期刊文献+
共找到8,349篇文章
< 1 2 250 >
每页显示 20 50 100
Progress in MOF-based catalyst design and reaction mechanisms for CO_(2)hydrogenation to methanol
1
作者 YU Zhifu JIANG Lei WU Mingbo 《燃料化学学报(中英文)》 北大核心 2026年第1期146-162,共17页
Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon... Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies. 展开更多
关键词 CO_(2)hydrogenation metal-organic frameworks(MOFs) catalyst design reaction mechanism METHANOL
在线阅读 下载PDF
A Promising Strategy for Solvent-Regulated Selective Hydrogenation of 5-Hydroxymethylfurfural over Porous Carbon-Supported Ni-ZnO Nanoparticles
2
作者 Rulu Huang Chao Liu +4 位作者 Kaili Zhang Jianchun Jiang Ziqi Tian Yongming Chai Kui Wang 《Nano-Micro Letters》 2026年第1期130-143,共14页
Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization.Herein,we report porous carbon-supported Ni-ZnO nanoparticles catalyst(Ni-ZnO/AC)synthesized via lo... Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization.Herein,we report porous carbon-supported Ni-ZnO nanoparticles catalyst(Ni-ZnO/AC)synthesized via low-temperature coprecipitation,exhibiting excellent performance for the selective hydrogenation of 5-hydroxymethylfurfural(HMF).A linear correlation is first observed between solvent polarity(E_(T)(30))and product selectivity within both polar aprotic and protic solvent classes,suggesting that solvent properties play a vital role in directing reaction pathways.Among these,1,4-dioxane(aprotic)favors the formation of 2,5-bis(hydroxymethyl)furan(BHMF)with 97.5%selectivity,while isopropanol(iPrOH,protic)promotes 2,5-dimethylfuran production with up to 99.5%selectivity.Mechanistic investigations further reveal that beyond polarity,proton-donating ability is critical in facilitating hydrodeoxygenation.iPrOH enables a hydrogen shuttle mechanism where protons assist in hydroxyl group removal,lowering the activation barrier.In contrast,1,4-dioxane,lacking hydrogen bond donors,stabilizes BHMF and hinders further conversion.Density functional theory calculations confirm a lower activation energy in iPrOH(0.60 eV)compared to 1,4-dioxane(1.07 eV).This work offers mechanistic insights and a practical strategy for solvent-mediated control of product selectivity in biomass hydrogenation,highlighting the decisive role of solvent-catalyst-substrate interactions. 展开更多
关键词 Porous carbon-supported Ni-ZnO nanoparticles catalyst Selective hydrogenation 5-HYDROXYMETHYLFURFURAL SOLVENT Proton-donating ability
在线阅读 下载PDF
Advances in selective hydrogenation ofα,β‑unsaturated aldehydes/ketones catalyzed by metal‑organic frameworks and their derivatives:A review
3
作者 YANG Jiaxuan DENG Chenfa +7 位作者 LIU Jingyang XU Chenzexi CHEN Hongxin ZHU Yahui LI Ying WANG Shuhua ZHOU Rongping CHEN Chao 《无机化学学报》 北大核心 2025年第10期1973-2010,共38页
The selective hydrogenation ofα,β-unsaturated aldehydes/ketones enables precise control over product structures and properties by regulating hydrogen transport pathways and bond cleavage sequences to selectively red... The selective hydrogenation ofα,β-unsaturated aldehydes/ketones enables precise control over product structures and properties by regulating hydrogen transport pathways and bond cleavage sequences to selectively reduce C=C or C=O bonds while preserving other functional groups within the molecule.This approach serves as a critical strategy for the directional synthesis of high-value molecules.However,achieving such selectivity remains challenging due to the thermodynamic equilibrium and kinetic competition between C=O and C=C bonds inα,β-unsaturated systems.Consequently,constructing precisely targeted catalytic systems is essential to overcome these limitations,offering both fundamental scientific significance and industrial application potential.Metal-organic frameworks(MOFs)and their derivatives have emerged as innovative platforms for designing such systems,owing to their programmable topology,tunable pore microenvironments,spatially controllable active sites,and modifiable electronic structures.This review systematically summarizes the research progress of MOF-based catalysts for selec-tive hydrogenation ofα,β-unsaturated aldehydes/ketones in the last decade,with emphasis on the design strategy,conformational relationship,and catalytic mechanism,aiming to provide new ideas for the design of targeted catalyt-ic systems for the selective hydrogenation ofα,β-unsaturated aldehydes/ketones. 展开更多
