基于深度学习的网络攻击检测是对欧几里得数据进行建模,无法学习攻击数据中的结构特征。为此,提出一种基于改进图采样与聚合(graph sample and aggregate,GraphSAGE)的网络攻击检测算法。首先,将攻击数据从平面结构转换为图结构数据。其...基于深度学习的网络攻击检测是对欧几里得数据进行建模,无法学习攻击数据中的结构特征。为此,提出一种基于改进图采样与聚合(graph sample and aggregate,GraphSAGE)的网络攻击检测算法。首先,将攻击数据从平面结构转换为图结构数据。其次,对GraphSAGE算法进行了改进,包括在消息传递阶段融合节点和边的特征,同时在消息聚合过程中考虑不同源节点对目标节点的影响程度,并在边嵌入生成时引入残差学习机制。在两个公开网络攻击数据集上的实验结果表明,在二分类情况下,所提算法的总体性能优于E-GraphSAGE、LSTM、RNN、CNN算法;在多分类情况下,所提算法在大多数攻击类型上的F1值高于对比算法。展开更多
In this paper,we first give a sufficient condition for a graph being fractional ID-[a,b]-factor-critical covered in terms of its independence number and minimum degree,which partially answers the problem posed by Sizh...In this paper,we first give a sufficient condition for a graph being fractional ID-[a,b]-factor-critical covered in terms of its independence number and minimum degree,which partially answers the problem posed by Sizhong Zhou,Hongxia Liu and Yang Xu(2022).Then,an A_(α)-spectral condition is given to ensure that G is a fractional ID-[a,b]-factor-critical covered graph and an(a,b,k)-factor-critical graph,respectively.In fact,(a,b,k)-factor-critical graph is a graph which has an[a,b]-factor for k=0.Thus,these above results extend the results of Jia Wei and Shenggui Zhang(2023)and Ao Fan,Ruifang Liu and Guoyan Ao(2023)in some sense.展开更多
增强安徽省可持续发展动能对推动长三角更高质量一体化发展和服务国家新发展格局具有重要意义。本文构建了面向联合国2030可持续发展目标(Sustainable Development Goals,SDGs)的可持续发展水平评估框架和指标体系,对2011~2021年安徽省...增强安徽省可持续发展动能对推动长三角更高质量一体化发展和服务国家新发展格局具有重要意义。本文构建了面向联合国2030可持续发展目标(Sustainable Development Goals,SDGs)的可持续发展水平评估框架和指标体系,对2011~2021年安徽省及其16个地级市可持续发展水平进行测算,计算各市经济、社会和环境维度可持续发展的耦合协调度,分析安徽省可持续发展水平的时空演化特征,利用Dagum基尼系数深入探究安徽省可持续发展水平区域差异的原因,并基于灰色关联度分析方法进一步揭示影响安徽省不同城市可持续发展水平的关键因素。研究结果表明:安徽省可持续发展综合指数以及3个子系统间的耦合协调度呈现不断提高的趋势,但可持续发展水平空间差异明显。安徽省可持续发展水平空间差异原因主要来自区域之间的差异,“皖中-皖北”和“皖中-皖南”的区域间差异明显高于“皖南-皖北”。不同维度下不同指标对各市可持续发展综合水平的影响表现出明显差异。对省会合肥而言,研发经费支出占比、公共服务支出比重、生活垃圾无害化处理率分别是经济、社会和环境子系统影响其可持续发展综合水平的首要因素。研究结果可为安徽省加快实现2030可持续发展目标和推动高质量发展提供科学支撑。展开更多
为解决财务人员数字技术应用能力不足、传统财务流程中数据采集质量差导致重复返工、人工数据处理效率低等问题,设计开发了财务共享辅助系统。采用机器人流程自动化(RPA,Robotic Process Automation)和图检索增强生成(Graph RAG,Graph-b...为解决财务人员数字技术应用能力不足、传统财务流程中数据采集质量差导致重复返工、人工数据处理效率低等问题,设计开发了财务共享辅助系统。采用机器人流程自动化(RPA,Robotic Process Automation)和图检索增强生成(Graph RAG,Graph-based Retrieval-Augmented Generation)技术,实现数据填报收集、RPA自动化处理、智能问答等功能,显著提升财务报账效率,为铁路局集团公司财务共享中心的建设提供支撑。展开更多
In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shippi...In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shipping is characterized by a vast array of document types, filled with complex, large-scale, and often chaotic knowledge and relationships. Effectively managing these documents is crucial for developing a Large Language Model (LLM) in the maritime domain, enabling practitioners to access and leverage valuable information. A Knowledge Graph (KG) offers a state-of-the-art solution for enhancing knowledge retrieval, providing more accurate responses and enabling context-aware reasoning. This paper presents a framework for utilizing maritime and shipping documents to construct a knowledge graph using GraphRAG, a hybrid tool combining graph-based retrieval and generation capabilities. The extraction of entities and relationships from these documents and the KG construction process are detailed. Furthermore, the KG is integrated with an LLM to develop a Q&A system, demonstrating that the system significantly improves answer accuracy compared to traditional LLMs. Additionally, the KG construction process is up to 50% faster than conventional LLM-based approaches, underscoring the efficiency of our method. This study provides a promising approach to digital intelligence in shipping, advancing knowledge accessibility and decision-making.展开更多
