channel prototype proves that the system meets all requirements of the MOT. Its high reliability and safety features also meet the requirements under harsh conditions such as mine detection.展开更多
As a key to improve the performance of the interbay automated material handling system (AMHS) in 300 mm semiconductor wafer fabrication system, the real- time overhead hoist transport (OHT) dispatching problem has...As a key to improve the performance of the interbay automated material handling system (AMHS) in 300 mm semiconductor wafer fabrication system, the real- time overhead hoist transport (OHT) dispatching problem has received much attention. This problem is first formu- lated as a special form of assignment problem and it is proved that more than one solution will be obtained by Hungarian algorithm simultaneously. Through proposing and strictly proving two propositions related to the char- acteristics of these solutions, a modified Hungarian algo- rithm is designed to distinguish these solutions. Finally, a new real-time OHT dispatching method is carefully designed by implementing the solution obtained by the modified Hungarian algorithm. The experimental results of discrete event simulations show that, compared with con- ventional Hungarian algorithm dispatching method, the proposed dispatching method that chooses the solution with the maximum variance respectively reduces on average 4 s of the average waiting time and average lead time of wafer lots, and its performance is rather stable in multiple dif- ferent scenarios of the interbay AMHS with different quantities of shortcuts. This research provides an efficient real-time OHT dispatching mechanism for the interbay AMHS with shortcuts and bypasses.展开更多
The need to transport goods across countries and islands has resulted in a high demand for commercial vessels.Owing to such trends,shipyards must efficiently produce ships to reduce production costs.Layout and materia...The need to transport goods across countries and islands has resulted in a high demand for commercial vessels.Owing to such trends,shipyards must efficiently produce ships to reduce production costs.Layout and material flow are among the crucial aspects determining the efficiency of the production at a shipyard.This paper presents the initial design optimization of a shipyard layout using Nondominated Sorting Algorithm-Ⅱ(NSGA-Ⅱ)to find the optimal configuration of workstations in a shipyard layout.The proposed method focuses on simultaneously minimizing two material handling costs,namely work-based material handling and duration-based material handling.NSGA-Ⅱ determines the order of workstations in the shipyard layout.The semiflexible bay structure is then used in the workstation placement process from the sequence formed in NSGA-Ⅱ into a complete design.Considering that this study is a case of multiobjective optimization,the performance for both objectives at each iteration is presented in a 3D graph.Results indicate that after 500 iterations,the optimal configuration yields a work-based MHC of 163670.0 WBM-units and a duration-based MHC of 34750 DBM-units.Starting from a random solution,the efficiency of NSGA-Ⅱ demonstrates significant improvements,achieving a 50.19%reduction in work-based MHC and a 48.58%reduction in duration-based MHC.展开更多
Objective:Arrhythmia-induced cardiomyopathy(AIC)is a reversible dilated cardiomyopathy induced by rapid or irregular heartbeat.Acupuncture has a long history of use in the treatment of cardiac diseases,and Xinshu(BL15...Objective:Arrhythmia-induced cardiomyopathy(AIC)is a reversible dilated cardiomyopathy induced by rapid or irregular heartbeat.Acupuncture has a long history of use in the treatment of cardiac diseases,and Xinshu(BL15)is a key acupoint.However,the underlying mechanism of acupuncture at BL15 in the treatment of AIC has not yet been elucidated.Methods:AIC was induced in adult male Sprague-Dawley(SD)rats by continuous administration of acetylcholine(ACh)-CaCl2 and treatment with electroacupuncture(EA)at bilateral BL15.Echocardiography was used to evaluate cardiac function;the rotarod test for motor coordination and performance;hematoxylin and eosin(HE)staining for the morphology of ventricles;electrocardiogram for susceptibility,inducibility,and duration of atrial fibrillation(AF);and electrical and optical mapping in isolated rat hearts maintained by the Langendorff perfusion system for electrical conduction and intracellular handling,respectively.Reverse transcription quantitative polymerase chain reaction(RT-qPCR)and Western blotting were used to determine the levels of cardiac conduction and intracellular calcium-handling proteins in the ventricle.Results:The results showed that EA improved the ejection factor and morphological indices on echocardiography,restored motor coordination and performance,and alleviated ventricular dilation and AF onset.EA alleviates atrial conduction disorders,shortens APD80,and decreases calcium handling in rats with AIC.Cx43 was downregulated and CaMKII was upregulated,and both effects were reversed by EA treatment.Conclusion:Our study provides a novel AIC model with abnormal electrical propagation and calcium handling that can be protected by EA at BL15.This potential mechanism may be associated with the modulation of Cx43 and CaMKII expression.展开更多