关键词 α β-unsaturated aldehydes/ketones metal-organic frameworks DERIVATIVES selective hydrogenation catalytic mechanism hydrogenation path
在线阅读 下载PDF
Lattice sulfur-induced disordered and electron-deficient Pd-based nanosheets enabling selective electrocatalytic semi-hydrogenation of alkynes
4
作者 Hongyao Luo Haochuan Jing +6 位作者 Bing Zhang Nailiang Yang Tao Sun Chuntian Qiu Yangsen Xu Peng Yang Xiang Ling 《Green Energy & Environment》 2025年第10期2002-2013,共12页
The semi-hydrogenation of alkynes to alkenes is of great significance in the industrial production of pharmaceutical and fine chemicals.Electrochemical semi-hydrogenation(ECSH)has emerged as a promising alternative to... The semi-hydrogenation of alkynes to alkenes is of great significance in the industrial production of pharmaceutical and fine chemicals.Electrochemical semi-hydrogenation(ECSH)has emerged as a promising alternative to conventional thermochemical hydrogenation.However,its practical application is hindered by low reaction rate and competing hydrogen evolution reaction(HER).In this work,the controllable incorporation of sulfur into the lattice of Pd nanostructures is proposed to develop disordered and electron-deficient Pd-based nanosheets on Ni foam and enhance their ECSH performance of alkynes.Mechanistic investigations demonstrate that the electronic and geometric structures of Pd sites are optimized by lattice sulfur,which tunes the competitive adsorption of H*and alkynes,inherently inhibits the H*coupling and weakens alkene adsorption,thereby promotes the semi-hydrogenation of alkynes and prevents the over-hydrogenation of alkenes.The optimized Pd-based nanosheets exhibit efficient electrocatalytic semi-hydrogenation performance in an H-cell,achieving 97%alkene selectivity,94%Faradaic efficiency,and a reaction rate of 303.7μmol mgcatal.^(-1) h^(-1) using 4-methoxyphenylacetylene as the model substrate.Even in a membrane electrode assembly(MEA)configuration,the optimized Pd-based nanosheets achieves a single-cycle alkyne conversion of 96%and an alkene selectivity of 97%,with continuous production of alkene at a rate of 1901.1μmol mgcatal.^(-1) h^(-1).The potential-and time-independent selectivity,good substrate universality with excellent tolerance to active groups(C–Br/Cl/C]O,etc.)further highlight the potential of this strategy for advanced catalysts design and green chemistry. 展开更多
关键词 Electrocatalytic hydrogenation Electrocatalysis Semi-hydrogenation Pd nanosheets Heterogeneous catalysts
在线阅读 下载PDF
Unveiling the promotion role of ZnO on Zn-Al spinel oxide for CO_(2)hydrogenation 被引量:2
5
作者 Tongyao Wang Xinlong Yao +3 位作者 Lixin Liang Hongyu Chen Pan Gao Guangjin Hou 《Journal of Energy Chemistry》 2025年第1期18-25,共8页
The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly unders... The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly understood due to challenges in atomic-level structural characterizations and analysis of reaction intermediates.In this study,we prepared two Zn-Al spinel oxide catalysts via coprecipitation(ZnAl-C)and hydrothermal(ZnAl-H)methods,and conducted a comparative investigation in the CO_(2)hydrogenation reaction.Surprisingly,under similar conditions,ZnAl-C exhibited significantly higher selectivity towards methanol and DME compared to ZnAl-H.Comprehensive characterizations using X-ray diffraction(XRD),Raman spectroscopy and electron paramagnetic resonance(EPR)unveiled that ZnAl-C catalyst had abundant ZnO species on its surface,and the interaction between the ZnO species and its ZnAl spinel oxide matrix led to the formation of oxygen vacancies,which are crucial for CO_(2)adsorption and activation.Additionally,state-of-the-art solid-state nuclear magnetic resonance(NMR)techniques,including ex-situ and in-situ NMR analyses,confirmed that the surface ZnO facilitates the formation of unique highly reactive interfacial formate species,which was readily hydrogenated to methanol and DME.These insights elucidate the promotion effects of ZnO on the ZnAl spinel oxide in regulating active sites and reactive intermediates for CO_(2)-to-methanol hydrogenation reaction,which is further evidenced by the significant enhancement in methanol and DME selectivity observed upon loading ZnO onto the ZnAl-H catalyst.These molecular-level mechanism understandings reinforce the idea of optimizing the ZnO-ZnAl interface through tailored synthesis methods to achieve activity-selectivity balance. 展开更多
关键词 CO_(2)hydrogenation Spinel oxide ZNO Solid-state NMR
在线阅读 下载PDF
Exploring catalyst developments in heterogeneous CO_(2) hydrogenation to methanol and ethanol:A journey through reaction pathways 被引量:1
6
作者 Rasoul Salami Yimin Zeng +2 位作者 Xue Han Sohrab Rohani Ying Zheng 《Journal of Energy Chemistry》 2025年第2期345-384,I0008,共41页
The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation... The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts. 展开更多
关键词 CO_(2)hydrogenation METHANOL ETHANOL Catalytic mechanism Operando techniques Single atom catalyst Tandem catalyst
在线阅读 下载PDF
The electronic interaction of encapsulating graphene layers with FeCo alloy promotes efficient CO_(2)Hydrogenation to light olefins 被引量:1
7
作者 Miao Zhang Limin Zhang +3 位作者 Mingrui Wang Guanghui Zhang Chunshan Song Xinwen Guo 《Chinese Journal of Catalysis》 2025年第1期366-375,共10页
CO_(2)hydrogenation to value-added light olefins(C_(2-4)=)is crucial for the utilization and cycling of global carbon resource.Moderate CO_(2)activation and carbon chain growth ability are key factors for iron-based c... CO_(2)hydrogenation to value-added light olefins(C_(2-4)=)is crucial for the utilization and cycling of global carbon resource.Moderate CO_(2)activation and carbon chain growth ability are key factors for iron-based catalysts for efficient CO_(2)conversion to target C_(2-4)=products.The electronic interaction and confinement effect of electron-deficient graphene inner surface on the active phase are effective to improve surface chemical properties and enhance the catalytic performance.Here,we report a core-shell FeCo alloy catalyst with graphene layers confinement prepared by a simple sol-gel method.The electron transfer from Fe species to curved graphene inner surface modifies the surface electronic structure of the active phaseχ-(Fe_(x)Co_(1-x))_(5)C_(2)and improves CO_(2)adsorption capacity,enhancing the efficient conversion of CO_(2)and moderate C-C coupling.Therefore,the catalyst FeCoK@C exhibits C_(2-4)=selectivity of 33.0%while maintaining high CO_(2)conversion of 52.0%.The high stability without obvious deactivation for over 100 h and unprecedented C_(2-4)=space time yield(STY)up to 52.9 mmolCO_(2)·g^(-1)·h^(-1)demonstrate its potential for practical application.This work provides an efficient strategy for the development of high-performance CO_(2)hydrogenation catalysts. 展开更多
关键词 CO_(2)hydrogenation Lightolefins Graphene layers Cobalt-iron alloy carbide Electronicinteraction
在线阅读 下载PDF
High-yield pentanes-plus production via hydrogenation of carbon dioxide:Revealing new roles of zirconia as promoter of iron catalyst with long-term stability 被引量:1
8
作者 Sheraz Ahmed Junjung Rohmat Sugiarto +6 位作者 Wonjoong Yoon Muhammad Irshad Heuntae Jo Syeda Sidra Bibi Soek Ki Kim Muhammad Kashif Khan Jaehoon Kim 《Journal of Energy Chemistry》 2025年第3期431-442,共12页
The metal oxide promoter decisively influences the overall performance of Fe catalysts in the direct hydrogenation of CO_(2)to C_(5+)hydrocarbons.However,the roles of metal oxide promoter for Fe catalysts,particularly... The metal oxide promoter decisively influences the overall performance of Fe catalysts in the direct hydrogenation of CO_(2)to C_(5+)hydrocarbons.However,the roles of metal oxide promoter for Fe catalysts,particularly ZrO_(2),have rarely been investigated.To plug this knowledge gap,a new Fe catalyst promoted with Na and partially reduced ZrO_(x)(Na-FeZrO_(x-9))was developed in this study;the catalyst helped produce C_(5+)hydrocarbons in remarkably high yield(26.3%at 360℃).In contrast to ZrO_(x)-free Fe-oxide,NaFeZrO_(x)-9 exhibited long-term stability for CO_(2)hydrogenation(750 h on-stream).The findings revealed multiple roles of ZrO_(x).Notably,ZrO_(x)decorated the Fe-oxide particles after calcination,thereby suppressing excess particle aggregation during the reaction,and acted as a"coke remover"to eliminate the carbon deposited on the catalyst surface.Additionally,oxygen vacancy(O_(v))sites in ZrO_(x)and electron transfer from ZrO_(x)to Fe sites facilitated the adsorption of CO_(2)at the Zr-Fe interface. 展开更多
关键词 CO_(2)hydrogenation C5+hydrocarbons Fe catalysts ZrO_(2)promoter Fischer Tropsch synthesis Catalyst deactivation
在线阅读 下载PDF
An experimental and computational investigation on structural evolution of the In_(2)O_(3)catalyst during the induction period of CO_(2)hydrogenation 被引量:1
9
作者 Zhangqian Wei Mingxiu Wang +6 位作者 Xinnan Lu Zixuan Zhou Ziqi Tang Chunran Chang Yong Yang Shenggang Li Peng Gao 《Chinese Journal of Catalysis》 2025年第5期301-313,共13页
As one of the most important industrially viable methods for carbon dioxide(CO_(2))utilization,methanol synthesis serves as a platform for production of green fuels and commodity chemicals.For sustainable methanol syn... As one of the most important industrially viable methods for carbon dioxide(CO_(2))utilization,methanol synthesis serves as a platform for production of green fuels and commodity chemicals.For sustainable methanol synthesis,In_(2)O_(3)is an ideal catalyst and has garnered significant attention.Herein,cubic In_(2)O_(3)nanoparticles were prepared via the precipitation method and evaluated for CO_(2)hydrogenation to produce methanol.During the initial 10 h of reaction,CO_(2)conversion gradually increased,accompanied by a slow decrease of methanol selectivity,and the reaction reached equilibrium after 10-20 h on stream.This activation and induction stage may be attributed to the sintering of In_(2)O_(3)nanoparticles and the creation of more oxygen vacancies on In_(2)O_(3)surfaces.Further experimental studies demonstrate that hydrogen induction created additional oxygen vacancies during the catalyst activation stage,enhancing the performance of In_(2)O_(3)catalyst for CO_(2)hydrogenation.Density functional theory calculations and microkinetic simulations further demonstrated that surfaces with higher oxygen vacancy coverages or hydroxylated surfaces formed during this induction period can enhance the reaction rate and increase the CO_(2)conversion.However,they predominantly promote the formation of CO instead of methanol,leading to reduced methanol selectivity.These predictions align well with the above-mentioned experimental observations.Our work thus provides an in-depth analysis of the induction stage of the CO_(2)hydrogenation process on In_(2)O_(3)nano-catalyst,and offers valuable insights for significantly improving the CO_(2)reactivity of In_(2)O_(3)-based catalysts while maintaining long-term stability. 展开更多
关键词 In_(2)O_(3) CO_(2)hydrogenation Methanol production Induction and activation Structural evolution
在线阅读 下载PDF
Unraveling the kinetic mechanism of atomic hybrids for the catalytic dehydrogenation of MgH_(2) 被引量:1
10
作者 Yike Huang Cuihua An +6 位作者 Yafei Liu Yusang Guo Huaxu Shao Huatang Yuan Huaiyu Shao Caiyun Wang Yijing Wang 《Journal of Materials Science & Technology》 2025年第9期89-95,共7页
Herein,we report the multi-metal atomic catalysts for solid-state dehydrogenation of MgH_(2).It aims to reveal the multi-element synergy in catalysts for solid-state hydrogen storage.The kinetic measurements and fitti... Herein,we report the multi-metal atomic catalysts for solid-state dehydrogenation of MgH_(2).It aims to reveal the multi-element synergy in catalysts for solid-state hydrogen storage.The kinetic measurements and fitting reveal two mechanisms:one shows a maximum rate at the early stage,such as V and Cr;the other needs a temperature-sensitive preparation time for its maximum rate,such as Ni.The combina-tion of two catalyst components demonstrates the best kinetics:V and Cr boost the initial dehydrogena-tion,and Ni benefits the further hydrogen transfer which alleviates the rate of decay.This work provides guidelines for the design of multi-element doped catalysts for MgH_(2) dehydrogenation. 展开更多
