期刊文献+
共找到8,105篇文章
< 1 2 250 >
每页显示 20 50 100
Advances in selective hydrogenation ofα,β‑unsaturated aldehydes/ketones catalyzed by metal‑organic frameworks and their derivatives:A review
1
作者 YANG Jiaxuan DENG Chenfa +7 位作者 LIU Jingyang XU Chenzexi CHEN Hongxin ZHU Yahui LI Ying WANG Shuhua ZHOU Rongping CHEN Chao 《无机化学学报》 北大核心 2025年第10期1973-2010,共38页
The selective hydrogenation ofα,β-unsaturated aldehydes/ketones enables precise control over product structures and properties by regulating hydrogen transport pathways and bond cleavage sequences to selectively red... The selective hydrogenation ofα,β-unsaturated aldehydes/ketones enables precise control over product structures and properties by regulating hydrogen transport pathways and bond cleavage sequences to selectively reduce C=C or C=O bonds while preserving other functional groups within the molecule.This approach serves as a critical strategy for the directional synthesis of high-value molecules.However,achieving such selectivity remains challenging due to the thermodynamic equilibrium and kinetic competition between C=O and C=C bonds inα,β-unsaturated systems.Consequently,constructing precisely targeted catalytic systems is essential to overcome these limitations,offering both fundamental scientific significance and industrial application potential.Metal-organic frameworks(MOFs)and their derivatives have emerged as innovative platforms for designing such systems,owing to their programmable topology,tunable pore microenvironments,spatially controllable active sites,and modifiable electronic structures.This review systematically summarizes the research progress of MOF-based catalysts for selec-tive hydrogenation ofα,β-unsaturated aldehydes/ketones in the last decade,with emphasis on the design strategy,conformational relationship,and catalytic mechanism,aiming to provide new ideas for the design of targeted catalyt-ic systems for the selective hydrogenation ofα,β-unsaturated aldehydes/ketones. 展开更多
关键词 α β-unsaturated aldehydes/ketones metal-organic frameworks DERIVATIVES selective hydrogenation catalytic mechanism hydrogenation path
在线阅读 下载PDF
Lattice sulfur-induced disordered and electron-deficient Pd-based nanosheets enabling selective electrocatalytic semi-hydrogenation of alkynes
2
作者 Hongyao Luo Haochuan Jing +6 位作者 Bing Zhang Nailiang Yang Tao Sun Chuntian Qiu Yangsen Xu Peng Yang Xiang Ling 《Green Energy & Environment》 2025年第10期2002-2013,共12页
The semi-hydrogenation of alkynes to alkenes is of great significance in the industrial production of pharmaceutical and fine chemicals.Electrochemical semi-hydrogenation(ECSH)has emerged as a promising alternative to... The semi-hydrogenation of alkynes to alkenes is of great significance in the industrial production of pharmaceutical and fine chemicals.Electrochemical semi-hydrogenation(ECSH)has emerged as a promising alternative to conventional thermochemical hydrogenation.However,its practical application is hindered by low reaction rate and competing hydrogen evolution reaction(HER).In this work,the controllable incorporation of sulfur into the lattice of Pd nanostructures is proposed to develop disordered and electron-deficient Pd-based nanosheets on Ni foam and enhance their ECSH performance of alkynes.Mechanistic investigations demonstrate that the electronic and geometric structures of Pd sites are optimized by lattice sulfur,which tunes the competitive adsorption of H*and alkynes,inherently inhibits the H*coupling and weakens alkene adsorption,thereby promotes the semi-hydrogenation of alkynes and prevents the over-hydrogenation of alkenes.The optimized Pd-based nanosheets exhibit efficient electrocatalytic semi-hydrogenation performance in an H-cell,achieving 97%alkene selectivity,94%Faradaic efficiency,and a reaction rate of 303.7μmol mgcatal.^(-1) h^(-1) using 4-methoxyphenylacetylene as the model substrate.Even in a membrane electrode assembly(MEA)configuration,the optimized Pd-based nanosheets achieves a single-cycle alkyne conversion of 96%and an alkene selectivity of 97%,with continuous production of alkene at a rate of 1901.1μmol mgcatal.^(-1) h^(-1).The potential-and time-independent selectivity,good substrate universality with excellent tolerance to active groups(C–Br/Cl/C]O,etc.)further highlight the potential of this strategy for advanced catalysts design and green chemistry. 展开更多
关键词 Electrocatalytic hydrogenation Electrocatalysis Semi-hydrogenation Pd nanosheets Heterogeneous catalysts
在线阅读 下载PDF
Unveiling the promotion role of ZnO on Zn-Al spinel oxide for CO_(2)hydrogenation 被引量:2
3