The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are cr...The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics.展开更多
文摘基于深度学习的网络攻击检测是对欧几里得数据进行建模,无法学习攻击数据中的结构特征。为此,提出一种基于改进图采样与聚合(graph sample and aggregate,GraphSAGE)的网络攻击检测算法。首先,将攻击数据从平面结构转换为图结构数据。其次,对GraphSAGE算法进行了改进,包括在消息传递阶段融合节点和边的特征,同时在消息聚合过程中考虑不同源节点对目标节点的影响程度,并在边嵌入生成时引入残差学习机制。在两个公开网络攻击数据集上的实验结果表明,在二分类情况下,所提算法的总体性能优于E-GraphSAGE、LSTM、RNN、CNN算法;在多分类情况下,所提算法在大多数攻击类型上的F1值高于对比算法。
基金Supported by the National Natural Science Foundation of China(Grant Nos.11961041,12261055)the Key Project of Natural Science Foundation of Gansu Province(Grant No.24JRRA222)the Foundation for Innovative Fundamental Research Group Project of Gansu Province(Grant No.25JRRA805).
文摘In this paper,we first give a sufficient condition for a graph being fractional ID-[a,b]-factor-critical covered in terms of its independence number and minimum degree,which partially answers the problem posed by Sizhong Zhou,Hongxia Liu and Yang Xu(2022).Then,an A_(α)-spectral condition is given to ensure that G is a fractional ID-[a,b]-factor-critical covered graph and an(a,b,k)-factor-critical graph,respectively.In fact,(a,b,k)-factor-critical graph is a graph which has an[a,b]-factor for k=0.Thus,these above results extend the results of Jia Wei and Shenggui Zhang(2023)and Ao Fan,Ruifang Liu and Guoyan Ao(2023)in some sense.
文摘增强安徽省可持续发展动能对推动长三角更高质量一体化发展和服务国家新发展格局具有重要意义。本文构建了面向联合国2030可持续发展目标(Sustainable Development Goals,SDGs)的可持续发展水平评估框架和指标体系,对2011~2021年安徽省及其16个地级市可持续发展水平进行测算,计算各市经济、社会和环境维度可持续发展的耦合协调度,分析安徽省可持续发展水平的时空演化特征,利用Dagum基尼系数深入探究安徽省可持续发展水平区域差异的原因,并基于灰色关联度分析方法进一步揭示影响安徽省不同城市可持续发展水平的关键因素。研究结果表明:安徽省可持续发展综合指数以及3个子系统间的耦合协调度呈现不断提高的趋势,但可持续发展水平空间差异明显。安徽省可持续发展水平空间差异原因主要来自区域之间的差异,“皖中-皖北”和“皖中-皖南”的区域间差异明显高于“皖南-皖北”。不同维度下不同指标对各市可持续发展综合水平的影响表现出明显差异。对省会合肥而言,研发经费支出占比、公共服务支出比重、生活垃圾无害化处理率分别是经济、社会和环境子系统影响其可持续发展综合水平的首要因素。研究结果可为安徽省加快实现2030可持续发展目标和推动高质量发展提供科学支撑。
文摘In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shipping is characterized by a vast array of document types, filled with complex, large-scale, and often chaotic knowledge and relationships. Effectively managing these documents is crucial for developing a Large Language Model (LLM) in the maritime domain, enabling practitioners to access and leverage valuable information. A Knowledge Graph (KG) offers a state-of-the-art solution for enhancing knowledge retrieval, providing more accurate responses and enabling context-aware reasoning. This paper presents a framework for utilizing maritime and shipping documents to construct a knowledge graph using GraphRAG, a hybrid tool combining graph-based retrieval and generation capabilities. The extraction of entities and relationships from these documents and the KG construction process are detailed. Furthermore, the KG is integrated with an LLM to develop a Q&A system, demonstrating that the system significantly improves answer accuracy compared to traditional LLMs. Additionally, the KG construction process is up to 50% faster than conventional LLM-based approaches, underscoring the efficiency of our method. This study provides a promising approach to digital intelligence in shipping, advancing knowledge accessibility and decision-making.
文摘The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics.