期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Novel mechanism of the grain boundary diffusion process with Tb based on the discovery of TbFe_(2) phase 被引量:1
1
作者 Wendi Zhang Zilong Wang +5 位作者 Xiaojun Sun Weibin Cui Haijun Peng Wenlong Yan Yang Luo Dunbo Yu 《Journal of Materials Science & Technology》 2025年第11期120-129,共10页
The grain boundary diffusion process(GBDP)has proven to be an effective method for enhancing the coercivity of sintered Nd-Fe-B magnets.However,the limited diffusion depth and thicker shell struc-ture have impeded the... The grain boundary diffusion process(GBDP)has proven to be an effective method for enhancing the coercivity of sintered Nd-Fe-B magnets.However,the limited diffusion depth and thicker shell struc-ture have impeded the further development of magnetic properties.Currently,the primary debates re-garding the mechanism of GBDP with Tb revolve around the dissolution-solidification mechanism and the atomic substitution mechanism.To clarify this mechanism,the microstructure evolution of sintered Nd-Fe-B magnets during the heating process of GBDP has been systematically studied by quenching at different tem peratures.In this study,it was found that the formation of TbFe_(2) phase is related to the dis-solution of _(2)Fe_(14)B grains during GBDP with Tb.The theory of mixing heat and phase separation further confirms that the Nd_(2)Fe_(14)B phase dissolves to form a mixed phase of Nd and TbFe_(2),which then solidifies into the(Nd,Tb)_(2)Fe_(14)B phase.Based on the discovery of the TbFe_(2) phase,the dissolution-solidification mechanism is considered the primary mechanism for GBDP.This is supported by the elemental content of the two typical core-shell structures observed. 展开更多
关键词 grain boundary diffusion process TbFe_(2)phase Dissolution-solidification mechanism Core-shell structure The theory of mixing heat and phase separation
原文传递
Utility and influence mechanism of densification modulation on grain boundary diffusion in NdFeB magnets
2
作者 San'gen Luo Munan Yang +4 位作者 Shuwei Zhong Sajjad Ur Rehman Jiajie Li Xiaoqiang Yu Bin Yang 《Journal of Rare Earths》 2025年第3期569-577,I0006,共10页
Grain boundary diffusion technology is pivotal in the preparation of high-performance NdFeB magnets.This study investigates the factors that affect the efficiency of grain boundary diffusion,starting from the properti... Grain boundary diffusion technology is pivotal in the preparation of high-performance NdFeB magnets.This study investigates the factors that affect the efficiency of grain boundary diffusion,starting from the properties of the diffusion matrix.Through the adjustment of the sintering process,we effectively prepared magnets with varied densities that serve as the matrix for grain boundary diffusion with TbH,diffusion.The mobility characteristics of the Nd-rich phase during the densification stage are leveraged to ensure a more extensive distribution of heavy rare earth elements within the magnets.According to the experimental results,the increase in coercivity of low-density magnets after diffusion is significantly greater than that of relatively high-density magnets.The coercivity values measured are 805.32 kA/m for low-density magnets and 470.3 kA/m for high-density magnets.Additionally,grain boundary diffusion notably enhances the density of initial low-density magnets,addressing the issue of low density during the sintering stage.Before the diffusion treatment,the Nd-rich phases primarily concentrate at the triangular grain boundaries,resulting in an increased number of cavity defects in the magnets.These cavity defects contain atoms in a higher energy state,making them more prone to transition.Consequently,the diffusion activation energy at the void defects is lower than the intracrystalline diffusion activation energy,accelerating atom diffusion.The presence of larger cavities also provides more space for atom migration,thereby promoting the diffusion process.After the diffusion treatment,the proportion of bulk Nd-rich phases significantly decreases,and they infiltrate between the grains to fill the cavity defects,forming continuous fine grain boundaries.Based on these observations,the study aims to explore how to utilize this information to develop an efficient technique for grain boundary diffusion. 展开更多
关键词 NdFeB magnets DENSITY grain boundary diffusion Defect utility Rare earths
原文传递
Design and preparation of a sintered Nd-Y-Fe-B magnet with high magnetic properties via multi-main-phase process and subsequent grain boundary diffusion
3
作者 Fugang Chen Suxin Lu +3 位作者 Jie Wang Yong Zhao Wenqiang Zhao Zhi Xu 《Journal of Rare Earths》 2025年第2期304-311,I0003,共9页
