Understanding livestock performance in typical steppe ecosystems is essential for optimizing grassland-livestock interactions and minimizing environmental impact.To assess the effects of different stocking rates on th...Understanding livestock performance in typical steppe ecosystems is essential for optimizing grassland-livestock interactions and minimizing environmental impact.To assess the effects of different stocking rates on the growth performance,energy and nitrogen utilization,methane(CH_(4))emissions,and grazing behavior of Tan sheep,a 2-year grazing experiment in the typical steppe was conducted.The grazing area was divided into 9 paddocks,each 0.5 ha,with 3 spatial replicates for each stocking rate treatment(4,8,and 13 sheep per paddock),corresponding to 2.7,5.3,and 8.7 sheep ha^(–1).The results showed that the neutral detergent fiber(NDF)and acid detergent fiber(ADF)contents of herbage varied between grazing years(P<0.05),with a positive correlation between stocking rate and crude fiber content in the herbage(P<0.05).Dry matter intake(DMI)decreased with increasing stocking rate(P<0.05),and the average daily gain(ADG)was highest at 2.7 sheep ha^(–1)(P<0.05).Compared to 2.7 and 8.7 sheep ha^(–1),the5.3 sheep ha^(–1)treatment exhibited the lowest nutrient digestibility for dry matter,nitrogen,and ether extract(P<0.05).Fecal nitrogen was lowest at 8.7 sheep ha^(–1)(P<0.05),while retained nitrogen as a proportion of nitrogen intake was highest.Digestive energy(DE),metabolic energy(ME),and the ratios of DE to gross energy(GE)and ME to GE were highest at 8.7 sheep ha^(–1)(P<0.05).In contrast,CH_4 emissions,CH_4 per DMI,and CH_(4)E as a proportion of GE were highest at 2.7 sheep ha^(–1)(P<0.05).Stocking rate and grazing year did not significantly affect rumen fermentation parameters,including volatile fatty acids,acetate,propionate,and the acetate/propionate ratio.At 8.7sheep ha^(–1),daily grazing time and inter-individual distance increased,while time allocated to grazing,walking,and ruminating/resting decreased as stocking rates increased(P<0.05).This study highlights the importance of adjusting stocking rates based on the nutritional value of forage and grazing year to optimize grazing management.展开更多
The Flooding Pampa grasslands are the last remnant of the Rio de la Plata grasslands in Argentina.Anthropo-genic interventions have led to severe degradation and,as a result,the ecosystem services provided by the gras...The Flooding Pampa grasslands are the last remnant of the Rio de la Plata grasslands in Argentina.Anthropo-genic interventions have led to severe degradation and,as a result,the ecosystem services provided by the grass-lands are declining,in terms of provisioning,regulating,and supporting services.We synthesized the existing literature on the ecosystem goods and services provided by these grasslands under grazing in different conditions and conservation status.We found that plant and animal diversity and primary production are the most studied ecosystem services,while climate regulation,water supply,nutrient cycling,meat production and erosion control,in that order,are less studied.Cultural services are under-researched.Continuous grazing and glyphosate spraying are the main drivers of grassland degradation.Controlled grazing and conservative stocking rates have been shown to reverse degradation and demonstrate that livestock production is compatible with ecosystem conserva-tion by maintaining regulating and provisioning services.As these management strategies are poorly integrated,improving their implementation will require important changes in farmers’decisions and the development of policies that create the economic conditions for this to happen.Research is needed to understand the conditions that prevent the knowledge generated from being transferred to producers and translated into practices that would improve the provision of ecosystem services.展开更多
Remote sensing(RS) technologies provide robust techniques for quantifying net primary productivity(NPP) which is a key component of ecosystem production management. Applying RS, the confounding effects of carbon consu...Remote sensing(RS) technologies provide robust techniques for quantifying net primary productivity(NPP) which is a key component of ecosystem production management. Applying RS, the confounding effects of carbon consumed by livestock grazing were neglected by previous studies, which created uncertainties and underestimation of NPP for the grazed lands. The grasslands in Xinjiang were selected as a case study to improve the RS based NPP estimation. A defoliation formulation model(DFM) based on RS is developed to evaluate the extent of underestimated NPP between 1982 and 2011. The estimates were then used to examine the spatiotemporal patterns of the calculated NPP. Results show that average annual underestimated NPP was 55.74 gC·m^(-2)yr^(-1) over the time period understudied, accounting for 29.06% of the total NPP for the Xinjiang grasslands. The spatial distribution of underestimated NPP is related to both grazing intensity and time. Data for the Xinjiang grasslands show that the average annual NPP was 179.41 gC·m^(-2)yr^(-1), the annual NPP with an increasing trend was observed at a rate of 1.04 gC·m^(-2)yr^(-1) between 1982 and 2011. The spatial distribution of NPP reveals distinct variations from high to low encompassing the geolocations of the Tianshan Mountains, northern and southern Xinjiang Province and corresponding with mid-mountain meadow, typical grassland, desert grassland, alpine meadow, and saline meadow grassland types. This study contributes to improving RS-based NPP estimations for grazed land and provides a more accurate data to support the scientific management of fragile grassland ecosystems in Xinjiang.展开更多
"Ryegrass, orchard grass, Festuca arundinacea and Trifolium repens" were researched in Dushan County, Guizhou Province, in order explore grass characteristics by different grazing methods in seasons. The results sho..."Ryegrass, orchard grass, Festuca arundinacea and Trifolium repens" were researched in Dushan County, Guizhou Province, in order explore grass characteristics by different grazing methods in seasons. The results show that grass community height in different groups was of little differences(P0.05); the group of moderate grazing in spring, summer and autumn dominated in grass cover; grass density showed insignificant variations among different treatment groups(P0.05) and in the groups of heavy grazing in spring and autumn and moderate grazing in summer and of moderate grazing in spring, summer and autumn, grass community density was higher compared with the other groups(P0.05); as for above-ground biomass, the group of moderate grazing in spring and autumn and heavy grazing in summer and of moderate grazing in spring, summer and autumn dominated.展开更多
Animals excrete feces during grazing. The uneven distribution of feces causes a spatial heterogeneity in grassland communities. In this study, we attempted to clarify the effects of feces on spatial distribution patte...Animals excrete feces during grazing. The uneven distribution of feces causes a spatial heterogeneity in grassland communities. In this study, we attempted to clarify the effects of feces on spatial distribution patterns of plant species. A field study was conducted on four grasslands each grazed by a single cow. These four grasslands were defined as Poa pratensis (Kentucky bluegrass) dominated grassland without feces (PoF-), Poa pratensis dominated grassland with feces (PoF+), Zoysia japonica Steud. (Japanese lawngrass) dominated grassland without feces (ZyF-), and Zoysia japonica Steud. dominated grassland with feces (ZyF+). A 50 m line that transects 100 equally spaced quadrats (L-quadrats) was drawn on each of the four grasslands. Each quadrat was 0.50 m × 0.50 m in size and consisted of four equal-area cells of 0.25 m ×0.25 m (S-quadrats). The occurrences of all plant species were recorded in each S-quadrat. The binomial distribution (BD) and beta-binomial distribution (BBD) were used to represent the variation in spatial patterns. The BBD provided a significant description of the frequency distribution of plants per quadrat. A power law was used to calculate the spatial heterogeneity of each species together with the community heterogeneity. The results revealed that the plants on each of the four grasslands were aggregatively distributed. The ZyF+ exhibited greater spatial heterogeneity than the ZyF-due to the uneven deposition of feces by cows grazing on the grasslands. Additionally we also found that the feces had effect on the heterogeneity inZyF+ and did not have effect in PoF+.展开更多