作者 Tongyao Wang Xinlong Yao +3 位作者 Lixin Liang Hongyu Chen Pan Gao Guangjin Hou 《Journal of Energy Chemistry》 2025年第1期18-25,共8页
The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly unders... The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly understood due to challenges in atomic-level structural characterizations and analysis of reaction intermediates.In this study,we prepared two Zn-Al spinel oxide catalysts via coprecipitation(ZnAl-C)and hydrothermal(ZnAl-H)methods,and conducted a comparative investigation in the CO_(2)hydrogenation reaction.Surprisingly,under similar conditions,ZnAl-C exhibited significantly higher selectivity towards methanol and DME compared to ZnAl-H.Comprehensive characterizations using X-ray diffraction(XRD),Raman spectroscopy and electron paramagnetic resonance(EPR)unveiled that ZnAl-C catalyst had abundant ZnO species on its surface,and the interaction between the ZnO species and its ZnAl spinel oxide matrix led to the formation of oxygen vacancies,which are crucial for CO_(2)adsorption and activation.Additionally,state-of-the-art solid-state nuclear magnetic resonance(NMR)techniques,including ex-situ and in-situ NMR analyses,confirmed that the surface ZnO facilitates the formation of unique highly reactive interfacial formate species,which was readily hydrogenated to methanol and DME.These insights elucidate the promotion effects of ZnO on the ZnAl spinel oxide in regulating active sites and reactive intermediates for CO_(2)-to-methanol hydrogenation reaction,which is further evidenced by the significant enhancement in methanol and DME selectivity observed upon loading ZnO onto the ZnAl-H catalyst.These molecular-level mechanism understandings reinforce the idea of optimizing the ZnO-ZnAl interface through tailored synthesis methods to achieve activity-selectivity balance. 展开更多
关键词 CO_(2)hydrogenation Spinel oxide ZNO Solid-state NMR
在线阅读 下载PDF
Exploring catalyst developments in heterogeneous CO_(2) hydrogenation to methanol and ethanol:A journey through reaction pathways 被引量:1
4
作者 Rasoul Salami Yimin Zeng +2 位作者 Xue Han Sohrab Rohani Ying Zheng 《Journal of Energy Chemistry》 2025年第2期345-384,I0008,共41页
The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation... The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts. 展开更多
关键词 CO_(2)hydrogenation METHANOL ETHANOL Catalytic mechanism Operando techniques Single atom catalyst Tandem catalyst
在线阅读 下载PDF
The electronic interaction of encapsulating graphene layers with FeCo alloy promotes efficient CO_(2)Hydrogenation to light olefins 被引量:1
5
作者 Miao Zhang Limin Zhang +3 位作者 Mingrui Wang Guanghui Zhang Chunshan Song Xinwen Guo 《Chinese Journal of Catalysis》 2025年第1期366-375,共10页
CO_(2)hydrogenation to value-added light olefins(C_(2-4)=)is crucial for the utilization and cycling of global carbon resource.Moderate CO_(2)activation and carbon chain growth ability are key factors for iron-based c... CO_(2)hydrogenation to value-added light olefins(C_(2-4)=)is crucial for the utilization and cycling of global carbon resource.Moderate CO_(2)activation and carbon chain growth ability are key factors for iron-based catalysts for efficient CO_(2)conversion to target C_(2-4)=products.The electronic interaction and confinement effect of electron-deficient graphene inner surface on the active phase are effective to improve surface chemical properties and enhance the catalytic performance.Here,we report a core-shell FeCo alloy catalyst with graphene layers confinement prepared by a simple sol-gel method.The electron transfer from Fe species to curved graphene inner surface modifies the surface electronic structure of the active phaseχ-(Fe_(x)Co_(1-x))_(5)C_(2)and improves CO_(2)adsorption capacity,enhancing the efficient conversion of CO_(2)and moderate C-C coupling.Therefore,the catalyst FeCoK@C exhibits C_(2-4)=selectivity of 33.0%while maintaining high CO_(2)conversion of 52.0%.The high stability without obvious deactivation for over 100 h and unprecedented C_(2-4)=space time yield(STY)up to 52.9 mmolCO_(2)·g^(-1)·h^(-1)demonstrate its potential for practical application.This work provides an efficient strategy for the development of high-performance CO_(2)hydrogenation catalysts. 展开更多
关键词 CO_(2)hydrogenation Lightolefins Graphene layers Cobalt-iron alloy carbide Electronicinteraction
在线阅读 下载PDF
An experimental and computational investigation on structural evolution of the In_(2)O_(3)catalyst during the induction period of CO_(2)hydrogenation 被引量:1
6
作者 Zhangqian Wei Mingxiu Wang +6 位作者 Xinnan Lu Zixuan Zhou Ziqi Tang Chunran Chang Yong Yang Shenggang Li Peng Gao 《Chinese Journal of Catalysis》 2025年第5期301-313,共13页
As one of the most important industrially viable methods for carbon dioxide(CO_(2))utilization,methanol synthesis serves as a platform for production of green fuels and commodity chemicals.For sustainable methanol syn... As one of the most important industrially viable methods for carbon dioxide(CO_(2))utilization,methanol synthesis serves as a platform for production of green fuels and commodity chemicals.For sustainable methanol synthesis,In_(2)O_(3)is an ideal catalyst and has garnered significant attention.Herein,cubic In_(2)O_(3)nanoparticles were prepared via the precipitation method and evaluated for CO_(2)hydrogenation to produce methanol.During the initial 10 h of reaction,CO_(2)conversion gradually increased,accompanied by a slow decrease of methanol selectivity,and the reaction reached equilibrium after 10-20 h on stream.This activation and induction stage may be attributed to the sintering of In_(2)O_(3)nanoparticles and the creation of more oxygen vacancies on In_(2)O_(3)surfaces.Further experimental studies demonstrate that hydrogen induction created additional oxygen vacancies during the catalyst activation stage,enhancing the performance of In_(2)O_(3)catalyst for CO_(2)hydrogenation.Density functional theory calculations and microkinetic simulations further demonstrated that surfaces with higher oxygen vacancy coverages or hydroxylated surfaces formed during this induction period can enhance the reaction rate and increase the CO_(2)conversion.However,they predominantly promote the formation of CO instead of methanol,leading to reduced methanol selectivity.These predictions align well with the above-mentioned experimental observations.Our work thus provides an in-depth analysis of the induction stage of the CO_(2)hydrogenation process on In_(2)O_(3)nano-catalyst,and offers valuable insights for significantly improving the CO_(2)reactivity of In_(2)O_(3)-based catalysts while maintaining long-term stability. 展开更多
关键词 In_(2)O_(3) CO_(2)hydrogenation Methanol production Induction and activation Structural evolution
在线阅读 下载PDF
Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects
7
作者 HUANG Rui LIU Shengjie +1 位作者 WU Qingyuan ZHENG Nanfeng 《无机化学学报》 北大核心 2025年第1期201-212,共12页
The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts c... The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts contained Pd species in mixed valence states,with high valence Pd at the metal‑support interface and zero valence Pd at the metal surface.While the strong coordination of triphenylphosphine(PPh3)to Pd0 on the Pd surface prevents the adsorption of halogenated nitroaromatics and thus dehalogenation,the coordination of sodium metavanadate(NaVO3)to high‑valence Pd sites at the interface helps to activate H2 in a heterolytic pathway for the selective hydrogenation of nitro‑groups.The excellent catalytic performance of the interfacial active sites enables the selective hydrogenation of a wide range of halogenated nitroaromatics. 展开更多
关键词 halogenated nitroaromatic heterogeneous catalysis hydrogenation selectivity control interfacial effect
在线阅读 下载PDF
Proton Irradiation-induced Oxygen Vacancy and Metallic Indium in Black Indium Oxide for Enhancing Photothermal CO_(2) Hydrogenation
8
作者 LIU Zequn WANG Cheng +3 位作者 ZENG Xiandi YAO Yingfang JIN Ziliang ZOU Zhigang 《材料科学与工程学报》 北大核心 2025年第5期697-705,714,共10页
On the surfaces of celestial bodies with no or thin atmospheres,such as the Moon and Mars,the solar wind irradiation process leads to the formation of hydrogen and helium enriched regions in the extraterrestrial soil ... On the surfaces of celestial bodies with no or thin atmospheres,such as the Moon and Mars,the solar wind irradiation process leads to the formation of hydrogen and helium enriched regions in the extraterrestrial soil particles.However,soil particles on the Earth with the similar composition lack such structures and properties.This discrepancy raises a key question whether there is a direct relationship between solar wind irradiation and the alterations in the structure and chemical performance of extraterrestrial materials.To address this question,this work investigates the effects of proton irradiation,simulating solar wind radiation,on the structure and photothermal catalytic properties of the classic catalyst In_(2)O_(3).It reveals that proton irradiation induces structural features in In_(2)O_(3) analogous to those characteristics of solar wind weathering observed in extraterrestrial materials.Furthermore,after proton beam irradiation with an energy of 30 keV and a dose of 3×10^(17) protons·cm^(-2),the methanol production yield of the In_(2)O_(3) catalyst increased to 2.6 times of its preirradiation level,and the methanol selectivity improved to 2.1 times of the original value.This work provides both theoretical and experimental support for the development of high-efficiency,radiation-resistant photothermal catalysts. 展开更多