Object detection in occluded environments remains a core challenge in computer vision(CV),especially in domains such as autonomous driving and robotics.While Convolutional Neural Network(CNN)-based twodimensional(2D)a...Object detection in occluded environments remains a core challenge in computer vision(CV),especially in domains such as autonomous driving and robotics.While Convolutional Neural Network(CNN)-based twodimensional(2D)and three-dimensional(3D)object detection methods havemade significant progress,they often fall short under severe occlusion due to depth ambiguities in 2D imagery and the high cost and deployment limitations of 3D sensors such as Light Detection and Ranging(LiDAR).This paper presents a comparative review of recent 2D and 3D detection models,focusing on their occlusion-handling capabilities and the impact of sensor modalities such as stereo vision,Time-of-Flight(ToF)cameras,and LiDAR.In this context,we introduce FuDensityNet,our multimodal occlusion-aware detection framework that combines Red-Green-Blue(RGB)images and LiDAR data to enhance detection performance.As a forward-looking direction,we propose a monocular depth-estimation extension to FuDensityNet,aimed at replacing expensive 3D sensors with a more scalable CNN-based pipeline.Although this enhancement is not experimentally evaluated in this manuscript,we describe its conceptual design and potential for future implementation.展开更多
This paper introduces an intelligent garbage-handling trolley model based on an STM32 single chip microcomputer as the control core.The device is driven by four independent motors to achieve automatic tracking,automat...This paper introduces an intelligent garbage-handling trolley model based on an STM32 single chip microcomputer as the control core.The device is driven by four independent motors to achieve automatic tracking,automatic obstacle avoidance,and fixed-point docking.Using external execution structure to realize the car without the use of a mechanical arm,complete garbage collection,storage,and uninstall function.On this basis,the type of garbage is marked by color,and the color recognition sensor is applied to realize the type recognition after garbage collection and put into the corresponding unloading point,to realize its intelligent classification function.It can automatically complete the established task autonomously.展开更多
A control algorithm for improving vehicle handling was proposed by applying right angle to the steering wheel,based on the nonlinear adaptive optimal control(NAOC).A nonlinear 4-DOF model was initially developed,then ...A control algorithm for improving vehicle handling was proposed by applying right angle to the steering wheel,based on the nonlinear adaptive optimal control(NAOC).A nonlinear 4-DOF model was initially developed,then it was simplified to a 2-DOF model with reasonable assumptions to design observer and optimal controllers.Then a simplified model was developed for steering system.The numerical simulations were carried out using vehicle parameters for standard maneuvers in dry and wet road conditions.Moreover,the hardware in the loop method was implemented to prove the controller ability in realistic conditions.Simulation results obviously show the effectiveness of NAOC on vehicle handling and reveal that the proposed controller can significantly improve vehicle handling during severe maneuvers.展开更多
Industry 4.0 and Cyber Physical Production Systems (CPPS) are often discussed and partially already sold. One important feature of CPPS is fault tolerance and as a consequence self-configuration and restart to increas...Industry 4.0 and Cyber Physical Production Systems (CPPS) are often discussed and partially already sold. One important feature of CPPS is fault tolerance and as a consequence self-configuration and restart to increase Overall Equipment Effectiveness. To understand this challenge at first the state of the art of fault handling in industrial automated production systems (aPS) is discussed as a result of a case study analysis in eight companies developing aPS. In the next step, metrics to evaluate the concept of self-configuration and restart for aPS focusing on real-time capabilities, fault coverage and effort to increase fault coverage are proposed. Finally, two different lab size case studies prove the applicability of the concepts of self-configuration, restart and the proposed metrics.展开更多
The objective of this study was to identify the impact of the coke handling and storage system on the emission of PM10 particulate material.The methodology was based on AP-42 emission factors from U.S.EPA(United State...The objective of this study was to identify the impact of the coke handling and storage system on the emission of PM10 particulate material.The methodology was based on AP-42 emission factors from U.S.EPA(United States Environmental Protection Agency)for the calculation of PM10 emissions from operations in the handling and storage of petroleum coke in an oil refinery in the northeastern of Brazil.The knowledge of the emission potential of each operation of the coke handling and storage system allows the adoption of more effective control measures,contributing to the effective reduction of PM10 emissions in this system.To complement the environmental impact assessment of each configuration,an air quality modelling was performed using the atmospheric dispersion software.The comparison performed in this study enables authors to conclude,even for a totally mechanic system,that adopts control measures,PM10 emissions are low when confronted with the remaining sources of an oil refinery.By analyzing emissions from automated systems operation(scenario 1),it can be observed that the source with higher emission potential is the stockpile,which represents 60%of the system’s emission.Transfer and transport operations by conveyor belts together correspond to 40%of emissions.Even though transfer operations also represent a significant part(27%),they are not clustered in a unique point,making these emissions abatement difficult.The same is valid for transport using conveyor belts.Emissions from the piles are really the most significant.For this reason,this work concentrated efforts in the storage area,the ones that motivate the majority of studies relating to abatement technologies.展开更多