In semi-arid lands,vegetation is distributed in shrub patches immersed in a less vegetated interpatch matrix.Grazing affects perennial grass seed bank through a decrease in seed rain and an increase in seed predation ...In semi-arid lands,vegetation is distributed in shrub patches immersed in a less vegetated interpatch matrix.Grazing affects perennial grass seed bank through a decrease in seed rain and an increase in seed predation and soil compaction.Nevertheless,some species with anchorage mechanisms in their seeds might overcome this,such as Nassella tenuis(Phil.)Barkworth.This is an important species in grazing paddocks because it has an intermediate palatability and its relatively tolerant to grazing.These characteristics allow N.tenuis to increase its abundance in grazed sites.Our objective was to assess how grazing affects the key palatable species from seeds to seedlings:i.e.,seed rain,soil seed bank,and seedling recruitment in different microsites along a windward-leeward transect across shrub canopy.We hypothesized that:(1)the negative effects of grazing on N.tenuis fructification are reflected in its seed rain,soil seed bank,and seedling recruitment,especially in interpatches;(2)Nassella tenuis seed rain reduction,soil compaction by cattle in grazed sites,and removal of seeds by wind decrease its soil seed bank,especially in microsites exposed to the predominant wind;and(3)the decrease in N.tenuis soil seed bank and cover increase in annual species in grazed sites have negative effects on its seedling recruitment,especially in microsites exposed to predominant wind.We placed seed traps,collected soil samples,and monitored seedling recruitment in different locations around shrub canopy to address our hypotheses.Also,we established a manipulative experiment in which we sow N.tenuis seeds and followed its recruitment in different microsites.We compared the seed rain,soil seed bank,natural seedling recruitment,and sown seeds recruitment of N.tenuis between grazed and ungrazed sites.We analyzed differences between microsites along a windward-leeward transect across shrubs patches.Seed rain and soil seed bank had the same density in patches and interpatches both in ungrazed and grazed sites.But seed rain was higher,and soil seed bank was lower in ungrazed sites than in grazed sites.Almost all under-canopy microsites showed greater soil seed bank abundance and natural seedling recruitment in ungrazed sites.Sown seeds recruitment was the same between grazed and ungrazed sites,but it showed protective effects of shrubs in leeward microsites under grazed sites.As a conclusion,seed rain and soil seed bank are complementary under grazed sites.展开更多
When the dominant species in a plant community are palatable,many believe that large herbivores will reduce the dominant species and promote the proportion of previously suppressed species.However,this view may not al...When the dominant species in a plant community are palatable,many believe that large herbivores will reduce the dominant species and promote the proportion of previously suppressed species.However,this view may not always hold true.We conducted a 4-year yak grazing experiment on the Qinghai-Tibet Plateau and tracked the plant compositions of the rotational grazing(RG)and grazing exclusion(GE)grasslands during the four years.The results showed that in the absence of yaks under GE,the plant community was dominated by two palatable species,Kobresia pygmaea and Stipa capillata,due to their small leaf area and rapid growth strategy.The presence of yaks under RG significantly inhibited S.capillata and over half of the forbs,while the proportion of K.pygmaea increased and it became the absolute dominant species,contradicting the view that large herbivores inhibit palatable species.Interannually,the dominance of K.pygmaea under RG decreased in the dry year,leading to an increase in the dominance of the other eight species.Under GE,the dominance of K.pygmaea declined notably in the dry year,while S.capillata and seven other forbs increased substantially.Overall,these results suggest that K.pygmaea is grazing-tolerant but not drought-tolerant,whereas the other eight species are drought-tolerant but not grazingtolerant.At the community level,community composition shifts resulting from succession after grazing exclusion exceeded those caused by drought,drought tends to induce community species turnover while grazing tends to induce species abundance variations.In summary,our conclusions remind ranch managers that when considering the impact of livestock on plant community composition,they should factor in local conditions and climate change rather than simply assuming that livestock will suppress the palatable species.展开更多
Fencing for grazing exclusion is regarded as a traditional and effective method for the natural restoration of degraded alpine steppe,and it effectively promotes plant growth and enhances soil carbon stocks.Arbuscular...Fencing for grazing exclusion is regarded as a traditional and effective method for the natural restoration of degraded alpine steppe,and it effectively promotes plant growth and enhances soil carbon stocks.Arbuscular mycorrhizal fungi(AMF)are essential microorganisms in grassland that play a major role in plant-derived C translocation into the soil.However,the effects of fencing on AMF communities and their contributions to soil carbon sequestration are still unclear.In this study,alpine steppe areas with three different fencing durations(free grazing,medium-term fencing for 5-6 years and long-term fencing for more than 10 years)in the northern Tibetan Plateau were selected to explore the effects of grazing exclusion on AMF communities and their roles in soil carbon sequestration.The results showed that medium-and long-term fencing significantly increased both plant aboveground biomass and soil organic carbon(SOC)content.The AMF community composition varied significantly during different fencing durations,with a dramatic increase in the relative abundance of Glomus but a significant reduction in the relative abundance of Diversispora with longer fencing time.Medium-term fencing significantly increased AMF richness and the ShannonWiener index.Meanwhile,fencing significantly increased hyphal length density(HLD),glomalin-related soil protein(GRSP)and the proportion of macroaggregates(250-2,000μm),all of which contribute positively to SOC.Structural equation modeling revealed that fencing time positively influenced HLD and the AMF community composition,subsequently affecting T-GRSP,which was tightly correlated with SOC.Our findings suggest the potentially important contribution of AMF to SOC sequestration,so more attention should be paid to AMF during alpine steppe fencing,particularly for enhancing the efficiency of degraded grassland restoration efforts.展开更多
Invasive species are increasingly spreading,particularly in rangeland ecosystems.It is essential to evaluate the effectiveness of different methods for controlling invasive plants in these ecosystems.This study aimed ...Invasive species are increasingly spreading,particularly in rangeland ecosystems.It is essential to evaluate the effectiveness of different methods for controlling invasive plants in these ecosystems.This study aimed to investigate the effects of three strategies-21-year grazing exclusion(21-YES),mowing-grazing in rotation in alternate years(MGRS),and moderate grazing(MGS)-on the change in cover,density,and biomass of Leucanthemum vulgare Lam.(Ox-eye Daisy=OED)and the plant community.To accomplish this,three sites selected for each treatment.In 2021,270 vegetation plots were sampled using a random systematic method.Subsequently,we recorded the density and canopy cover of all growth forms(forbs,grasses,and ferns),the OED biomass,and the ground cover.The results indicated that MGS reduced OED density,OED canopy,and OED biomass.Furthermore,this strategy demonstrated the highest density and canopy cover of the plant community(including total,forbs,grasses,and ferns).Additionally,the strongest correlation was observed between the total canopy and the OED density(R2=-0.91,-0.95,-0.94 in 21-YES,MGRS,and MGS,respectively),as well as between the total canopy and the OED canopy(R2=-0.51,-0.98,-0.97 in 21-YES,MGRS,and MGS,respectively).The MGS led to an increase in diversity indices.In general,the grazing strategy has proven to be effective in controlling the spread of invasive OED and has also resulted in an increase in canopy cover,density,and diversity indices of the plant community.The study highlights the importance of ongoing management efforts to control invasive species,with moderate grazing potentially serving as a more practical,culturally accepted,and costeffective short-term control strategy for widespread rangeland weed infestations.展开更多
Climate and grazing have a significant effect on vegetation structure and soil organic carbon(SOC)distribution,particularly in mountain ecosystems that are highly susceptible to climate change.However,we lack a system...Climate and grazing have a significant effect on vegetation structure and soil organic carbon(SOC)distribution,particularly in mountain ecosystems that are highly susceptible to climate change.However,we lack a systematic understanding of how vegetation structure reacts to long-term grazing disturbances,as well as the processes that influence SOC distribution.This study uses multiple sets of data spanning 20 years from a typical alpine grassland in the Qilian Mountains to investigate the effects of climate and grazing on various root-type grasses as well as the mechanisms that drive SOC distribution.We found that grazing increases the biomass of annual,biennial and perennial taproots while decreasing that of perennial rhizomes.We also found that various root-type grasses have different responses to climate and grazing.Multiple factors jointly control the variation of SOC content(SOCc),and the variation of SOC stock(SOCs)is mainly explained by the interaction between climate and grazing years.Climate and grazing can directly or indirectly affect SOCc through vegetation,and SOCs are mainly dominated by the direct effects of grazing years and grazing gradients.Grazing gradients and root-type grass biomass have a significant effect on SOC,with little effect from climate factors.Therefore,long-term grazing may affect the root-type grass and further affect SOC distribution through differences in nutrient acquisition ability and reproductive pathways.These findings provide important guidance for regulating soil carbon sequestration potential by varying the proportion of different root-type grass in the community via sowing,livestock configuration,or grazing time.展开更多