关键词 Single-atom catalysts Hydrogen storage DEhydrogenation Magnesium dihydride Multi-metal catalysts
原文传递
Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects
11
作者 HUANG Rui LIU Shengjie +1 位作者 WU Qingyuan ZHENG Nanfeng 《无机化学学报》 北大核心 2025年第1期201-212,共12页
The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts c... The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts contained Pd species in mixed valence states,with high valence Pd at the metal‑support interface and zero valence Pd at the metal surface.While the strong coordination of triphenylphosphine(PPh3)to Pd0 on the Pd surface prevents the adsorption of halogenated nitroaromatics and thus dehalogenation,the coordination of sodium metavanadate(NaVO3)to high‑valence Pd sites at the interface helps to activate H2 in a heterolytic pathway for the selective hydrogenation of nitro‑groups.The excellent catalytic performance of the interfacial active sites enables the selective hydrogenation of a wide range of halogenated nitroaromatics. 展开更多
关键词 halogenated nitroaromatic heterogeneous catalysis hydrogenation selectivity control interfacial effect
在线阅读 下载PDF
A review of recent progress on CO_(2)hydrogenation to methane by Ni-based catalysts supported on carbon materials
12
作者 SUN Yu HUO Kai-xuan +2 位作者 FANG Hai-qiu WANG Yang WU Ming-bo 《新型炭材料(中英文)》 北大核心 2025年第6期1201-1218,共18页
Recent research progress on the use of Ni-based catalysts supported by various carbon materials,such as carbon nanotubes,graphene,and activated carbon,for the hydrogenation of CO_(2)to CH4 is summarized.The influence ... Recent research progress on the use of Ni-based catalysts supported by various carbon materials,such as carbon nanotubes,graphene,and activated carbon,for the hydrogenation of CO_(2)to CH4 is summarized.The influence of additives and surface modification methods on improving their catalytic performance is discussed as is the reaction mechanism,especially the structurefunction relationship produced by the carbon.The review provides a comprehensive directory for the rational design of carbon-supported Ni-based catalysts for the methanation of CO_(2). 展开更多
关键词 Carbon dioxide hydrogenation Carbon materials Ni-based catalysts METHANATION Reaction mechanism
在线阅读 下载PDF
Proton Irradiation-induced Oxygen Vacancy and Metallic Indium in Black Indium Oxide for Enhancing Photothermal CO_(2) Hydrogenation
13
作者 LIU Zequn WANG Cheng +3 位作者 ZENG Xiandi YAO Yingfang JIN Ziliang ZOU Zhigang 《材料科学与工程学报》 北大核心 2025年第5期697-705,714,共10页
On the surfaces of celestial bodies with no or thin atmospheres,such as the Moon and Mars,the solar wind irradiation process leads to the formation of hydrogen and helium enriched regions in the extraterrestrial soil ... On the surfaces of celestial bodies with no or thin atmospheres,such as the Moon and Mars,the solar wind irradiation process leads to the formation of hydrogen and helium enriched regions in the extraterrestrial soil particles.However,soil particles on the Earth with the similar composition lack such structures and properties.This discrepancy raises a key question whether there is a direct relationship between solar wind irradiation and the alterations in the structure and chemical performance of extraterrestrial materials.To address this question,this work investigates the effects of proton irradiation,simulating solar wind radiation,on the structure and photothermal catalytic properties of the classic catalyst In_(2)O_(3).It reveals that proton irradiation induces structural features in In_(2)O_(3) analogous to those characteristics of solar wind weathering observed in extraterrestrial materials.Furthermore,after proton beam irradiation with an energy of 30 keV and a dose of 3×10^(17) protons·cm^(-2),the methanol production yield of the In_(2)O_(3) catalyst increased to 2.6 times of its preirradiation level,and the methanol selectivity improved to 2.1 times of the original value.This work provides both theoretical and experimental support for the development of high-efficiency,radiation-resistant photothermal catalysts. 展开更多
关键词 Proton irradiation VESICULATION Photothermal CO_(2)hydrogenation Oxygen vacancy Indium oxide
在线阅读 下载PDF
Active sites and impact of preparation pH on the Cu/ZnO/ZrO_(2) catalysts for methanol production via CO_(2) hydrogenation
14
作者 MENG Xinyue SUN Shangcong +1 位作者 CAO Shuo PENG Bo 《燃料化学学报(中英文)》 北大核心 2025年第11期1569-1582,共14页
Cu/ZnO-based catalysts are widely employed for methanol synthesis via CO_(2) hydrogenation.The preparation procedure is sensitive to the particle size and interfacial structure,which are considered as potential active... Cu/ZnO-based catalysts are widely employed for methanol synthesis via CO_(2) hydrogenation.The preparation procedure is sensitive to the particle size and interfacial structure,which are considered as potential active centers influencing the rate of both methanol and CO formation.The particle size and the interaction between Cu and the support materials are influenced by the coprecipitation conditions,let alone that the mechanistic divergence remains unclear.In this work,a series of Cu/ZnO/ZrO_(2) catalysts were prepared via co-precipitation at different pH value and systematically characterized.The structure has been correlated with kinetic results to establish the structure-performance relationship.Kinetic analysis demonstrates that methanol synthesis follows a single-site Langmuir-Hinshelwood(L-H)mechanism,i.e.,Cu serves as the active site where CO_(2) and H_(2) competitively adsorb and react to form methanol.In contrast,CO formation proceeds via a dual-site L-H mechanism,where CO_(2) adsorbs onto ZnO and H_(2) onto Cu,with the reaction occurring at the Cu/ZnO interface.Therefore,for the direct formation of methanol,solely reducing the particle size of Cu would not be beneficial. 展开更多
关键词 CO_(2)hydrogenation methanol synthesis active sites KINETICS
在线阅读 下载PDF
The synthesis of alcohol ether esters through the catalytic hydrogenation of diethyl oxalate in the Cu-Al systems induced by Al_(2)O_(3) properties
15
作者 Peng Wu Lina Ma +3 位作者 Yu Zheng Li Luo Lihong Su Juntian Li 《日用化学工业(中英文)》 北大核心 2025年第9期1100-1111,共12页
The structure-performance relationship of Cu/Al_(2)O_(3) catalysts in the hydrogenation of diethyl oxalate(DEO)for the synthesis of alcohol ether esters has been investigated by various characterization techniques inc... The structure-performance relationship of Cu/Al_(2)O_(3) catalysts in the hydrogenation of diethyl oxalate(DEO)for the synthesis of alcohol ether esters has been investigated by various characterization techniques including XRD,XPS,N2O titration,and 27Al MAS-NMR.The results showed that when the crystal configurations of Al_(2)O_(3) were the same,increasing the specific surface area could effectively refine the size of copper nanoparticles(Cu NPs),and ultimately improve the conversion of DEO.Meanwhile,the smaller size ofγ-Al_(2)O_(3)(HSAl and SBAl)loaded Cu NPs promotes the reaction towards the deep hydrogenation to produce ethanol(EtOH)and ethylene glycol(EG).Besides,the larger size of Cu NPs on the surface of amorphous Al_(2)O_(3)(HTAl and SolAl)resulted in a lower conversion rate,where ethyl glycolate(Egly)is the main product.Despite there are differences in Al^(3+)ionic coordination in Al_(2)O_(3) with different crystal structures,the experimental data showed that the differences in Al^(3+)ionic coordination did not significantly affect the catalytic performance in the hydrogenation reaction.The formation of alcohol-ether ester chemicals is critically dependent on the interactions between Cu sites and acidic sites.Among them,EG and EtOH were dehydrated to form 2-ethoxyethanol via the SN2 mechanism,while Egly and EtOH were reacted to form ethyl ethoxyacetate(EEA)via the SN2 mechanism.This study provides a theoretical basis for the optimization of the coal-based glycol processes to achieve a diversified product portfolio. 展开更多
关键词 oxalate hydrogenation alcohol ether esters Cu-Al catalyst SN2 mechanism
在线阅读 下载PDF
Hydrogenation of CO_(2) to formate catalyzed by N⁃heterocyclic carbene⁃nitrogen⁃phosphine chelated iridium(Ⅰ)complexes