Aiming at various faults in an air conditioning system,the fault characteristics are analyzed.The influence of the faults on the energy consumption and thermal comfort of the system are also discussed.The simulation r...Aiming at various faults in an air conditioning system,the fault characteristics are analyzed.The influence of the faults on the energy consumption and thermal comfort of the system are also discussed.The simulation results show that the measurement faults of the supply air temperature can lead to the increase in energy consumption.According to the fault characteristics,a data-driven method based on a neural network is presented to detect and diagnose the faults of air handling units.First,the historical data are selected to train the neural network so that it can recognize and predict the operation of the system.Then,the faults can be diagnosed by calculating the relative errors denoting the difference between the measuring values and the prediction outputs.Finally,the fault diagnosis strategy using the neural network is validated by using a simulator based on the TRNSYS platform.The results show that the neural network can diagnose different faults of the temperature,the flow rate and the pressure sensors in the air conditioning system.展开更多
A DC to 5GHz series MEMS switch is designed and fabricated for wireless communication applications,and thermal effect and power handling of the series switch are discussed.The switch is made on glass substrate,and gol...A DC to 5GHz series MEMS switch is designed and fabricated for wireless communication applications,and thermal effect and power handling of the series switch are discussed.The switch is made on glass substrate,and gold platinum contact is used to get a stable and little insert loss.From DC to 5GHz,0 6dB insertion loss,30dB isolation,and 30μs delay are demonstrated.Thermal effect of the switch is tested in 85℃ and -55℃ atmosphere separately.From DC to 4GHz,the insert loss of the switch increases 0 2dB in 85℃ and 0 4dB in -55℃,while the isolation holds the same value as that in room temperature.To measure the power handling capability of the switch,we applied a continuous RF power increasing from 10dBm to 35 1dBm with the step of 1 0dBm across the switch at 4GHz.The switch keeps working and shows a decrease of the insert loss for 0 1~0 6dB.The maximum continuous power handling (35 1dBm,about 3 24W) is higer than the reported value of shunt switch (about 420mW),which implies series switches have much better power handling capability.展开更多
To solve the problems that the exception handling code is hard to test and maintain and that it affects the robustness and reliability of software, a method for evaluating the exception handling of programs is present...To solve the problems that the exception handling code is hard to test and maintain and that it affects the robustness and reliability of software, a method for evaluating the exception handling of programs is presented. The exception propagation graph (EPG) that describes the large programs with exception handling constructs is proposed by simplifying the control flow graph and it is applied to a case to verify its validity. According to the EPG, the exception handling code that never executes is identified; the points that are the most critical to controlling exception propagation are found; and the irrational exception handling code is corrected. The constructing algorithm for the EPG is given; thus, this provides a basis for automatically constructing the EPG and automatically correcting the irrational exception handling code.展开更多
Objectives: This paper examines the basic knowledge ofAIDS and HIV transmission through unsafe blood collec-tion and supply among rural Chinese doctors. It also ex-plores the accessibility of AIDS intervention methods...Objectives: This paper examines the basic knowledge ofAIDS and HIV transmission through unsafe blood collec-tion and supply among rural Chinese doctors. It also ex-plores the accessibility of AIDS intervention methods inrural area. Methods: We did Case studies, held focus group discus-sions and provided questionnaires to all rural doctors inone township where the epidemic of HIV was known to bespread through blood collection and supply. Data were col-lected and analyzed with software EPI 6.0.Results: The effective response rate to the questionnairewas 100%. The results showed that more than 95% of in-formants gave correct answers to the questions about thesexual and blood-bourne transmission of HIV as well as itscontagiousness. Half of the participants were ignorant aboutmother to child transmission of HIV and did not know thatHIV couldn’t be transmitted by saliva, sweat, mosquito bites,sharing of bathtubs or toilets. More than 80% of infor-mants were opposed to blood selling and reportedly under-stood the objective of the blood organizers in their villages,knew the peak time of blood selling by the villagers, and ,were aware of the risks of diseases being spread throughblood. . 27.3% used disposable syringes ‘once in a while’,and 15.2% discarded or sold used disposable syringes.Conclusions: The authors assert that there are severe lurk-ing perils of iatrogenic cross infection in rural areas. Ruraldoctors urgently need formal training on prevention andtreatment of HIV infection. We believe that rural doctorsshould become the key force in AIDS prevention and con-trol in rural area.展开更多
Radiation detectors, such as survey meters, are essential for ensuring radiation safety in various sectors, including healthcare, industrial processing, emergency response, etc. However, regular calibration and proper...Radiation detectors, such as survey meters, are essential for ensuring radiation safety in various sectors, including healthcare, industrial processing, emergency response, etc. However, regular calibration and proper maintenance of survey meters are important in order to ascertain their accuracy and reliability. This study provides a comprehensive retrospective assessment of the calibration behaviour, durability, and fault trends of 160 survey meters, spanning ten different models. They were calibrated at the Secondary Standard Dosimetry Laboratory (SSDL) in Nigeria over a decade (2012-2023) using an X-Ray Beam Irradiator Model X80-225K and Cs-137 irradiator (OB6) with a PTW reference spherical chamber traceable to the IAEA SSDL in Seibersdorf, Austria. The calibration stability of each model was evaluated, revealing that models like Instrument A and Instrument B demonstrated high reliability with calibration factors close to the ideal value of 1, while models like Instrument C exhibited higher variability, suggesting less consistent performance for dose rate monitoring. Fault analysis showed that the most common issues were related to the battery compartment, indicating a need for improved handling practices. Correlation analysis reveals no statistically significant correlation between calibration factor and age of survey meter across the analysed models. The study concludes that regular calibration, proper handling, and user training are crucial for maintaining the accuracy and longevity of radiation detectors.展开更多
Accurate reservoir permeability determination is crucial in hydrocarbon exploration and production.Conventional methods relying on empirical correlations and assumptions often result in high costs,time consumption,ina...Accurate reservoir permeability determination is crucial in hydrocarbon exploration and production.Conventional methods relying on empirical correlations and assumptions often result in high costs,time consumption,inaccuracies,and uncertainties.This study introduces a novel hybrid machine learning approach to predict the permeability of the Wangkwar formation in the Gunya oilfield,Northwestern Uganda.The group method of data handling with differential evolution(GMDH-DE)algorithm was used to predict permeability due to its capability to manage complex,nonlinear relationships between variables,reduced computation time,and parameter optimization through evolutionary algorithms.Using 1953 samples from Gunya-1 and Gunya-2 wells for training and 1563 samples from Gunya-3 for testing,the GMDH-DE outperformed the group method of data handling(GMDH)and random forest(RF)in predicting permeability with higher accuracy and lower computation time.The GMDH-DE achieved an R^(2)of 0.9985,RMSE of 3.157,MAE of 2.366,and ME of 0.001 during training,and for testing,the ME,MAE,RMSE,and R^(2)were 1.3508,12.503,21.3898,and 0.9534,respectively.Additionally,the GMDH-DE demonstrated a 41%reduction in processing time compared to GMDH and RF.The model was also used to predict the permeability of the Mita Gamma well in the Mandawa basin,Tanzania,which lacks core data.Shapley additive explanations(SHAP)analysis identified thermal neutron porosity(TNPH),effective porosity(PHIE),and spectral gamma-ray(SGR)as the most critical parameters in permeability prediction.Therefore,the GMDH-DE model offers a novel,efficient,and accurate approach for fast permeability prediction,enhancing hydrocarbon exploration and production.展开更多
文摘This paper proposes an intelligent vehicle auxiliary handling system based on Internet of Things(IoT)technology,featuring an innovative holding mechanism design that adjusts to the length and width of various vehicles.The system combines precise positioning using satellite tracking technology,intelligent recognition via OpenCV,and the interconnectivity of IoT.This intelligent vehicle auxiliary handling system can independently identify vehicle positions and plan optimal handling paths,eliminating the traditional reliance on manual operation.It offers efficient and accurate handling,setting a new trend in the handling industry.Additionally,the system integrates seamlessly with parking lot management systems,providing real-time updates on vehicle locations and statuses.This allows managers to monitor the parking lot operations clearly and efficiently.This intelligent coordination greatly enhances overall work efficiency and streamlines parking management.Overall,the innovative design of the intelligent vehicle auxiliary handling system represents a significant breakthrough in both function and performance,gaining user favor with its smooth operation.Looking ahead,continued technological advancements and the expansion of application fields will bring even more vitality and intelligence to societal development.