Research on grassland carrying capacity(GCC)and forage-livestock balance is of great significance for promoting the harmonious development of human and grassland.However,the lack of understanding of GCC and forage-liv...Research on grassland carrying capacity(GCC)and forage-livestock balance is of great significance for promoting the harmonious development of human and grassland.However,the lack of understanding of GCC and forage-livestock balance in the agro-pastoral transition zone of northern China has limited the grassland sustainable development.Here,the spatial and temporal characteristics of GCC and forage-livestock balance in the grassland of agro-pastoral transition zone of northern China from 2000 to 2022 were analyzed using meteorological data and remote sensing data.Geographical detectors and geographically weighted regression were also used to identify the driving factors and their interactions with GCC changes.Moreover,future GCC trends were predicted using the Coupled Model Intercomparison Project Phase 6 dataset.Results revealed that:(1)GCC showed an overall upward trend from 2000 to 2022 but with significant inter-annual fluctuations.Its spatial distribution decreased gradually from north to south and from east to west.Precipitation,temperature,and cumulative solar radiation were the main drivers of the inter-annual variation of GCC,and the interaction between precipitation and temperature was the main influencing factor of the spatial distribution of GCC;(2)the forage-livestock balance was in an overloaded state in most years,but its index remained basically stable.Spatially,grazing overloading was mainly distributed in northeastern area and the severe overloading was mainly distributed in northwestern area;and(3)future projections indicated a downward trend in potential GCC.Under shared socioeconomic pathway(SSP)2-4.5 scenario,the potential GCC had a ranged of 1.38×10^(7)-1.86×10^(7)standard sheep unit(SHU)and a mean of 1.60×10^(7)SHU.Meanwhile,the potential GCC under SSP5-8.5 scenario had a range of 1.18×10^(7)-1.69×10^(7)SHU and a mean of 1.49×10^(7)SHU.These results indicated that although GCC of the agro-pastoral transition zone of northern China showed an overall increasing trend from 2000 to 2022,the forage-livestock balance index remained basically stable.The GCC was predicted to show a decreasing trend in the future.The findings provide a scientific basis for the sustainable development of grassland and the optimization of grazing management policies in this area.展开更多
Grazing management significantly influences greenhouse gas(GHG)emissions and the global warming potential(GWP)in grasslands.Yet,a limited understanding of the impact of grazing and grazing exclusion on GHG emis-sions ...Grazing management significantly influences greenhouse gas(GHG)emissions and the global warming potential(GWP)in grasslands.Yet,a limited understanding of the impact of grazing and grazing exclusion on GHG emis-sions and GWP in grasslands hinders progress towards grassland ecosystem sustainability and GHG mitigation.We conducted a global meta-analysis of 75 published studies to investigate the effects of grazing and grazing exclusion on methane(CH_(4)),carbon dioxide(CO_(2)),nitrous oxide(N_(2 )O),and GWP.Our results revealed that grazing and grazing exclusion significantly increased the CO_(2) and CH4 emissions,respectively.The responses of GHG emissions and GWP to grazing were regulated by grazing intensity and elevation.We also found that light grazing significantly decreased GWP but heavy grazing increased GWP.Reducing grazing intensity was a simple and effective method through stocking rate adjustment,which promised a large GHG mitigation poten-tial.Our results demonstrated that GHG emissions increased with elevation under grassland grazing,implying that irrational grazing in high-elevation grasslands promoted GHG emissions.In comparison with grazing,only long-term grazing exclusion reduced the GWP,and CH4 emissions enhanced with grazing exclusion duration.However,long-term grazing exclusion may shift economic demand and grazing burden to other areas.Overall,we suggested that regulating the grazing intensity,rather than grazing exclusion,was an effective way to re-duce GHG emissions.Our study contributed to the enhancement of sustainable grazing management practices for GHG balance and GWP in global grasslands,and offered a global picture for understanding the changes in GHG emissions and GWP under different grazing management regimes.展开更多
Aim Grasslands are dominant vegetation of China,support outstanding biodiversity and sequester bulk amount of atmospheric CO_(2).These grasslands are highly degraded and fragmented due to remarkable anthropogenic and ...Aim Grasslands are dominant vegetation of China,support outstanding biodiversity and sequester bulk amount of atmospheric CO_(2).These grasslands are highly degraded and fragmented due to remarkable anthropogenic and grazing loads.Chinese Government has made great attempt to restore by grazing exclusion.The relations of carbon fluxes with species composition and diversity in the communities sensitive to grazing by large herbivores are needed to be analysed under the global climate change scenario.The objective of present study was to comprehend the effects of grazing and fencing on the ecosystem structure and function of the typical steppe grassland.Methods To meet the objectives,overgrazed and fenced(since year 2001)sys-tems were selected in typical steppe grassland at the Duolun Restoration Ecology Research Station,Inner Mogolia,China.Within each system,three dominant communities with three replicates were selected.In each replicate community,three 1×1 m plots,were randomly located.Each plot was divided into four 50×50 cm quadrats.A total of 216,50×50 cm quadrats were sampled.From each quadrat,number of individuals and above-ground herbaceous biomass for each species,soil respiration(SR),ecosystem respira-tion(ER),net(NEE)as well as gross(GEE)ecosystem CO_(2) exchanges were recorded in June 2015.Data were well analysed using statistical software.Canonical correspondence analysis showed dif-ferential responses of communities to the structure and function of the typical steppe grassland.Important Findings Across the communities,fencing reduced the soil tempera-ture by 12%and at the same time increased the soil moisture by 44.30%,thus,increased the species richness by 28%,evenness by 21%,above-ground biomass by 19%and plant carbon by 20%.Interestingly,fencing increased NEE by 128%,GEE by 77%,SR by 65%and ER by 39%.Under fencing,species composition partially governed the CO_(2) exchange processes.Conclusions Fencing reduces soil temperature and thereby improves species diversity and more efficient CO_(2) sequestration and long-term and in-depth study is desirable for a better understanding of the relation-ship between species diversity and ecosystem carbon uptake.展开更多
Background:Individual plants can identify their neighbors and adjust their biomass investment to avoid competing with their relatives or jointly cope with external stresses.Maternal effects can improve their offspring...Background:Individual plants can identify their neighbors and adjust their biomass investment to avoid competing with their relatives or jointly cope with external stresses.Maternal effects can improve their offspring adaptability under external stresses.However,how grazing-induced maternal effects influence plant kin interactions remain unknown.Methods:Clonal offspring of Leymus chinensis grown under multi-year grazing and non-grazing conditions were used for this study.A greenhouse experiment was conducted to evaluate the performance of focal plants in the presence of kin and stranger neighbors,with the aim of analyzing the interaction between maternal effect and kin relatedness.Results:Kin relatedness of neighboring plants affected the biomass production and allocation of focal plants,demonstrating the presence of kin recognition in L.chinensis.Moreover,grazing-induced maternal effects significantly enhanced kin recognition in the species.Consequently,the presence of stranger neighbors significantly improved the growth potential of grazed offspring.Specifically,the total biomass of clonal offspring increased by 73.1%compared to the kin group,potentially buffering grazing-induced plant productivity declines.Conclusions:This study shows that historical grazing enhances kin recognition in L.chinensis.Thus,introducing multi-genotypic plants can increase the productivity of grasslands.The findings of this study enhance our understanding of intraspecific plant–plant interactions in clonal species and provide new insights into sustainable grassland management.展开更多