关键词 Proton irradiation VESICULATION Photothermal CO_(2)hydrogenation Oxygen vacancy Indium oxide
在线阅读 下载PDF
Active sites and impact of preparation pH on the Cu/ZnO/ZrO_(2) catalysts for methanol production via CO_(2) hydrogenation
9
作者 MENG Xinyue SUN Shangcong +1 位作者 CAO Shuo PENG Bo 《燃料化学学报(中英文)》 北大核心 2025年第11期1569-1582,共14页
Cu/ZnO-based catalysts are widely employed for methanol synthesis via CO_(2) hydrogenation.The preparation procedure is sensitive to the particle size and interfacial structure,which are considered as potential active... Cu/ZnO-based catalysts are widely employed for methanol synthesis via CO_(2) hydrogenation.The preparation procedure is sensitive to the particle size and interfacial structure,which are considered as potential active centers influencing the rate of both methanol and CO formation.The particle size and the interaction between Cu and the support materials are influenced by the coprecipitation conditions,let alone that the mechanistic divergence remains unclear.In this work,a series of Cu/ZnO/ZrO_(2) catalysts were prepared via co-precipitation at different pH value and systematically characterized.The structure has been correlated with kinetic results to establish the structure-performance relationship.Kinetic analysis demonstrates that methanol synthesis follows a single-site Langmuir-Hinshelwood(L-H)mechanism,i.e.,Cu serves as the active site where CO_(2) and H_(2) competitively adsorb and react to form methanol.In contrast,CO formation proceeds via a dual-site L-H mechanism,where CO_(2) adsorbs onto ZnO and H_(2) onto Cu,with the reaction occurring at the Cu/ZnO interface.Therefore,for the direct formation of methanol,solely reducing the particle size of Cu would not be beneficial. 展开更多
关键词 CO_(2)hydrogenation methanol synthesis active sites KINETICS
在线阅读 下载PDF
The synthesis of alcohol ether esters through the catalytic hydrogenation of diethyl oxalate in the Cu-Al systems induced by Al_(2)O_(3) properties
10
作者 Peng Wu Lina Ma +3 位作者 Yu Zheng Li Luo Lihong Su Juntian Li 《日用化学工业(中英文)》 北大核心 2025年第9期1100-1111,共12页
The structure-performance relationship of Cu/Al_(2)O_(3) catalysts in the hydrogenation of diethyl oxalate(DEO)for the synthesis of alcohol ether esters has been investigated by various characterization techniques inc... The structure-performance relationship of Cu/Al_(2)O_(3) catalysts in the hydrogenation of diethyl oxalate(DEO)for the synthesis of alcohol ether esters has been investigated by various characterization techniques including XRD,XPS,N2O titration,and 27Al MAS-NMR.The results showed that when the crystal configurations of Al_(2)O_(3) were the same,increasing the specific surface area could effectively refine the size of copper nanoparticles(Cu NPs),and ultimately improve the conversion of DEO.Meanwhile,the smaller size ofγ-Al_(2)O_(3)(HSAl and SBAl)loaded Cu NPs promotes the reaction towards the deep hydrogenation to produce ethanol(EtOH)and ethylene glycol(EG).Besides,the larger size of Cu NPs on the surface of amorphous Al_(2)O_(3)(HTAl and SolAl)resulted in a lower conversion rate,where ethyl glycolate(Egly)is the main product.Despite there are differences in Al^(3+)ionic coordination in Al_(2)O_(3) with different crystal structures,the experimental data showed that the differences in Al^(3+)ionic coordination did not significantly affect the catalytic performance in the hydrogenation reaction.The formation of alcohol-ether ester chemicals is critically dependent on the interactions between Cu sites and acidic sites.Among them,EG and EtOH were dehydrated to form 2-ethoxyethanol via the SN2 mechanism,while Egly and EtOH were reacted to form ethyl ethoxyacetate(EEA)via the SN2 mechanism.This study provides a theoretical basis for the optimization of the coal-based glycol processes to achieve a diversified product portfolio. 展开更多
关键词 oxalate hydrogenation alcohol ether esters Cu-Al catalyst SN2 mechanism
在线阅读 下载PDF
Mechanistic understanding of the selective C=C and C=O hydrogenation catalyzed by frustrated Lewis pairs on CeO_(2)(110)from theoretical perspectives
11
作者 MA Hong CHEN Siqing +7 位作者 CHEN Jiamin DING Runlong LIU Shaoli TIAN Xinxin WU Jianbing LI Haitao WANG Yongzhao ZHAO Yongxiang 《燃料化学学报(中英文)》 北大核心 2025年第10期1528-1539,I0013-I0019,共19页