16
作者 GONG Huihua CUI Tianhua +6 位作者 JI Li ZHANG Jichuan ZHANG Liyuan CHEN Yan WANG Zhenye XU Jiaqi LI Ruixiang 《无机化学学报》 北大核心 2025年第12期2609-2620,共12页
To achieve efficient catalytic hydrogenation of CO_(2)to formate,we employed a transmetallation strategy to develop three novel iridium(Ⅰ)complexes,which feature N‑heterocyclic carbene‑nitrogen‑phosphine ligands(CNP)... To achieve efficient catalytic hydrogenation of CO_(2)to formate,we employed a transmetallation strategy to develop three novel iridium(Ⅰ)complexes,which feature N‑heterocyclic carbene‑nitrogen‑phosphine ligands(CNP)and a 1,5‑cyclooctadiene(cod)molecule:[Ir(cod)(κ^(3)‑CN^(im)P)]Cl(1⁃Cl),[Ir(cod)(κ^(3)‑CN^(im)P)]PF6(1⁃PF_(6)),and[Ir(cod)(κ^(3)‑CNHP)]Cl(2).The^(1)H NMR spectra,^(31)P NMR spectra,and high‑resolution mass spectra verify the successful synthesis of these three Ir(Ⅰ)‑CNP complexes.Furthermore,single‑crystal X‑ray diffraction analysis confirms the coordination geometry of 1⁃PF_(6).The strong Ir—C(NHC)bond suggests that the carbene carbon plays an enhanced anchoring role to iridium due to its strongσ‑donating ability,which helps stabilize the active metal species during CO_(2)hydrogenation.As a result,the Ir(Ⅰ)‑CNP complex exhibits remarkable activity and long catalytic lifetime for the hydrogenation of CO_(2)to formate,reaching a turnover number(TON)of 1.16×10^(6)after 150 h at a high temperature of 170℃,which was a relatively high value among all the Ir complexes.CCDC:2384071,1⁃PF_(6). 展开更多
关键词 CO_(2)hydrogenation iridium complex CNP ligands homogeneous catalysis
在线阅读 下载PDF
Ir/f-Amphox-Catalyzed Asymmetric Hydrogenation of 1-(Pyridin-2-yl)ketones to Chiral Pyridyl Alcohols
17
作者 Chen Qishu Yang Bo +3 位作者 Lang Qiwei Ding Xiaobing Li Xiuxiu Zhang Xumu 《有机化学》 北大核心 2025年第9期3326-3334,共9页
Chiral pyridyl alcohols are a type of synthetically versatile building block for natural products,functional materials and bioactive molecules.Herein,a highly efficient Ir/f-amphox-catalyzed asymmetric hydrogenation o... Chiral pyridyl alcohols are a type of synthetically versatile building block for natural products,functional materials and bioactive molecules.Herein,a highly efficient Ir/f-amphox-catalyzed asymmetric hydrogenation of 1-(pyridin-2-yl)ketone derivatives to access chiral pyridyl alcohols was reported.The reaction proceeds smoothly under mild conditions,delivering excellent yields and enantioselectivities(up to>99%ee,turnover number(TON)up to 2000).A broad range of pyridyl alkyl and aryl ketones were successfully transformed,demonstrating the generality and synthetic utility of this methodology. 展开更多
关键词 asymmetric hydrogenation f-amphox pyridyl alcohols
原文传递
Mechanistic understanding of the selective C=C and C=O hydrogenation catalyzed by frustrated Lewis pairs on CeO_(2)(110)from theoretical perspectives
18
作者 MA Hong CHEN Siqing +7 位作者 CHEN Jiamin DING Runlong LIU Shaoli TIAN Xinxin WU Jianbing LI Haitao WANG Yongzhao ZHAO Yongxiang 《燃料化学学报(中英文)》 北大核心 2025年第10期1528-1539,I0013-I0019,共19页
Heterogeneous solid frustrated-Lewis-pair(FLP)catalyst is of great promise in practical hydrogenation applications.It has been found that all-solid FLPs can be created on ceria via surface oxygen vacancy regulation.Co... Heterogeneous solid frustrated-Lewis-pair(FLP)catalyst is of great promise in practical hydrogenation applications.It has been found that all-solid FLPs can be created on ceria via surface oxygen vacancy regulation.Consequently,it is desired to investigate the mechanisms of the FLP-catalyzed hydrogenation of C=C and C=O and provide insight into the modification of CeO_(2)catalysts for the selective hydrogenation.In this work,the reaction mechanism of the hydrogenation of CH_(2)=CH_(2)and CH_(3)CH=O at the FLP sites constructed on CeO_(2)(110)surface was investigated by density functional theory(DFT),with the classical Lewis acid-base pairs(CLP)site as the reference.The results illustrate that at the CLP site,the dissociated hydride(H^(δ−))forms a stable H−O bond with the surface O atom,while at the FLP site,H^(δ−)is stabilized by