Background:Native warm-season grass(NWSG)mixtures may provide a lownitrogen(N)-input summer perennial forage option to extensively managed forage-livestock systems.Methods:Mixed pastures of big bluestem(Andropogon ger...Background:Native warm-season grass(NWSG)mixtures may provide a lownitrogen(N)-input summer perennial forage option to extensively managed forage-livestock systems.Methods:Mixed pastures of big bluestem(Andropogon gerardii Vitman),little bluestem(Schizachyrium scoparium Michx.),and indiangrass(Sorghastrum nutans L.)fertilized with 0 or 67 kgNha−1 were continuously stocked with beef heifers and cows.Forage mass,nutritive value,and canopy heights were determined every 2 weeks during the grazing season.Stand persistence measures included the canopy cover and leaf area index(LAI)and plant crown density at spring emergence following 3 years of grazing management.Results:Forage mass,canopy height,and stocking densities were greater for N-fertilized NWSG than unfertilized NWSG for the first 30 days of the growing season across the 3-year study.Forage NWSG fertilized with N had a greater decrease in LAI during the growing season(51%decrease)than unfertilized NWSG.Spring NWSG plant density estimates following 3 years of grazing did not differ across N management strategies.Conclusions:Forage NWSG mixtures supported superior forage attributes and greater stocking densities early in the grazing season under low-level N than zero-N-input systems and may provide a low-N-input alternative for improved species use in southeastern US forage-livestock systems.展开更多
Soil erosion caused by unsustainable grazing is a major driver of grassland ecosystem degradation in many semi-arid hilly areas in China.Thus,grazing exclusion is considered as an effective method for solving this iss...Soil erosion caused by unsustainable grazing is a major driver of grassland ecosystem degradation in many semi-arid hilly areas in China.Thus,grazing exclusion is considered as an effective method for solving this issue in such areas.However,some ecological and economic problems,such as slow grassland rejuvenation and limited economic conditions,have become obstacles for the sustainable utilization of grassland ecosystem.Accordingly,we hypothesized that the conflict between grassland use and soil conservation may be balanced by a reasonable grazing intensity.In this study,a two-year grazing fence experiment with five grazing intensity gradients was conducted in a typical grassland of the Loess Plateau in China to evaluate the responses of vegetation characteristics and soil and water losses to grazing intensity.The five grazing intensity gradients were 2.2,3.0,4.2,6.7,and 16.7 goats/hm2,which were represented by G1-G5,respectively,and no grazing was used as control.The results showed that a reasonable grazing intensity was conducive to the sustainable utilization of grassland resources.Vegetation biomass under G1-G4 grazing intensity significantly increased by 51.9%,42.1%,36.9%,and 36.7%,respectively,compared with control.In addition,vegetation coverage increased by 19.6%under G1 grazing intensity.Species diversity showed a single peak trend with increasing grazing intensity.The Shannon-Wiener diversity index under G1-G4 grazing intensities significantly increased by 22.8%,22.5%,13.3%,and 8.3%,respectively,compared with control.Furthermore,grazing increased the risk of soil erosion.Compared with control,runoff yields under G1-G5 grazing intensities increased by 1.4,2.6,2.8,4.3,and 3.9 times,respectively,and sediment yields under G1-G5 grazing intensities were 3.0,13.0,20.8,34.3,and 37.7 times greater,respectively,than those under control.This result was mainly attributed to a visible decrease in litter biomass after grazing,which decreased by 50.5%,72.6%,79.0%,80.0%,and 76.9%,respectively,under G1-G5 grazing intensities.By weighing the grassland productivity and soil conservation function,we found that both two aims were achieved at a low grazing intensity of less than 3.5 goats/hm2.Therefore,it is recommended that grassland should be moderately utilized with grazing intensity below 3.5 goats/hm2 in semi-arid hilly areas to achieve the dual goals of ecological and economic benefits.The results provide a scientific basis for grassland utilization and health management in semi-arid hilly areas from the perspective of determining reasonable grazing intensity to maintain both grassland production and soil conservation functions.展开更多
On an agrosilvopastoral farm in central Italy where Maremmana cattle graze in Turkey oak forests,we evaluated the impact of different livestock densities on stand structure,tree diversity and natural regeneration in f...On an agrosilvopastoral farm in central Italy where Maremmana cattle graze in Turkey oak forests,we evaluated the impact of different livestock densities on stand structure,tree diversity and natural regeneration in four types of grazed areas based on the grazing regime adopted:calf-grazed,high-intensity-grazed,low-intensity-grazed,ungrazed control.For each area,we set up three permanent circular plots(radius of 15 m)to survey the structural and dasometric characteristics of the overstorey,understorey,and regeneration layer.The results showed that grazing negatively affected the complexity of the forest structure and its potential to regenerate and maintain a high level of biodiversity.The differences in stand structure observed between the grazing areas were closely related to livestock density.The most sensitive components of the system were the understorey and the regeneration layers.Contrarily,the current grazing management did not affect the dominant tree structure or its composition.Our findings identified medium-term monitoring and regeneration management as the two significant aspects to consider when assessing sustainable livestock.New forests can be established by excluding graz-ing for about 20–25 years.展开更多
Reedbeds are crucial breeding habitats for vulnerable songbird species.Irrespective of their protection status,these habitats may be threatened by organic matter accumulation,progressively leading to structural homoge...Reedbeds are crucial breeding habitats for vulnerable songbird species.Irrespective of their protection status,these habitats may be threatened by organic matter accumulation,progressively leading to structural homoge-nization and habitat succession towards woodland.Managers prevent excessive litter build-up with various in-terventions opening-up the reedbeds,such as grazing,which may be detrimental or suitable for some reed bird species.We assessed the effects of extensive grazing by horses and its cessation in the medium and long terms on reedbed structure,and the consequences on reed-nesting songbird densities in Estagnol Nature Reserve,a pro-tected wetland near the French Mediterranean coast.We compared reedbed structural features between grazed,newly ungrazed and old-ungrazed plots.During nine years,we censused four songbird species in spring and collected water level data in the same survey plots.Grazing reduced reedbed extent,rejuvenated the vegetation with more short green stems on a thinner litter,and produced higher structural heterogeneity and discontinuity compared to long-lasting non grazing.Newly ungrazed plot showed intermediate effects.All surveyed songbird total densities were similar among plots while species numbers and densities differed.Grazed reedbed was more attractive to Moustached Warblers(Acrocephalus melanopogon)and Great Reed Warblers(Acrocephalus arundi-naceus),likely due to the large edges and the high vegetation structural heterogeneity.However,Moustached Warblers were more negatively affected by higher water level in grazed reedbed,presumably because flooding prevents litter foraging.The newly ungrazed reedbed was not preferred by any species.All warbler species were found under low density in the old-ungrazed reedbed,where Reed Buntings(Emberiza schoeniclus)were exclu-sively found.Food availability related to thick litter layer may explain this predilection.Common Reed Warblers(Acrocephalus scirpaceus)were found everywhere in similar densities.We conclude that reedbed management by extensive horse grazing and also its long-term cessation may benefit several songbird species.Within a context of wetland degradation and disappearance,both management strategies are useful to establish and maintain suitable habitats for reed-nesting songbird communities.展开更多
In this paper,the bifurcation properties of the vibro-impact systems with an uncertain parameter under the impulse and harmonic excitations are investigated.Firstly,by means of the orthogonal polynomial approximation(...In this paper,the bifurcation properties of the vibro-impact systems with an uncertain parameter under the impulse and harmonic excitations are investigated.Firstly,by means of the orthogonal polynomial approximation(OPA)method,the nonlinear damping and stiffness are expanded into the linear combination of the state variable.The condition for the appearance of the vibro-impact phenomenon is to be transformed based on the calculation of themean value.Afterwards,the stochastic vibro-impact systemcan be turned into an equivalent high-dimensional deterministic non-smooth system.Two different Poincarésections are chosen to analyze the bifurcation properties and the impact numbers are identified for the periodic response.Consequently,the numerical results verify the effectiveness of the approximation method for analyzing the considered nonlinear system.Furthermore,the bifurcation properties of the system with an uncertain parameter are explored through the high-dimensional deterministic system.It can be found that the excitation frequency can induce period-doubling bifurcation and grazing bifurcation.Increasing the randomintensitymay result in a diffusion-based trajectory and the impact with the constraint plane,which induces the topological behavior of the non-smooth system to change drastically.It is also found that grazing bifurcation appears in advance with increasing of the random intensity.The stronger impulse force can result in the appearance of the diffusion phenomenon.展开更多