基金Project 863-2.5.2.25 supported by the National High Technology Research & Development (863) Program of China
文摘The Main Optical Telescope (MOT) is an important payload of the Space Solar Telescope (SST) with various instruments and observation modes. Its real-time data handling and management and control tasks are arduous. Based on the advanced techniques of foreign countries, an improved structure of onboard data handling systems feasible for SST, is proposed. This article concentrated on the development of a Central Management & Control Unit (MCU) based on FPGA and DSP. Through reconfigurating the FPGA and DSP programs, the prototype could perform different tasks. Thus the inheritability of the whole system is improved. The completed dual-channel prototype proves that the system meets all requirements of the MOT. Its high reliability and safety features also meet the requirements under harsh conditions such as mine detection.
基金Supported by National Natural Science Foundation of China(Grant No.51275307)
文摘As a key to improve the performance of the interbay automated material handling system (AMHS) in 300 mm semiconductor wafer fabrication system, the real- time overhead hoist transport (OHT) dispatching problem has received much attention. This problem is first formu- lated as a special form of assignment problem and it is proved that more than one solution will be obtained by Hungarian algorithm simultaneously. Through proposing and strictly proving two propositions related to the char- acteristics of these solutions, a modified Hungarian algo- rithm is designed to distinguish these solutions. Finally, a new real-time OHT dispatching method is carefully designed by implementing the solution obtained by the modified Hungarian algorithm. The experimental results of discrete event simulations show that, compared with con- ventional Hungarian algorithm dispatching method, the proposed dispatching method that chooses the solution with the maximum variance respectively reduces on average 4 s of the average waiting time and average lead time of wafer lots, and its performance is rather stable in multiple dif- ferent scenarios of the interbay AMHS with different quantities of shortcuts. This research provides an efficient real-time OHT dispatching mechanism for the interbay AMHS with shortcuts and bypasses.
基金Supported by Direktorat Riset dan Pengembangan(Directorate of Research and Development)Universitas Indonesia(NKB-690/UN2.RST/HKP.05.00/2022).
文摘The need to transport goods across countries and islands has resulted in a high demand for commercial vessels.Owing to such trends,shipyards must efficiently produce ships to reduce production costs.Layout and material flow are among the crucial aspects determining the efficiency of the production at a shipyard.This paper presents the initial design optimization of a shipyard layout using Nondominated Sorting Algorithm-Ⅱ(NSGA-Ⅱ)to find the optimal configuration of workstations in a shipyard layout.The proposed method focuses on simultaneously minimizing two material handling costs,namely work-based material handling and duration-based material handling.NSGA-Ⅱ determines the order of workstations in the shipyard layout.The semiflexible bay structure is then used in the workstation placement process from the sequence formed in NSGA-Ⅱ into a complete design.Considering that this study is a case of multiobjective optimization,the performance for both objectives at each iteration is presented in a 3D graph.Results indicate that after 500 iterations,the optimal configuration yields a work-based MHC of 163670.0 WBM-units and a duration-based MHC of 34750 DBM-units.Starting from a random solution,the efficiency of NSGA-Ⅱ demonstrates significant improvements,achieving a 50.19%reduction in work-based MHC and a 48.58%reduction in duration-based MHC.
基金supported by the National Key R&D Program of China(2022YFC3500405,2019YFC1712105)The National Science Foundation of China(82374075)+1 种基金The National Comprehensive Traditional Chinese Medicine Reform Demonstration Zone Science and Technology Collaborative Development Project(GZY-KJS-SD-2024-046)Taishan Scholar Youth Project of Shandong Province(tsqn202306188).
文摘Objective:Arrhythmia-induced cardiomyopathy(AIC)is a reversible dilated cardiomyopathy induced by rapid or irregular heartbeat.Acupuncture has a long history of use in the treatment of cardiac diseases,and Xinshu(BL15)is a key acupoint.However,the underlying mechanism of acupuncture at BL15 in the treatment of AIC has not yet been elucidated.Methods:AIC was induced in adult male Sprague-Dawley(SD)rats by continuous administration of acetylcholine(ACh)-CaCl2 and treatment with electroacupuncture(EA)at bilateral BL15.Echocardiography was used to evaluate cardiac function;the rotarod test for motor coordination and performance;hematoxylin and eosin(HE)staining for the morphology of ventricles;electrocardiogram for susceptibility,inducibility,and duration of atrial fibrillation(AF);and electrical and optical mapping in isolated rat hearts maintained by the Langendorff perfusion system for electrical conduction and intracellular handling,respectively.Reverse transcription quantitative polymerase chain reaction(RT-qPCR)and Western blotting were used to determine the levels of cardiac conduction and intracellular calcium-handling proteins in the ventricle.Results:The results showed that EA improved the ejection factor and morphological indices on echocardiography,restored motor coordination and performance,and alleviated ventricular dilation and AF onset.EA alleviates atrial conduction disorders,shortens APD80,and decreases calcium handling in rats with AIC.Cx43 was downregulated and CaMKII was upregulated,and both effects were reversed by EA treatment.Conclusion:Our study provides a novel AIC model with abnormal electrical propagation and calcium handling that can be protected by EA at BL15.This potential mechanism may be associated with the modulation of Cx43 and CaMKII expression.
文摘Object detection in occluded environments remains a core challenge in computer vision(CV),especially in domains such as autonomous driving and robotics.While Convolutional Neural Network(CNN)-based twodimensional(2D)and three-dimensional(3D)object detection methods havemade significant progress,they often fall short under severe occlusion due to depth ambiguities in 2D imagery and the high cost and deployment limitations of 3D sensors such as Light Detection and Ranging(LiDAR).This paper presents a comparative review of recent 2D and 3D detection models,focusing on their occlusion-handling capabilities and the impact of sensor modalities such as stereo vision,Time-of-Flight(ToF)cameras,and LiDAR.In this context,we introduce FuDensityNet,our multimodal occlusion-aware detection framework that combines Red-Green-Blue(RGB)images and LiDAR data to enhance detection performance.As a forward-looking direction,we propose a monocular depth-estimation extension to FuDensityNet,aimed at replacing expensive 3D sensors with a more scalable CNN-based pipeline.Although this enhancement is not experimentally evaluated in this manuscript,we describe its conceptual design and potential for future implementation.
文摘This paper introduces an intelligent garbage-handling trolley model based on an STM32 single chip microcomputer as the control core.The device is driven by four independent motors to achieve automatic tracking,automatic obstacle avoidance,and fixed-point docking.Using external execution structure to realize the car without the use of a mechanical arm,complete garbage collection,storage,and uninstall function.On this basis,the type of garbage is marked by color,and the color recognition sensor is applied to realize the type recognition after garbage collection and put into the corresponding unloading point,to realize its intelligent classification function.It can automatically complete the established task autonomously.
文摘A control algorithm for improving vehicle handling was proposed by applying right angle to the steering wheel,based on the nonlinear adaptive optimal control(NAOC).A nonlinear 4-DOF model was initially developed,then it was simplified to a 2-DOF model with reasonable assumptions to design observer and optimal controllers.Then a simplified model was developed for steering system.The numerical simulations were carried out using vehicle parameters for standard maneuvers in dry and wet road conditions.Moreover,the hardware in the loop method was implemented to prove the controller ability in realistic conditions.Simulation results obviously show the effectiveness of NAOC on vehicle handling and reveal that the proposed controller can significantly improve vehicle handling during severe maneuvers.
文摘Industry 4.0 and Cyber Physical Production Systems (CPPS) are often discussed and partially already sold. One important feature of CPPS is fault tolerance and as a consequence self-configuration and restart to increase Overall Equipment Effectiveness. To understand this challenge at first the state of the art of fault handling in industrial automated production systems (aPS) is discussed as a result of a case study analysis in eight companies developing aPS. In the next step, metrics to evaluate the concept of self-configuration and restart for aPS focusing on real-time capabilities, fault coverage and effort to increase fault coverage are proposed. Finally, two different lab size case studies prove the applicability of the concepts of self-configuration, restart and the proposed metrics.