Heterogeneous solid frustrated-Lewis-pair(FLP)catalyst is of great promise in practical hydrogenation applications.It has been found that all-solid FLPs can be created on ceria via surface oxygen vacancy regulation.Co... Heterogeneous solid frustrated-Lewis-pair(FLP)catalyst is of great promise in practical hydrogenation applications.It has been found that all-solid FLPs can be created on ceria via surface oxygen vacancy regulation.Consequently,it is desired to investigate the mechanisms of the FLP-catalyzed hydrogenation of C=C and C=O and provide insight into the modification of CeO_(2)catalysts for the selective hydrogenation.In this work,the reaction mechanism of the hydrogenation of CH_(2)=CH_(2)and CH_(3)CH=O at the FLP sites constructed on CeO_(2)(110)surface was investigated by density functional theory(DFT),with the classical Lewis acid-base pairs(CLP)site as the reference.The results illustrate that at the CLP site,the dissociated hydride(H^(δ−))forms a stable H−O bond with the surface O atom,while at the FLP site,H^(δ−)is stabilized by Ce,displaying higher activity on the one hand.On the other hand,the electron cloud density of the Ce atom at the FLP site is higher,which can transfer more electrons to the adsorbed C_(C=C)and O_(C=O)atoms,leading to a higher degree of activation for C=C and C=O bonds,as indicated by the Bader charge analysis.Therefore,compared to the CLP site,the FLP site exhibits higher hydrogenation activity for CH_(2)=CH_(2)and CH_(3)CH=O.Furthermore,at the FLP sites,it demonstrates high efficiency in catalyzing the hydrogenation of CH_(2)=CH_(2)with the rate-determining barrier of 1.04 eV,but it shows limited activity for the hydrogenation of CH_(3)CH=O with the rate-determining barrier of 1.94 eV.It means that the selective hydrogenation of C=C can be effectively achieved at the FLP sites concerning selective hydrogenation catalysis.The insights shown in this work help to clarify the reaction mechanism of the hydrogenation of C=C and C=O at FLP site on CeO_(2)(110)and reveal the relationship between the catalytic performance and the nature of the active site,which is of great benefit to development of rational design of heterogeneous FLP catalysts. 展开更多
关键词 CeO_(2)(110) frustrated Lewis pairs(FLP) CH_(2)=CH_(2)/CH_(3)CH=O the mechanism of hydrogenation DFT calculation
在线阅读 下载PDF
Efficient hydrogen transfer carriers:hydrogenation mechanism of dibenzyltoluene catalyzed by Mg-based metal hydride
12
作者 Hai-Yu Deng Li-Jun Jiang +5 位作者 Shao-Hua Wang Wen-Quan Jiang Yuan-Fang Wu Xiu-Mei Guo Shu-Mao Wang Lei Hao 《Rare Metals》 2025年第3期2118-2127,共10页
Dibenzyltoluene(DBT)is a prospective liquid organic hydrogen carrier(LOHC)with low cost and high theoretical hydrogen storage capacity(6.2 wt%).However,the wide application of DBT is severely restricted by expensive n... Dibenzyltoluene(DBT)is a prospective liquid organic hydrogen carrier(LOHC)with low cost and high theoretical hydrogen storage capacity(6.2 wt%).However,the wide application of DBT is severely restricted by expensive noble catalysts.In this work,a new Mg-based metal hydride hydrogenation catalyst,which is composed of MgH_(2),Mg_(2)NiH_(4) and LaH_(3) micro-nano-particles. 展开更多
关键词 hydrogen transfer carriers noble catalysts MG based metal hydride liquid organic hydrogen carrier noble catalystsin dibenzyltoluene LOHC hydrogenation mechanism
原文传递
Effect of carbon modifications on the performance of hydrogenation catalysts
13
作者 Zhenhui Lv Jianan Li +2 位作者 Tao Yang Yibao Li Chong Peng 《Chinese Journal of Chemical Engineering》 2025年第5期270-276,共7页
In the petroleum industry,the properties of catalysts play a crucial role in the performance of hydroprocessing reactions.Carbon modification can effectively regulate the physicochemical properties of catalysts,but fu... In the petroleum industry,the properties of catalysts play a crucial role in the performance of hydroprocessing reactions.Carbon modification can effectively regulate the physicochemical properties of catalysts,but further in-depth research is necessary.In this study,ethylene glycol was used as the carbon source to investigate the impact of varying carbon amounts on the performance of the Mo-Ni/Al_(2)O_(3)hydrogenation catalyst.The results showed that both the pore structure and surface hydroxyl groups of catalysts can be adjusted after carbon modification.As the carbon content increased,the surface acidity of catalysts gradually decreased,and the interaction between carrier and active metal gradually weakened,leading to more octahedral coordination in form of polynuclear polymolybdic acid.The dispersion and sulfidation degree of Mo species improved,ultimately resulting in more hydrogenation active phases.Consequently,the catalyst exhibited enhanced hydrodesulfurization(HDS)and hydrodenitrification(HDN)activities. 展开更多
关键词 hydrogenation CATALYST REACTIVITY PETROLEUM FIXED-BED
在线阅读 下载PDF
Advancements in catalytic hydrogenation of nitrocyclohexane to cyclohexanone oxime
14
作者 Jinzhi Lu Tongxin Song +1 位作者 Weiping Ding Yan Zhu 《Green Energy & Environment》 2025年第10期2014-2028,共15页
Cyclohexanone oxime serves as a crucial intermediate in the synthesis of caprolactam,which is an essential precursor for manufacturing nylonfibers,high-performance engineering plastics,and specialized plasticfilms.Cat... Cyclohexanone oxime serves as a crucial intermediate in the synthesis of caprolactam,which is an essential precursor for manufacturing nylonfibers,high-performance engineering plastics,and specialized plasticfilms.Catalytic hydrogenation of nitrocyclohexane to cyclohexanone oxime has been documented to be an atom-economical,green and environmentally friendly process.In this review,wefirst introduce the current design rules of catalysts for catalytic hydrogenation of nitrocyclohexane in terms of both active metals and supports.Secondly,we discuss the influence of solvent effects on the cyclohexanone oxime from the nitrocyclohexane conversion.In addition,we concisely discuss typically proposed reaction pathways for the hydrogenation of nitrocyclohexane to produce cyclohexanone oxime.Finally,we provide our perspectives on some issues for catalytic conversion of nitrocyclohexane to cyclohexanone oxime in the future. 展开更多
关键词 Nitrocyclohexane hydrogenation Cyclohexanone oxime CATALYSIS SELECTIVITY
在线阅读 下载PDF
Chelating-agent-free incorporation of isolated Ni single-atoms within BEA zeolite for enhanced biomass hydrogenation
15
作者 Meng Liu Caixia Miao +8 位作者 Yumeng Fo Wenxuan Wang Yao Ning Shengqi Chu Weiyu Song Ying Zhang Jian Liu Zhijie Wu Wenhao Luo 《Chinese Journal of Catalysis》 2025年第4期308-318,共11页
Precisely tailoring metal single-atoms within zeolite scaffolds and understanding the origin of the unique behavior of such atomically dispersed catalysts are pivotal and challenge in chemistry and catalysis.Herein,we... Precisely tailoring metal single-atoms within zeolite scaffolds and understanding the origin of the unique behavior of such atomically dispersed catalysts are pivotal and challenge in chemistry and catalysis.Herein,we have successfully fabricated Ni single-atoms within BEA zeolite(Ni_(1)@Beta)through a facile in situ two-step hydrothermal strategy,notably without using any chelating agent for stabilizing Ni species.With the aid of advanced characterization techniques,such as aberration-corrected high-angle annular dark-field scanning transmission electron microscopy,X-ray absorption spectroscopy,etc.,and combined with density functional theory calculations,the nature and micro-environment of isolated Ni species,which are incorporated within 6-membered rings and stabilized by four skeletal oxygens of Beta zeolite,have been identified.The as-obtained Ni1@Beta exhibits a superior performance in terms of activity(with a turnover frequency value up to 114.1 h^(-1))and stability(for 5 consecutive runs)in the selective hydrogenation of furfural,surpassing those of Ni nanoparticle analogues and previously reported Ni-based heterogeneous catalysts.This study provides an efficient strategy for the fabrication of non-noble metal single-atoms within zeolites,which could be of great help for the design of metal-zeolite combinations in the chemoselective reactions involved in biomass conversion and beyond. 展开更多
关键词 NICKEL Single-atoms Zeolites Catalytic hydrogenation Biomass conversion
在线阅读 下载PDF
Designing mesh-like defective molybdenum carbides for ethanol synthesis via syngas-derived DMO hydrogenation
16
作者 Yannan Sun Jiafeng Yu +3 位作者 Xingtao Sun Yu Han Qingjie Ge Jian Sun 《Chinese Journal of Catalysis》 2025年第6期234-241,共8页
Molybdenum carbide has shown great potential in various hydrogenation reactions,and serves as a primary active species for synthesis of ethanol from dimethyl oxalate hydrogenation process which is a crucial step in th... Molybdenum carbide has shown great potential in various hydrogenation reactions,and serves as a primary active species for synthesis of ethanol from dimethyl oxalate hydrogenation process which is a crucial step in the efficient utilization of coal resources.In this study,a molybdenum carbide catalyst with a three-dimensional mesh-like hollow structure and lattice defects was carefully designed.The MoO_(3)precursor with abundant oxygen vacancies and defects was prepared by flame spray pyrolysis,and a structural modifier,Cu,was introduced by sputtering.The Cu deposited by sputtering affected the carburization and phase evolution processes.A three-dimensional mesh-like hollow structure composed of defective molybdenum carbide is formed,with theβ-Mo_(2)C exhibiting lattice distortions and defects.This defectiveβ-Mo_(2)C exhibits high reactivity,and facilitates the C=O hydrogenation process,showing a high reactivity of 83.1%yield in the hydrogenation of dimethyl oxalate.This work provides a new approach to the design and application of molybdenum carbide catalysts. 展开更多
关键词 SYNGAS Dimethyl oxalate hydrogenation ETHANOL Molybdenum carbides
在线阅读 下载PDF
Nickel nanoparticles catalyzed hydrogenation and deuteration for a general amine synthesis
17
作者 Xiaofei Wang Yan Li +4 位作者 Mengyun Wang Yiming Gao Zhuang Ma Aiwen Lei Wu Li 《Chinese Journal of Catalysis》 2025年第5期392-401,共10页
Amines represent fundamental motifs in various chemical contexts and are widely used in agrochemicals and pharmaceuticals.The development of earth-abundant metal-based heterogeneous catalysts for the synthesis amines ... Amines represent fundamental motifs in various chemical contexts and are widely used in agrochemicals and pharmaceuticals.The development of earth-abundant metal-based heterogeneous catalysts for the synthesis amines remains an important goal in terms of chemical research and industrial application/manufacture.Herein,we developed an efficient and highly selective nitrogen-doped nickel catalyst enriched with Lewis acid sites,which has been applied for to the hydrogenative coupling of nitriles and amines with molecular hydrogen for the synthesis of a train of functionalised and structurally diverse secondary and tertiary amines.Furthermore,catalytic hydrogenation and deuteration of nitriles were achieved under milder conditions,yielding a series of primary amines and deuterated amines with high deuterium incorporation. 展开更多
关键词 Nitrogen-doped nano-nickel catalysis Hydrogenative coupling reaction Catalytic hydrogenation and DEUTERATION Amines and deuterated amines
在线阅读 下载PDF
Highly efficient catalytic transfer hydrogenation for the conversion of nitrobenzene to aniline over PdO/TiO_(2):The key role of in situ switching from PdO to Pd
18
作者 Anqi Lu Xiaokang Xiang +5 位作者 Ming Lei Shuangshuang Huang Bingbing Liang Siyu Zhao Lihua Zhu Heqing Tang 《Journal of Environmental Sciences》 2025年第2期515-528,共14页
The reduction of nitrobenzene to aniline is very important for both pollution control and chemical synthesis.Nevertheless,difficulties still remain in developing a catalytic system having high efficiency and selectivi... The reduction of nitrobenzene to aniline is very important for both pollution control and chemical synthesis.Nevertheless,difficulties still remain in developing a catalytic system having high efficiency and selectivity for the production of aniline.Herein,it was found that PdO nanoparticles highly dispersed on TiO_(2)support(PdO/TiO_(2))functioned as a highly efficient catalyst for the reduction of nitrobenzene in the presence of NaBH4.Under favorable conditions,95%of the added nitrobenzene(1 mmol/L)was reduced within 1 min with an ultra-low apparent activation energy of 10.8 kJ/mol by using 0.5%PdO/TiO_(2)as catalysts and 2 mmol/L of NaBH4 as reductants,and the selectivity to aniline even reached up to 98%.The active hydrogen specieswere perceived as dominant species during the hydrogenation of nitrobenzene by the results of isotope labeling experiments and ESR spectroscopic.A mechanismwas proposed as follows:PdO activates the nitro groups and leads to in-situ generation of Pd,and the generated Pd acts as the reduction sites to produce active hydrogen species.In this catalytic system,nitrobenzene prefers to be adsorbed on the PdO nanoparticles of the PdO/TiO_(2)composite.Subsequently,the addition of NaBH_(4) results in in-situ generation of a Pd/PdO/TiO_(2)composite from the PdO/TiO_(2)composite,and the Pd nanoclusters would activate NaBH_(4) to generate active hydrogen species to attack the adsorbed nitro groups.This work will open up a new approach for the catalytic transfer hydrogenation of nitrobenzene to aniline in green chemistry. 展开更多
关键词 Catalytic transfer hydrogenation Reduction PD NITROBENZENE ANILINE
原文传递
Microenvironment modulation around frustrated Lewis pairs in Ce-based metal-organic frameworks for efficient catalytic hydrogenation
19
作者 Xinmeng Xu Zuoshuai Xi +6 位作者 Hongyi Gao Danfeng Zhao Zhiyuan Liu Tao Ban Jingjing Wang Shunzheng Zhao Ge Wang 《Chinese Journal of Catalysis》 2025年第8期59-72,共14页
The development of solid frustrated Lewis pairs(FLPs)catalysts with porous structures is a promising strategy for advancing green hydrogenation technologies and has garnered significant attention.Leveraging the divers... The development of solid frustrated Lewis pairs(FLPs)catalysts with porous structures is a promising strategy for advancing green hydrogenation technologies and has garnered significant attention.Leveraging the diverse oxidation states and structural tunability of cerium-based metal-organic frameworks(Ce-MOFs),this study employed a competitive coordination strategy utilizing a single carboxylate functional group ligand to construct a series of MOF-808-X(X=-NH_(2),-OH,-Br,and-NO_(2))featuring rich solid-state FLPs for hydrogenation of unsaturated olefins.The-X functional group serves as a microenvironment,enhancing hydrogenation activity by modulating the electronic properties and acid-base characteristics of the FLP sites.The unique redox properties of elemental cerium facilitate the exposure of unsaturated Ce sites(Ce-CUS,Lewis acid(LA))and adjacent Ce-OH(Lewis base(LB))sites within the MOFs,generating abundant solid-state FLP(Ce-CUS/Ce-OH)sites.Experimental results demonstrate that Ce-CUS and Ce-OH interact with theσandσ^(*)orbitals of H-H,and this"push-pull"synergy promotes heterolytic cleavage of the H-H bond.The lone pair electrons of the electron-donating functional group are transmitted through the molecular backbone to the LB site,thereby increasing its strength and reducing the activation energy required for H_(2)heterolytic cleavage.Notably,at 100℃and 2 MPa H_(2),MOF-808-NH_(2)achieves complete conversion of styrene and dicyclopentadiene,significantly outperforming MOF-808.Based on in-situ analysis and density functional theory calculations,a plausible reaction mechanism is proposed.This research enriches the theoretical framework for unsaturated olefin hydrogenation catalysts and contributes to the development of efficient catalytic systems. 展开更多
关键词 Frustrated Lewis pairs Microenvironment modulation Defect Ce-based metal-organic frameworks Catalyst hydrogenation
在线阅读 下载PDF
Efficient corn stover-derived metal-supported biochar catalyst for hydrogenation of xylose to xylitol
20
作者 Kridsada Karin Sanchai Kuboon +5 位作者 Bunyarit Panyapinyopol Saran Youngjan Wanwitoo Wanmolee Nawin Viriya-empikul Navadol Laosiripojana Kamonwat Nakason 《Resources Chemicals and Materials》 2025年第1期77-87,共11页
Xylitol,one of the top twelve chemical building blocks,is commercially synthesized through the xylose hy-drogenation reaction using a metal catalyst.Biochar has emerged as an eco-efficient catalyst support material.In... Xylitol,one of the top twelve chemical building blocks,is commercially synthesized through the xylose hy-drogenation reaction using a metal catalyst.Biochar has emerged as an eco-efficient catalyst support material.In this study,biochar derived from corn stover(BCS)was first used as a metal catalyst support material for xylose hydrogenation into xylitol.The catalyst was prepared by carbonizing corn stover(CS),impregnating the resulting biochar with metal,and reducing the metal-impregnated BCS.The catalyst characteristics were comprehensively explored.The Ru/BCS catalyst was employed in xylose conversion to xylitol at different process temperatures(100-160℃),retention times(3-12 h),H_(2)pressures(2-5 MPa),and Ru contents(1-5%).The highest xylitol yield(87.0 wt.%)and selectivity(91.6%)were derived at 120℃ for 6 h under 4 MPa H_(2)using 5%Ru.Interestingly,the Ru/BCS catalyst showed high stability under the promising process condition.Additionally,xylitol production from hydrolysates enriched with CS xylose was subsequently explored.On the other hand,the catalyst characterization results revealed that the superior catalytic efficiency of 5Ru/BCS was mainly due to the metal nanoparticles embedded in the biochar.Additionally,BCS proved to be an outstanding support material for a bimetallic hydrogenation catalyst(Ru-Ni/BCS).Therefore,these results indicate that BCS can be a competitive support material for metal hydrogenation catalysts,enhancing environmental friendliness and potentially being employed in industrial-scale xylitol production. 展开更多
关键词 XYLITOL Platform chemical hydrogenation reaction Heterogeneous catalyst Waste utilization Bimetallic catalyst
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部