Wave information retrieval from videos captured by a single camera has been increasingly applied in marine observation.However,when the camera observes ocean waves at low grazing angles,the accurate extraction of wave...Wave information retrieval from videos captured by a single camera has been increasingly applied in marine observation.However,when the camera observes ocean waves at low grazing angles,the accurate extraction of wave information from videos will be affected by the interference of the fine ripples on the sea surface.To solve this problem,this study develops a method for estimating peak wave periods from videos captured at low grazing angles.The method extracts the motion of the sea surface texture from the video and obtains the peak wave period via the spectral analysis.The calculation results captured from real-world videos are compared with those obtained from X-band radar inversion and tracking buoy movement,with maximum deviations of 8%and 14%,respectively.The analysis of the results shows that the peak wave period of the method has good stability.In addition,this paper uses a pinhole camera model to convert the displacement of the texture from pixel height to actual height and performs moving average filtering on the displacement of the texture,thus conducting a preliminary exploration of the inversion of significant wave height.This study helps to extend the application of sea surface videos.展开更多
基金supported by the National Natural Science Foundation of China(32161143028)the Key Technology of Grassland Ecological Civilization Demonstration Area in Ningxia Hui Autonomous Region,China(20210239)the Northwest Shelterbelt Construction Bureau of the National Forestry and Grassland Administration,China。
文摘Understanding livestock performance in typical steppe ecosystems is essential for optimizing grassland-livestock interactions and minimizing environmental impact.To assess the effects of different stocking rates on the growth performance,energy and nitrogen utilization,methane(CH_(4))emissions,and grazing behavior of Tan sheep,a 2-year grazing experiment in the typical steppe was conducted.The grazing area was divided into 9 paddocks,each 0.5 ha,with 3 spatial replicates for each stocking rate treatment(4,8,and 13 sheep per paddock),corresponding to 2.7,5.3,and 8.7 sheep ha^(–1).The results showed that the neutral detergent fiber(NDF)and acid detergent fiber(ADF)contents of herbage varied between grazing years(P<0.05),with a positive correlation between stocking rate and crude fiber content in the herbage(P<0.05).Dry matter intake(DMI)decreased with increasing stocking rate(P<0.05),and the average daily gain(ADG)was highest at 2.7 sheep ha^(–1)(P<0.05).Compared to 2.7 and 8.7 sheep ha^(–1),the5.3 sheep ha^(–1)treatment exhibited the lowest nutrient digestibility for dry matter,nitrogen,and ether extract(P<0.05).Fecal nitrogen was lowest at 8.7 sheep ha^(–1)(P<0.05),while retained nitrogen as a proportion of nitrogen intake was highest.Digestive energy(DE),metabolic energy(ME),and the ratios of DE to gross energy(GE)and ME to GE were highest at 8.7 sheep ha^(–1)(P<0.05).In contrast,CH_4 emissions,CH_4 per DMI,and CH_(4)E as a proportion of GE were highest at 2.7 sheep ha^(–1)(P<0.05).Stocking rate and grazing year did not significantly affect rumen fermentation parameters,including volatile fatty acids,acetate,propionate,and the acetate/propionate ratio.At 8.7sheep ha^(–1),daily grazing time and inter-individual distance increased,while time allocated to grazing,walking,and ruminating/resting decreased as stocking rates increased(P<0.05).This study highlights the importance of adjusting stocking rates based on the nutritional value of forage and grazing year to optimize grazing management.
文摘The Flooding Pampa grasslands are the last remnant of the Rio de la Plata grasslands in Argentina.Anthropo-genic interventions have led to severe degradation and,as a result,the ecosystem services provided by the grass-lands are declining,in terms of provisioning,regulating,and supporting services.We synthesized the existing literature on the ecosystem goods and services provided by these grasslands under grazing in different conditions and conservation status.We found that plant and animal diversity and primary production are the most studied ecosystem services,while climate regulation,water supply,nutrient cycling,meat production and erosion control,in that order,are less studied.Cultural services are under-researched.Continuous grazing and glyphosate spraying are the main drivers of grassland degradation.Controlled grazing and conservative stocking rates have been shown to reverse degradation and demonstrate that livestock production is compatible with ecosystem conserva-tion by maintaining regulating and provisioning services.As these management strategies are poorly integrated,improving their implementation will require important changes in farmers’decisions and the development of policies that create the economic conditions for this to happen.Research is needed to understand the conditions that prevent the knowledge generated from being transferred to producers and translated into practices that would improve the provision of ecosystem services.
基金supported by the international Partnership Program of the Chinese Academy of Science(Grant No.131965KYSB20160004)the National Natural Science Foundation of China(Grant No.U1803243)+1 种基金the Network Plan of the Science and Technology Service,Chinese Academy of Sciences(STS Plan)Qinghai innovation platform construction project(2017-ZJ-Y20)
文摘Remote sensing(RS) technologies provide robust techniques for quantifying net primary productivity(NPP) which is a key component of ecosystem production management. Applying RS, the confounding effects of carbon consumed by livestock grazing were neglected by previous studies, which created uncertainties and underestimation of NPP for the grazed lands. The grasslands in Xinjiang were selected as a case study to improve the RS based NPP estimation. A defoliation formulation model(DFM) based on RS is developed to evaluate the extent of underestimated NPP between 1982 and 2011. The estimates were then used to examine the spatiotemporal patterns of the calculated NPP. Results show that average annual underestimated NPP was 55.74 gC·m^(-2)yr^(-1) over the time period understudied, accounting for 29.06% of the total NPP for the Xinjiang grasslands. The spatial distribution of underestimated NPP is related to both grazing intensity and time. Data for the Xinjiang grasslands show that the average annual NPP was 179.41 gC·m^(-2)yr^(-1), the annual NPP with an increasing trend was observed at a rate of 1.04 gC·m^(-2)yr^(-1) between 1982 and 2011. The spatial distribution of NPP reveals distinct variations from high to low encompassing the geolocations of the Tianshan Mountains, northern and southern Xinjiang Province and corresponding with mid-mountain meadow, typical grassland, desert grassland, alpine meadow, and saline meadow grassland types. This study contributes to improving RS-based NPP estimations for grazed land and provides a more accurate data to support the scientific management of fragile grassland ecosystems in Xinjiang.
基金Supported by Guizhou Academy of Agricultural Sciences Foundation(2010023)Guizhou Academy of Agricultural Sciences Special Funds([2011]021)Guizhou Academy of Agricultural Sciences Foundation for the Talents([2011]01)~~
文摘"Ryegrass, orchard grass, Festuca arundinacea and Trifolium repens" were researched in Dushan County, Guizhou Province, in order explore grass characteristics by different grazing methods in seasons. The results show that grass community height in different groups was of little differences(P0.05); the group of moderate grazing in spring, summer and autumn dominated in grass cover; grass density showed insignificant variations among different treatment groups(P0.05) and in the groups of heavy grazing in spring and autumn and moderate grazing in summer and of moderate grazing in spring, summer and autumn, grass community density was higher compared with the other groups(P0.05); as for above-ground biomass, the group of moderate grazing in spring and autumn and heavy grazing in summer and of moderate grazing in spring, summer and autumn dominated.
文摘Animals excrete feces during grazing. The uneven distribution of feces causes a spatial heterogeneity in grassland communities. In this study, we attempted to clarify the effects of feces on spatial distribution patterns of plant species. A field study was conducted on four grasslands each grazed by a single cow. These four grasslands were defined as Poa pratensis (Kentucky bluegrass) dominated grassland without feces (PoF-), Poa pratensis dominated grassland with feces (PoF+), Zoysia japonica Steud. (Japanese lawngrass) dominated grassland without feces (ZyF-), and Zoysia japonica Steud. dominated grassland with feces (ZyF+). A 50 m line that transects 100 equally spaced quadrats (L-quadrats) was drawn on each of the four grasslands. Each quadrat was 0.50 m × 0.50 m in size and consisted of four equal-area cells of 0.25 m ×0.25 m (S-quadrats). The occurrences of all plant species were recorded in each S-quadrat. The binomial distribution (BD) and beta-binomial distribution (BBD) were used to represent the variation in spatial patterns. The BBD provided a significant description of the frequency distribution of plants per quadrat. A power law was used to calculate the spatial heterogeneity of each species together with the community heterogeneity. The results revealed that the plants on each of the four grasslands were aggregatively distributed. The ZyF+ exhibited greater spatial heterogeneity than the ZyF-due to the uneven deposition of feces by cows grazing on the grasslands. Additionally we also found that the feces had effect on the heterogeneity inZyF+ and did not have effect in PoF+.