文摘The objective of this study was to identify the impact of the coke handling and storage system on the emission of PM10 particulate material.The methodology was based on AP-42 emission factors from U.S.EPA(United States Environmental Protection Agency)for the calculation of PM10 emissions from operations in the handling and storage of petroleum coke in an oil refinery in the northeastern of Brazil.The knowledge of the emission potential of each operation of the coke handling and storage system allows the adoption of more effective control measures,contributing to the effective reduction of PM10 emissions in this system.To complement the environmental impact assessment of each configuration,an air quality modelling was performed using the atmospheric dispersion software.The comparison performed in this study enables authors to conclude,even for a totally mechanic system,that adopts control measures,PM10 emissions are low when confronted with the remaining sources of an oil refinery.By analyzing emissions from automated systems operation(scenario 1),it can be observed that the source with higher emission potential is the stockpile,which represents 60%of the system’s emission.Transfer and transport operations by conveyor belts together correspond to 40%of emissions.Even though transfer operations also represent a significant part(27%),they are not clustered in a unique point,making these emissions abatement difficult.The same is valid for transport using conveyor belts.Emissions from the piles are really the most significant.For this reason,this work concentrated efforts in the storage area,the ones that motivate the majority of studies relating to abatement technologies.
文摘Aiming at various faults in an air conditioning system,the fault characteristics are analyzed.The influence of the faults on the energy consumption and thermal comfort of the system are also discussed.The simulation results show that the measurement faults of the supply air temperature can lead to the increase in energy consumption.According to the fault characteristics,a data-driven method based on a neural network is presented to detect and diagnose the faults of air handling units.First,the historical data are selected to train the neural network so that it can recognize and predict the operation of the system.Then,the faults can be diagnosed by calculating the relative errors denoting the difference between the measuring values and the prediction outputs.Finally,the fault diagnosis strategy using the neural network is validated by using a simulator based on the TRNSYS platform.The results show that the neural network can diagnose different faults of the temperature,the flow rate and the pressure sensors in the air conditioning system.
文摘A DC to 5GHz series MEMS switch is designed and fabricated for wireless communication applications,and thermal effect and power handling of the series switch are discussed.The switch is made on glass substrate,and gold platinum contact is used to get a stable and little insert loss.From DC to 5GHz,0 6dB insertion loss,30dB isolation,and 30μs delay are demonstrated.Thermal effect of the switch is tested in 85℃ and -55℃ atmosphere separately.From DC to 4GHz,the insert loss of the switch increases 0 2dB in 85℃ and 0 4dB in -55℃,while the isolation holds the same value as that in room temperature.To measure the power handling capability of the switch,we applied a continuous RF power increasing from 10dBm to 35 1dBm with the step of 1 0dBm across the switch at 4GHz.The switch keeps working and shows a decrease of the insert loss for 0 1~0 6dB.The maximum continuous power handling (35 1dBm,about 3 24W) is higer than the reported value of shunt switch (about 420mW),which implies series switches have much better power handling capability.
基金The National Natural Science Foundation of China(No60503020)the National Basic Research Program of China (973Program) (No2002CB312000)+1 种基金the Natural Science Foundation of Jiangsu Province (NoBK2006094)the Science Research Foundation of China University of Mining and Technology
文摘To solve the problems that the exception handling code is hard to test and maintain and that it affects the robustness and reliability of software, a method for evaluating the exception handling of programs is presented. The exception propagation graph (EPG) that describes the large programs with exception handling constructs is proposed by simplifying the control flow graph and it is applied to a case to verify its validity. According to the EPG, the exception handling code that never executes is identified; the points that are the most critical to controlling exception propagation are found; and the irrational exception handling code is corrected. The constructing algorithm for the EPG is given; thus, this provides a basis for automatically constructing the EPG and automatically correcting the irrational exception handling code.
文摘Objectives: This paper examines the basic knowledge ofAIDS and HIV transmission through unsafe blood collec-tion and supply among rural Chinese doctors. It also ex-plores the accessibility of AIDS intervention methods inrural area. Methods: We did Case studies, held focus group discus-sions and provided questionnaires to all rural doctors inone township where the epidemic of HIV was known to bespread through blood collection and supply. Data were col-lected and analyzed with software EPI 6.0.Results: The effective response rate to the questionnairewas 100%. The results showed that more than 95% of in-formants gave correct answers to the questions about thesexual and blood-bourne transmission of HIV as well as itscontagiousness. Half of the participants were ignorant aboutmother to child transmission of HIV and did not know thatHIV couldn’t be transmitted by saliva, sweat, mosquito bites,sharing of bathtubs or toilets. More than 80% of infor-mants were opposed to blood selling and reportedly under-stood the objective of the blood organizers in their villages,knew the peak time of blood selling by the villagers, and ,were aware of the risks of diseases being spread throughblood. . 27.3% used disposable syringes ‘once in a while’,and 15.2% discarded or sold used disposable syringes.Conclusions: The authors assert that there are severe lurk-ing perils of iatrogenic cross infection in rural areas. Ruraldoctors urgently need formal training on prevention andtreatment of HIV infection. We believe that rural doctorsshould become the key force in AIDS prevention and con-trol in rural area.
文摘Radiation detectors, such as survey meters, are essential for ensuring radiation safety in various sectors, including healthcare, industrial processing, emergency response, etc. However, regular calibration and proper maintenance of survey meters are important in order to ascertain their accuracy and reliability. This study provides a comprehensive retrospective assessment of the calibration behaviour, durability, and fault trends of 160 survey meters, spanning ten different models. They were calibrated at the Secondary Standard Dosimetry Laboratory (SSDL) in Nigeria over a decade (2012-2023) using an X-Ray Beam Irradiator Model X80-225K and Cs-137 irradiator (OB6) with a PTW reference spherical chamber traceable to the IAEA SSDL in Seibersdorf, Austria. The calibration stability of each model was evaluated, revealing that models like Instrument A and Instrument B demonstrated high reliability with calibration factors close to the ideal value of 1, while models like Instrument C exhibited higher variability, suggesting less consistent performance for dose rate monitoring. Fault analysis showed that the most common issues were related to the battery compartment, indicating a need for improved handling practices. Correlation analysis reveals no statistically significant correlation between calibration factor and age of survey meter across the analysed models. The study concludes that regular calibration, proper handling, and user training are crucial for maintaining the accuracy and longevity of radiation detectors.
基金supported by the Major National Science and Technology Programs in the“Thirteenth Five-Year”Plan period(Grant No.2017ZX05032-002-004)the Innovation Team Funding of Natural Science Foundation of Hubei Province,China(Grant No.2021CFA031)the Chinese Scholarship Council(CSC)and Silk Road Institute for their support in terms of stipend.
文摘Accurate reservoir permeability determination is crucial in hydrocarbon exploration and production.Conventional methods relying on empirical correlations and assumptions often result in high costs,time consumption,inaccuracies,and uncertainties.This study introduces a novel hybrid machine learning approach to predict the permeability of the Wangkwar formation in the Gunya oilfield,Northwestern Uganda.The group method of data handling with differential evolution(GMDH-DE)algorithm was used to predict permeability due to its capability to manage complex,nonlinear relationships between variables,reduced computation time,and parameter optimization through evolutionary algorithms.Using 1953 samples from Gunya-1 and Gunya-2 wells for training and 1563 samples from Gunya-3 for testing,the GMDH-DE outperformed the group method of data handling(GMDH)and random forest(RF)in predicting permeability with higher accuracy and lower computation time.The GMDH-DE achieved an R^(2)of 0.9985,RMSE of 3.157,MAE of 2.366,and ME of 0.001 during training,and for testing,the ME,MAE,RMSE,and R^(2)were 1.3508,12.503,21.3898,and 0.9534,respectively.Additionally,the GMDH-DE demonstrated a 41%reduction in processing time compared to GMDH and RF.The model was also used to predict the permeability of the Mita Gamma well in the Mandawa basin,Tanzania,which lacks core data.Shapley additive explanations(SHAP)analysis identified thermal neutron porosity(TNPH),effective porosity(PHIE),and spectral gamma-ray(SGR)as the most critical parameters in permeability prediction.Therefore,the GMDH-DE model offers a novel,efficient,and accurate approach for fast permeability prediction,enhancing hydrocarbon exploration and production.