Ce,displaying higher activity on the one hand.On the other hand,the electron cloud density of the Ce atom at the FLP site is higher,which can transfer more electrons to the adsorbed C_(C=C)and O_(C=O)atoms,leading to a higher degree of activation for C=C and C=O bonds,as indicated by the Bader charge analysis.Therefore,compared to the CLP site,the FLP site exhibits higher hydrogenation activity for CH_(2)=CH_(2)and CH_(3)CH=O.Furthermore,at the FLP sites,it demonstrates high efficiency in catalyzing the hydrogenation of CH_(2)=CH_(2)with the rate-determining barrier of 1.04 eV,but it shows limited activity for the hydrogenation of CH_(3)CH=O with the rate-determining barrier of 1.94 eV.It means that the selective hydrogenation of C=C can be effectively achieved at the FLP sites concerning selective hydrogenation catalysis.The insights shown in this work help to clarify the reaction mechanism of the hydrogenation of C=C and C=O at FLP site on CeO_(2)(110)and reveal the relationship between the catalytic performance and the nature of the active site,which is of great benefit to development of rational design of heterogeneous FLP catalysts. 展开更多
关键词 CeO_(2)(110) frustrated Lewis pairs(FLP) CH_(2)=CH_(2)/CH_(3)CH=O the mechanism of hydrogenation DFT calculation
在线阅读 下载PDF
Efficient hydrogen transfer carriers:hydrogenation mechanism of dibenzyltoluene catalyzed by Mg-based metal hydride
19
作者 Hai-Yu Deng Li-Jun Jiang +5 位作者 Shao-Hua Wang Wen-Quan Jiang Yuan-Fang Wu Xiu-Mei Guo Shu-Mao Wang Lei Hao 《Rare Metals》 2025年第3期2118-2127,共10页
Dibenzyltoluene(DBT)is a prospective liquid organic hydrogen carrier(LOHC)with low cost and high theoretical hydrogen storage capacity(6.2 wt%).However,the wide application of DBT is severely restricted by expensive n... Dibenzyltoluene(DBT)is a prospective liquid organic hydrogen carrier(LOHC)with low cost and high theoretical hydrogen storage capacity(6.2 wt%).However,the wide application of DBT is severely restricted by expensive noble catalysts.In this work,a new Mg-based metal hydride hydrogenation catalyst,which is composed of MgH_(2),Mg_(2)NiH_(4) and LaH_(3) micro-nano-particles. 展开更多
关键词 hydrogen transfer carriers noble catalysts MG based metal hydride liquid organic hydrogen carrier noble catalystsin dibenzyltoluene LOHC hydrogenation mechanism
原文传递
Enhanced selective hydrogenation of furfural to furfuryl alcohol in the organic-solvent-free system over Co/N-C via hydrogen spillover and acid-base modification
20
作者 Yanliang Yang Mengping Fan +6 位作者 Weilong Ji Xiang Jia Xiaoqin Si Xin Liu Zhiyong Chen Tianliang Lu Ling-Ping Xiao 《Resources Chemicals and Materials》 2025年第4期33-42,共10页
The aqueous-phase hydrogenation of furfural to furfuryl alcohol using non-noble metal catalysts is constrained by the low activity of catalysts,necessitating high temperatures and high hydrogen pressures,and posing ch... The aqueous-phase hydrogenation of furfural to furfuryl alcohol using non-noble metal catalysts is constrained by the low activity of catalysts,necessitating high temperatures and high hydrogen pressures,and posing challenges in controlling furfuryl alcohol selectivity.Herein,a Co nanoparticle catalyst supported on nitrogendoped carbon derived from MOFs is reported,which adopts a synergistic strategy to enhance catalytic perfor-mance.The nitrogen doping simultaneously promotes hydrogen spillover on the catalyst surface and reduces surface acidity,thereby suppressing acid-catalyzed side reactions.This dual function enables the selective hy-drogenation of-C=O groups to-CH_(2)OH groups in water under mild conditions.Furfural reached 98%con-version with 95%selectivity of furfuryl alcohol at 135℃ and under hydrogen pressure close to atmospheric(0.4 MPa)in 2 h.This study allows a low energy-consuming method for producing furfuryl alcohol from hemicellulose-derived furfural,and provides a promising strategy for the conversion of renewable biomassderived compounds into high value-added chemicals. 展开更多
关键词 Selective hydrogenation Hydrogen spillover FURFURAL Furfuryl alcohol Biomass conversion
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部