基金supported by the National University of Río Negro(PI 40-C-654,PI 40-C-873)。
文摘In semi-arid lands,vegetation is distributed in shrub patches immersed in a less vegetated interpatch matrix.Grazing affects perennial grass seed bank through a decrease in seed rain and an increase in seed predation and soil compaction.Nevertheless,some species with anchorage mechanisms in their seeds might overcome this,such as Nassella tenuis(Phil.)Barkworth.This is an important species in grazing paddocks because it has an intermediate palatability and its relatively tolerant to grazing.These characteristics allow N.tenuis to increase its abundance in grazed sites.Our objective was to assess how grazing affects the key palatable species from seeds to seedlings:i.e.,seed rain,soil seed bank,and seedling recruitment in different microsites along a windward-leeward transect across shrub canopy.We hypothesized that:(1)the negative effects of grazing on N.tenuis fructification are reflected in its seed rain,soil seed bank,and seedling recruitment,especially in interpatches;(2)Nassella tenuis seed rain reduction,soil compaction by cattle in grazed sites,and removal of seeds by wind decrease its soil seed bank,especially in microsites exposed to the predominant wind;and(3)the decrease in N.tenuis soil seed bank and cover increase in annual species in grazed sites have negative effects on its seedling recruitment,especially in microsites exposed to predominant wind.We placed seed traps,collected soil samples,and monitored seedling recruitment in different locations around shrub canopy to address our hypotheses.Also,we established a manipulative experiment in which we sow N.tenuis seeds and followed its recruitment in different microsites.We compared the seed rain,soil seed bank,natural seedling recruitment,and sown seeds recruitment of N.tenuis between grazed and ungrazed sites.We analyzed differences between microsites along a windward-leeward transect across shrubs patches.Seed rain and soil seed bank had the same density in patches and interpatches both in ungrazed and grazed sites.But seed rain was higher,and soil seed bank was lower in ungrazed sites than in grazed sites.Almost all under-canopy microsites showed greater soil seed bank abundance and natural seedling recruitment in ungrazed sites.Sown seeds recruitment was the same between grazed and ungrazed sites,but it showed protective effects of shrubs in leeward microsites under grazed sites.As a conclusion,seed rain and soil seed bank are complementary under grazed sites.
基金financially supported by grants from the National Natural Science Foundation of China(32101315 and 32101326)the National Key R&D Program of China(2021YFE0112400)+2 种基金the Second Tibetan Plateau Scientific Expedition and Research Program,China(2019QZKK0307)the HighLevel Talent Research Start-Up Project of Chongqing Technology and Business University,China(950319097)the Scientific and Technological Research Program of Chongqing Municipal Education Commission,China(KJQN202100827)。
文摘When the dominant species in a plant community are palatable,many believe that large herbivores will reduce the dominant species and promote the proportion of previously suppressed species.However,this view may not always hold true.We conducted a 4-year yak grazing experiment on the Qinghai-Tibet Plateau and tracked the plant compositions of the rotational grazing(RG)and grazing exclusion(GE)grasslands during the four years.The results showed that in the absence of yaks under GE,the plant community was dominated by two palatable species,Kobresia pygmaea and Stipa capillata,due to their small leaf area and rapid growth strategy.The presence of yaks under RG significantly inhibited S.capillata and over half of the forbs,while the proportion of K.pygmaea increased and it became the absolute dominant species,contradicting the view that large herbivores inhibit palatable species.Interannually,the dominance of K.pygmaea under RG decreased in the dry year,leading to an increase in the dominance of the other eight species.Under GE,the dominance of K.pygmaea declined notably in the dry year,while S.capillata and seven other forbs increased substantially.Overall,these results suggest that K.pygmaea is grazing-tolerant but not drought-tolerant,whereas the other eight species are drought-tolerant but not grazingtolerant.At the community level,community composition shifts resulting from succession after grazing exclusion exceeded those caused by drought,drought tends to induce community species turnover while grazing tends to induce species abundance variations.In summary,our conclusions remind ranch managers that when considering the impact of livestock on plant community composition,they should factor in local conditions and climate change rather than simply assuming that livestock will suppress the palatable species.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program,China(2019QZKK0304)the National Natural Science Foundation of China(31800380 and 31761123001-1)。
文摘Fencing for grazing exclusion is regarded as a traditional and effective method for the natural restoration of degraded alpine steppe,and it effectively promotes plant growth and enhances soil carbon stocks.Arbuscular mycorrhizal fungi(AMF)are essential microorganisms in grassland that play a major role in plant-derived C translocation into the soil.However,the effects of fencing on AMF communities and their contributions to soil carbon sequestration are still unclear.In this study,alpine steppe areas with three different fencing durations(free grazing,medium-term fencing for 5-6 years and long-term fencing for more than 10 years)in the northern Tibetan Plateau were selected to explore the effects of grazing exclusion on AMF communities and their roles in soil carbon sequestration.The results showed that medium-and long-term fencing significantly increased both plant aboveground biomass and soil organic carbon(SOC)content.The AMF community composition varied significantly during different fencing durations,with a dramatic increase in the relative abundance of Glomus but a significant reduction in the relative abundance of Diversispora with longer fencing time.Medium-term fencing significantly increased AMF richness and the ShannonWiener index.Meanwhile,fencing significantly increased hyphal length density(HLD),glomalin-related soil protein(GRSP)and the proportion of macroaggregates(250-2,000μm),all of which contribute positively to SOC.Structural equation modeling revealed that fencing time positively influenced HLD and the AMF community composition,subsequently affecting T-GRSP,which was tightly correlated with SOC.Our findings suggest the potentially important contribution of AMF to SOC sequestration,so more attention should be paid to AMF during alpine steppe fencing,particularly for enhancing the efficiency of degraded grassland restoration efforts.
基金the University of Mohaghegh Ardabili,Department of Natural Resources,Iran for financial support。
文摘Invasive species are increasingly spreading,particularly in rangeland ecosystems.It is essential to evaluate the effectiveness of different methods for controlling invasive plants in these ecosystems.This study aimed to investigate the effects of three strategies-21-year grazing exclusion(21-YES),mowing-grazing in rotation in alternate years(MGRS),and moderate grazing(MGS)-on the change in cover,density,and biomass of Leucanthemum vulgare Lam.(Ox-eye Daisy=OED)and the plant community.To accomplish this,three sites selected for each treatment.In 2021,270 vegetation plots were sampled using a random systematic method.Subsequently,we recorded the density and canopy cover of all growth forms(forbs,grasses,and ferns),the OED biomass,and the ground cover.The results indicated that MGS reduced OED density,OED canopy,and OED biomass.Furthermore,this strategy demonstrated the highest density and canopy cover of the plant community(including total,forbs,grasses,and ferns).Additionally,the strongest correlation was observed between the total canopy and the OED density(R2=-0.91,-0.95,-0.94 in 21-YES,MGRS,and MGS,respectively),as well as between the total canopy and the OED canopy(R2=-0.51,-0.98,-0.97 in 21-YES,MGRS,and MGS,respectively).The MGS led to an increase in diversity indices.In general,the grazing strategy has proven to be effective in controlling the spread of invasive OED and has also resulted in an increase in canopy cover,density,and diversity indices of the plant community.The study highlights the importance of ongoing management efforts to control invasive species,with moderate grazing potentially serving as a more practical,culturally accepted,and costeffective short-term control strategy for widespread rangeland weed infestations.
基金funded by the China National Natural Science Foundation(32161143028)National Science and Technology Assistance(KY202002011)the Innovative Research Team of the Ministry of Education(IRT_17R50).
文摘Climate and grazing have a significant effect on vegetation structure and soil organic carbon(SOC)distribution,particularly in mountain ecosystems that are highly susceptible to climate change.However,we lack a systematic understanding of how vegetation structure reacts to long-term grazing disturbances,as well as the processes that influence SOC distribution.This study uses multiple sets of data spanning 20 years from a typical alpine grassland in the Qilian Mountains to investigate the effects of climate and grazing on various root-type grasses as well as the mechanisms that drive SOC distribution.We found that grazing increases the biomass of annual,biennial and perennial taproots while decreasing that of perennial rhizomes.We also found that various root-type grasses have different responses to climate and grazing.Multiple factors jointly control the variation of SOC content(SOCc),and the variation of SOC stock(SOCs)is mainly explained by the interaction between climate and grazing years.Climate and grazing can directly or indirectly affect SOCc through vegetation,and SOCs are mainly dominated by the direct effects of grazing years and grazing gradients.Grazing gradients and root-type grass biomass have a significant effect on SOC,with little effect from climate factors.Therefore,long-term grazing may affect the root-type grass and further affect SOC distribution through differences in nutrient acquisition ability and reproductive pathways.These findings provide important guidance for regulating soil carbon sequestration potential by varying the proportion of different root-type grass in the community via sowing,livestock configuration,or grazing time.
基金supported by the National Natural Science Foundation of China(42271309)the Natural Science Foundation of Shaanxi Province(2024JC-YBMS-194).
文摘Research on grassland carrying capacity(GCC)and forage-livestock balance is of great significance for promoting the harmonious development of human and grassland.However,the lack of understanding of GCC and forage-livestock balance in the agro-pastoral transition zone of northern China has limited the grassland sustainable development.Here,the spatial and temporal characteristics of GCC and forage-livestock balance in the grassland of agro-pastoral transition zone of northern China from 2000 to 2022 were analyzed using meteorological data and remote sensing data.Geographical detectors and geographically weighted regression were also used to identify the driving factors and their interactions with GCC changes.Moreover,future GCC trends were predicted using the Coupled Model Intercomparison Project Phase 6 dataset.Results revealed that:(1)GCC showed an overall upward trend from 2000 to 2022 but with significant inter-annual fluctuations.Its spatial distribution decreased gradually from north to south and from east to west.Precipitation,temperature,and cumulative solar radiation were the main drivers of the inter-annual variation of GCC,and the interaction between precipitation and temperature was the main influencing factor of the spatial distribution of GCC;(2)the forage-livestock balance was in an overloaded state in most years,but its index remained basically stable.Spatially,grazing overloading was mainly distributed in northeastern area and the severe overloading was mainly distributed in northwestern area;and(3)future projections indicated a downward trend in potential GCC.Under shared socioeconomic pathway(SSP)2-4.5 scenario,the potential GCC had a ranged of 1.38×10^(7)-1.86×10^(7)standard sheep unit(SHU)and a mean of 1.60×10^(7)SHU.Meanwhile,the potential GCC under SSP5-8.5 scenario had a range of 1.18×10^(7)-1.69×10^(7)SHU and a mean of 1.49×10^(7)SHU.These results indicated that although GCC of the agro-pastoral transition zone of northern China showed an overall increasing trend from 2000 to 2022,the forage-livestock balance index remained basically stable.The GCC was predicted to show a decreasing trend in the future.The findings provide a scientific basis for the sustainable development of grassland and the optimization of grazing management policies in this area.
基金supported by National Natural Science Foundation of China(Grant No.72394401).
文摘Grazing management significantly influences greenhouse gas(GHG)emissions and the global warming potential(GWP)in grasslands.Yet,a limited understanding of the impact of grazing and grazing exclusion on GHG emis-sions and GWP in grasslands hinders progress towards grassland ecosystem sustainability and GHG mitigation.We conducted a global meta-analysis of 75 published studies to investigate the effects of grazing and grazing exclusion on methane(CH_(4)),carbon dioxide(CO_(2)),nitrous oxide(N_(2 )O),and GWP.Our results revealed that grazing and grazing exclusion significantly increased the CO_(2) and CH4 emissions,respectively.The responses of GHG emissions and GWP to grazing were regulated by grazing intensity and elevation.We also found that light grazing significantly decreased GWP but heavy grazing increased GWP.Reducing grazing intensity was a simple and effective method through stocking rate adjustment,which promised a large GHG mitigation poten-tial.Our results demonstrated that GHG emissions increased with elevation under grassland grazing,implying that irrational grazing in high-elevation grasslands promoted GHG emissions.In comparison with grazing,only long-term grazing exclusion reduced the GWP,and CH4 emissions enhanced with grazing exclusion duration.However,long-term grazing exclusion may shift economic demand and grazing burden to other areas.Overall,we suggested that regulating the grazing intensity,rather than grazing exclusion,was an effective way to re-duce GHG emissions.Our study contributed to the enhancement of sustainable grazing management practices for GHG balance and GWP in global grasslands,and offered a global picture for understanding the changes in GHG emissions and GWP under different grazing management regimes.
基金This study was supported by TWAS Fellowships for Research and Advanced Training,Italy to R.S.(FR number 3240281997)the National Natural Science Foundation of China(31430015,31270564).
文摘Aim Grasslands are dominant vegetation of China,support outstanding biodiversity and sequester bulk amount of atmospheric CO_(2).These grasslands are highly degraded and fragmented due to remarkable anthropogenic and grazing loads.Chinese Government has made great attempt to restore by grazing exclusion.The relations of carbon fluxes with species composition and diversity in the communities sensitive to grazing by large herbivores are needed to be analysed under the global climate change scenario.The objective of present study was to comprehend the effects of grazing and fencing on the ecosystem structure and function of the typical steppe grassland.Methods To meet the objectives,overgrazed and fenced(since year 2001)sys-tems were selected in typical steppe grassland at the Duolun Restoration Ecology Research Station,Inner Mogolia,China.Within each system,three dominant communities with three replicates were selected.In each replicate community,three 1×1 m plots,were randomly located.Each plot was divided into four 50×50 cm quadrats.A total of 216,50×50 cm quadrats were sampled.From each quadrat,number of individuals and above-ground herbaceous biomass for each species,soil respiration(SR),ecosystem respira-tion(ER),net(NEE)as well as gross(GEE)ecosystem CO_(2) exchanges were recorded in June 2015.Data were well analysed using statistical software.Canonical correspondence analysis showed dif-ferential responses of communities to the structure and function of the typical steppe grassland.Important Findings Across the communities,fencing reduced the soil tempera-ture by 12%and at the same time increased the soil moisture by 44.30%,thus,increased the species richness by 28%,evenness by 21%,above-ground biomass by 19%and plant carbon by 20%.Interestingly,fencing increased NEE by 128%,GEE by 77%,SR by 65%and ER by 39%.Under fencing,species composition partially governed the CO_(2) exchange processes.Conclusions Fencing reduces soil temperature and thereby improves species diversity and more efficient CO_(2) sequestration and long-term and in-depth study is desirable for a better understanding of the relation-ship between species diversity and ecosystem carbon uptake.
基金supported by the National Natural Science Foundation of China(32071882),Xiliang Li.
文摘Background:Individual plants can identify their neighbors and adjust their biomass investment to avoid competing with their relatives or jointly cope with external stresses.Maternal effects can improve their offspring adaptability under external stresses.However,how grazing-induced maternal effects influence plant kin interactions remain unknown.Methods:Clonal offspring of Leymus chinensis grown under multi-year grazing and non-grazing conditions were used for this study.A greenhouse experiment was conducted to evaluate the performance of focal plants in the presence of kin and stranger neighbors,with the aim of analyzing the interaction between maternal effect and kin relatedness.Results:Kin relatedness of neighboring plants affected the biomass production and allocation of focal plants,demonstrating the presence of kin recognition in L.chinensis.Moreover,grazing-induced maternal effects significantly enhanced kin recognition in the species.Consequently,the presence of stranger neighbors significantly improved the growth potential of grazed offspring.Specifically,the total biomass of clonal offspring increased by 73.1%compared to the kin group,potentially buffering grazing-induced plant productivity declines.Conclusions:This study shows that historical grazing enhances kin recognition in L.chinensis.Thus,introducing multi-genotypic plants can increase the productivity of grasslands.The findings of this study enhance our understanding of intraspecific plant–plant interactions in clonal species and provide new insights into sustainable grassland management.
文摘Background:Native warm-season grass(NWSG)mixtures may provide a lownitrogen(N)-input summer perennial forage option to extensively managed forage-livestock systems.Methods:Mixed pastures of big bluestem(Andropogon gerardii Vitman),little bluestem(Schizachyrium scoparium Michx.),and indiangrass(Sorghastrum nutans L.)fertilized with 0 or 67 kgNha−1 were continuously stocked with beef heifers and cows.Forage mass,nutritive value,and canopy heights were determined every 2 weeks during the grazing season.Stand persistence measures included the canopy cover and leaf area index(LAI)and plant crown density at spring emergence following 3 years of grazing management.Results:Forage mass,canopy height,and stocking densities were greater for N-fertilized NWSG than unfertilized NWSG for the first 30 days of the growing season across the 3-year study.Forage NWSG fertilized with N had a greater decrease in LAI during the growing season(51%decrease)than unfertilized NWSG.Spring NWSG plant density estimates following 3 years of grazing did not differ across N management strategies.Conclusions:Forage NWSG mixtures supported superior forage attributes and greater stocking densities early in the grazing season under low-level N than zero-N-input systems and may provide a low-N-input alternative for improved species use in southeastern US forage-livestock systems.
基金National Key Research and Development Program of China(2022YFD1300803)National Natural Science Foundation of China(42377357).
文摘Soil erosion caused by unsustainable grazing is a major driver of grassland ecosystem degradation in many semi-arid hilly areas in China.Thus,grazing exclusion is considered as an effective method for solving this issue in such areas.However,some ecological and economic problems,such as slow grassland rejuvenation and limited economic conditions,have become obstacles for the sustainable utilization of grassland ecosystem.Accordingly,we hypothesized that the conflict between grassland use and soil conservation may be balanced by a reasonable grazing intensity.In this study,a two-year grazing fence experiment with five grazing intensity gradients was conducted in a typical grassland of the Loess Plateau in China to evaluate the responses of vegetation characteristics and soil and water losses to grazing intensity.The five grazing intensity gradients were 2.2,3.0,4.2,6.7,and 16.7 goats/hm2,which were represented by G1-G5,respectively,and no grazing was used as control.The results showed that a reasonable grazing intensity was conducive to the sustainable utilization of grassland resources.Vegetation biomass under G1-G4 grazing intensity significantly increased by 51.9%,42.1%,36.9%,and 36.7%,respectively,compared with control.In addition,vegetation coverage increased by 19.6%under G1 grazing intensity.Species diversity showed a single peak trend with increasing grazing intensity.The Shannon-Wiener diversity index under G1-G4 grazing intensities significantly increased by 22.8%,22.5%,13.3%,and 8.3%,respectively,compared with control.Furthermore,grazing increased the risk of soil erosion.Compared with control,runoff yields under G1-G5 grazing intensities increased by 1.4,2.6,2.8,4.3,and 3.9 times,respectively,and sediment yields under G1-G5 grazing intensities were 3.0,13.0,20.8,34.3,and 37.7 times greater,respectively,than those under control.This result was mainly attributed to a visible decrease in litter biomass after grazing,which decreased by 50.5%,72.6%,79.0%,80.0%,and 76.9%,respectively,under G1-G5 grazing intensities.By weighing the grassland productivity and soil conservation function,we found that both two aims were achieved at a low grazing intensity of less than 3.5 goats/hm2.Therefore,it is recommended that grassland should be moderately utilized with grazing intensity below 3.5 goats/hm2 in semi-arid hilly areas to achieve the dual goals of ecological and economic benefits.The results provide a scientific basis for grassland utilization and health management in semi-arid hilly areas from the perspective of determining reasonable grazing intensity to maintain both grassland production and soil conservation functions.
基金This research is related to the project GO NEWTON“Agroforestry Network in Tuscany”,financed by the Tuscany Region through the Measure 16.2 of Rural Development Plan 2014-2020 to promote agroforestry systems by spreading knowledge to farmers and promoting innovation in the Tuscan territory.
文摘On an agrosilvopastoral farm in central Italy where Maremmana cattle graze in Turkey oak forests,we evaluated the impact of different livestock densities on stand structure,tree diversity and natural regeneration in four types of grazed areas based on the grazing regime adopted:calf-grazed,high-intensity-grazed,low-intensity-grazed,ungrazed control.For each area,we set up three permanent circular plots(radius of 15 m)to survey the structural and dasometric characteristics of the overstorey,understorey,and regeneration layer.The results showed that grazing negatively affected the complexity of the forest structure and its potential to regenerate and maintain a high level of biodiversity.The differences in stand structure observed between the grazing areas were closely related to livestock density.The most sensitive components of the system were the understorey and the regeneration layers.Contrarily,the current grazing management did not affect the dominant tree structure or its composition.Our findings identified medium-term monitoring and regeneration management as the two significant aspects to consider when assessing sustainable livestock.New forests can be established by excluding graz-ing for about 20–25 years.
基金supported by the French Ministry of Ecological Transition through the Direction Regionale de l’Environnement,de l’Amenagement et du Logement d’Occitanie,the Office Francais de la Biodiversite,and the Conservatoire d’Espaces Naturels d’Occitanie.
文摘Reedbeds are crucial breeding habitats for vulnerable songbird species.Irrespective of their protection status,these habitats may be threatened by organic matter accumulation,progressively leading to structural homoge-nization and habitat succession towards woodland.Managers prevent excessive litter build-up with various in-terventions opening-up the reedbeds,such as grazing,which may be detrimental or suitable for some reed bird species.We assessed the effects of extensive grazing by horses and its cessation in the medium and long terms on reedbed structure,and the consequences on reed-nesting songbird densities in Estagnol Nature Reserve,a pro-tected wetland near the French Mediterranean coast.We compared reedbed structural features between grazed,newly ungrazed and old-ungrazed plots.During nine years,we censused four songbird species in spring and collected water level data in the same survey plots.Grazing reduced reedbed extent,rejuvenated the vegetation with more short green stems on a thinner litter,and produced higher structural heterogeneity and discontinuity compared to long-lasting non grazing.Newly ungrazed plot showed intermediate effects.All surveyed songbird total densities were similar among plots while species numbers and densities differed.Grazed reedbed was more attractive to Moustached Warblers(Acrocephalus melanopogon)and Great Reed Warblers(Acrocephalus arundi-naceus),likely due to the large edges and the high vegetation structural heterogeneity.However,Moustached Warblers were more negatively affected by higher water level in grazed reedbed,presumably because flooding prevents litter foraging.The newly ungrazed reedbed was not preferred by any species.All warbler species were found under low density in the old-ungrazed reedbed,where Reed Buntings(Emberiza schoeniclus)were exclu-sively found.Food availability related to thick litter layer may explain this predilection.Common Reed Warblers(Acrocephalus scirpaceus)were found everywhere in similar densities.We conclude that reedbed management by extensive horse grazing and also its long-term cessation may benefit several songbird species.Within a context of wetland degradation and disappearance,both management strategies are useful to establish and maintain suitable habitats for reed-nesting songbird communities.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.12172266,12272283)the Bilateral Governmental Personnel Exchange Project between China and Slovenia for the Years 2021-2023(Grant No.12)+2 种基金Slovenian Research Agency ARRS in Frame of Bilateral Project(Grant No.P2-0137)the Fundamental Research Funds for the Central Universities(Grant No.QTZX23004)Joint University Education Project between China and East European(Grant No.2021122).
文摘In this paper,the bifurcation properties of the vibro-impact systems with an uncertain parameter under the impulse and harmonic excitations are investigated.Firstly,by means of the orthogonal polynomial approximation(OPA)method,the nonlinear damping and stiffness are expanded into the linear combination of the state variable.The condition for the appearance of the vibro-impact phenomenon is to be transformed based on the calculation of themean value.Afterwards,the stochastic vibro-impact systemcan be turned into an equivalent high-dimensional deterministic non-smooth system.Two different Poincarésections are chosen to analyze the bifurcation properties and the impact numbers are identified for the periodic response.Consequently,the numerical results verify the effectiveness of the approximation method for analyzing the considered nonlinear system.Furthermore,the bifurcation properties of the system with an uncertain parameter are explored through the high-dimensional deterministic system.It can be found that the excitation frequency can induce period-doubling bifurcation and grazing bifurcation.Increasing the randomintensitymay result in a diffusion-based trajectory and the impact with the constraint plane,which induces the topological behavior of the non-smooth system to change drastically.It is also found that grazing bifurcation appears in advance with increasing of the random intensity.The stronger impulse force can result in the appearance of the diffusion phenomenon.
基金The Key R&D Program of Shandong Province under contract No.2023CXPT101.
文摘Wave information retrieval from videos captured by a single camera has been increasingly applied in marine observation.However,when the camera observes ocean waves at low grazing angles,the accurate extraction of wave information from videos will be affected by the interference of the fine ripples on the sea surface.To solve this problem,this study develops a method for estimating peak wave periods from videos captured at low grazing angles.The method extracts the motion of the sea surface texture from the video and obtains the peak wave period via the spectral analysis.The calculation results captured from real-world videos are compared with those obtained from X-band radar inversion and tracking buoy movement,with maximum deviations of 8%and 14%,respectively.The analysis of the results shows that the peak wave period of the method has good stability.In addition,this paper uses a pinhole camera model to convert the displacement of the texture from pixel height to actual height and performs moving average filtering on the displacement of the texture,thus conducting a preliminary exploration of the inversion of significant wave height.This study helps to extend the application of sea surface videos.