A sintered Nd-Y-Fe-B magnet was designed and manufactured by the multi-main-phase process.Unevenly distributed Y in the magnet decreases the adverse magnetic weakening effect of Y on the coercivity.Grain boundary diff... A sintered Nd-Y-Fe-B magnet was designed and manufactured by the multi-main-phase process.Unevenly distributed Y in the magnet decreases the adverse magnetic weakening effect of Y on the coercivity.Grain boundary diffusion process(GBDP)was conducted to further enhance the coercivity of the Nd-Y-Fe-B magnet.The coercivity increases significantly from 884 to 1741 kA/m after GBDP with Pr_(60)Tb_(10)Cu_(30)alloy.The mechanism of the coercivity enhancement is discussed based on the microstructure analysis.Micromagnetic simulation reveals that when the diffused Tb-rich shell thickness is lower than 12 nm the c-plane shell(perpendicular to the c-axis)is much more effective in enhancing the coercivity than the side plane shell(parallel to the c-axis).But when the Tb-rich shell thickness is above12 nm the side plane shell contributes more to the coercivity enhancement.The results in this work can help to design and manufacture Nd-Fe-B magnets with low cost and high magnetic properties. 展开更多
关键词 Rare earths Nd-Fe-B magnets Multi-main-phase process grain boundary diffusion Micromagnetic simulation
原文传递
Microstructure optimization and coercivity enhancement of Nd-Fe-B magnets prepared via grain boundary diffusion of DyCeAl alloy
4
作者 Yuhua Hou Chengying Wang +8 位作者 Xiaosong Zhang Wenxing Chai Wei Li Junming Luo Xi Yu Changchuan Zhong Huayun Mao Lizhong Zhao Youlin Huang 《Journal of Rare Earths》 2025年第6期1238-1245,I0006,共9页
The compositional design of diffusion source plays a crucial role in improving magnetic properties of Nd-Fe-B magnet.In this work,Dy_(80)-_(x)Ce_(x)Al_(20)(x=0-50,in at%)alloy was employed as the diffusion source for ... The compositional design of diffusion source plays a crucial role in improving magnetic properties of Nd-Fe-B magnet.In this work,Dy_(80)-_(x)Ce_(x)Al_(20)(x=0-50,in at%)alloy was employed as the diffusion source for grain boundary diffusion.The results show that Dy-Ce co-diffusion can effectively enhance the infiltration ability of diffusion source.The maximum coercivity increment of up to 795 kA/m can be achieved when x=10 due to the deeper diffusion depth and higher Dy content in the shell,while a significant degradation of remanence is also exhibited due to the formation of a larger number of Dy-rich grains.Thus,Ce content is regulated to inhibit the deterioration of remanence.Increasing Ce content to above x=30,it is found that the formed CeFe_(2)phase near the surface can regulate the infiltration ability of diffusion source,reducing the area fraction of Dy-rich grain region that is detrimental to the rema-nence,and eventually,when x=50,the remanence is recovered to be comparable to that of as-prepared magnet,with a coercivity increment of 430 kA/m concurrently.This suggests that rationally designing the diffusion source composition enables the preparation of cost-effective magnets. 展开更多
关键词 High abundance rare earth grain boundary diffusion Magnetic properties Interface reaction Rare earths
原文传递
Thermal stability improvement and microstructure optimization of high cobalt content Nd-Fe-B magnets via terbium grain boundary diffusion 被引量:2
5
作者 Jiyuan Xu Ruiyang Meng +5 位作者 Jing Liu Jiateng Zhang Rui Han Yikun Fang Shengzhi Dong Wei Li 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第8期1531-1538,I0004,共9页
The substitution of Fe by Co in the 2:14:1 phase is an effective method to increase the Curie temperature and enhance the thermal stability of the Nd-Fe-B magnets.However,the accumulation of Co ele ment at the grain b... The substitution of Fe by Co in the 2:14:1 phase is an effective method to increase the Curie temperature and enhance the thermal stability of the Nd-Fe-B magnets.However,the accumulation of Co ele ment at the grain boundaries(GBs) changes the GBs from nonmagnetic to ferromagnetic and causes the thinlayer GBs to become rare,In this paper,the method of diffusing Tb element was chosen to improve the microstructure and temperature stability of high-Co magnets.Three original sintered Nd_(28.5)Dy_(3)-CO_(x)e_(bal)M_(0.6)B_(i)(x=0,6 wt%,12 wt%;M = Cu,Al,Zr) magnets with different Co contents were diffused with Tb by grain boundary diffusion(GBD).After GBD,high-Co magnets exhibit more continuously distributed thin-layer GBs,and their thermal stability is significantly improved.In high-Co magnets(x=6 wt%),the absolute value of the temperature coefficient of coercivity decreases from 0.603%/K to0.508%/K in the temperature range of 293-413 K,that of remanence decreases from 0.099%/K to 0.091%/K,and the coercivity increases from 18.44 to 25.04 kOe.Transmission electron microscopy(TEM)characterization reveals that there are both the 1:2 phase and the amorphous phase in the high-Co magnet before and after GBD,EDS elemental analysis shows that Tb element is more likely to preferentially replace the rare earth elements in the 2:14:1 main phase than in the 1:2 phase and the amorphous phase.The concentration of Tb at the edge of the main phase is much higher than that in the 1:2phase and amorphous phase,which is beneficial to the improvement of the microstructure.The preferential replacement of Tb elements at the edge of the 2:14:1 phase and thin-layer GBs with a more continuous distribution are synergistically responsible for improving the thermal stability of high-Co magnets.The study indicates that GBD is an effective method to improve the microstructure and thermal stability of high-Co magnets. 展开更多
关键词 Nd-Fe-B magnets COERCIVITY grain boundary diffusion Thermal stability Micro structure Rare earths
原文传递
Effect of annealing temperature on magnetic properties of a sintered Nd-Fe-B magnet after grain boundary diffusion with Dy_(70)Cu_(30) alloy 被引量:2
6
作者 Ruipeng Qian Yuxuan Ma +3 位作者 Fugang Chen Hui Sun Yong Zhao Yunlong Chen 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第1期116-120,I0004,共6页
Grain boundary diffusion process(GBDP)has been developed as an effective approach to increase the coercivity of sintered Nd-Fe-B magnets by regulating the compositions and phase distributions near grain boundaries.Thi... Grain boundary diffusion process(GBDP)has been developed as an effective approach to increase the coercivity of sintered Nd-Fe-B magnets by regulating the compositions and phase distributions near grain boundaries.This work aims to explore how to select the optimum annealing temperature after GBDP.In this work GBDP was performed on a sintered Nd-Fe-B magnet using Dy_(70)Cu_(30) alloy.After GBDP the low eutectic temperature of the grain boundary phases decreases from the initial 492 to 451℃.The magnetic property dependent on different annealing temperatures near the low eutectic temperature was studied.The magnetic properties,especially the squareness factor of demagnetization curve show a strong dependence on the annealing temperature.After GBDP the optimal magnetic properties can be obtained after annealing just above the low eutectic temperature of the grain boundary phases.The mechanism is discussed based on the microstructure analysis. 展开更多
关键词 Nd-Fe-B magnet grain boundary diffusion ANNEALING Dy_(70)Cu_(30)alloy Rare earths
原文传递
Coercivity,microstructure,and thermal stability of sintered Nd-Fe-B magnets by grain boundary diffusion with TbH3 nanoparticles 被引量:23
7
作者 Wei-Qiang Liu Cheng Chang +4 位作者 Ming Yue Jing-Shan Yang Dong-Tao Zhang Jiu-Xing Zhang Yan-Qin Liu 《Rare Metals》 SCIE EI CAS CSCD 2017年第9期718-722,共5页
Grain boundary diffusion technique with TbH3 nanoparticles was applied to fabricate Tb-less sintered NdFe-B permanent magnets with high coercivity. The magnetic properties and microstructure of magnets were systematic... Grain boundary diffusion technique with TbH3 nanoparticles was applied to fabricate Tb-less sintered NdFe-B permanent magnets with high coercivity. The magnetic properties and microstructure of magnets were systematically studied. The coercivity and remanence of grain boundary diffusion magnet are improved by 112% and reduced by 26% compared with those of the original magnet, respectively. Meanwhile, both the remanence temperature coefficient(α) and the coercivity temperature coefficient(β) of the magnets are improved after diffusion treatment. Microstructure shows that Tb element enriches in the surface region of Nd2Fe(14)B grains and is expected to exist as(Nd,Tb)2Fe(14)B phase. Thus, the magneto-crystalline anisotropy field of the magnet improves remarkably. As a result, the sintered Nd-FeB magnets by grain boundary diffusion with TbH3 nanoparticles exhibit enhanced coercivity. 展开更多
关键词 grain boundary diffusion TbH3 nanoparticles COERCIVITY Thermal stability
原文传递
Effect of aluminum on microstructure and magnetic properties of sintered Nd-Fe-B magnets processed by grain boundary diffusion of Tb-Al 被引量:7
8
作者 Tinghui Wang Zhaokun Ma +9 位作者 Qihang Zhu Lijing Yang Baosheng Liu Yu Zhao Cheng Xu Bizhang Zheng Fangqin Hu Jianzhong Li Qingfang Huang Zhenlun Song 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第5期705-712,I0003,共9页
The grain boundary diffusion process(GBDP)of Tb can improve the coercivity of sintered Nd-Fe-B magnets.In this study,the effect of AI on the diffusion of Tb in the GBDP was investigated.The content of diffused Tb-Al w... The grain boundary diffusion process(GBDP)of Tb can improve the coercivity of sintered Nd-Fe-B magnets.In this study,the effect of AI on the diffusion of Tb in the GBDP was investigated.The content of diffused Tb-Al was precisely controlled by adjusting the magnetron sputtering process.The Tb equivalent of Al was also studied.Results show that AI promotes the diffusion of Tb deeper into the magnet,reducing the thickness of the shell in the core-shell structure.This study is helpful for further developing the process,reducing the consumption of heavy rare earth elements(Tb),and improving the coercivity of sintered Nd-Fe-B magnets. 展开更多
关键词 Sintered Nd-Fe-Bmagnet Heavy rare earth elements grain boundary diffusion process COERCIVITY
原文传递
Recent progress of grain boundary diffusion process for hot-deformed Nd-Fe-B magnets 被引量:5
9
作者 Min Zhao Na Liu +8 位作者 Xu Tang Renjie Chen Jinyun Ju Wenzong Yin Yeyuan Du Aru Yan Xincai Liu Jing Pan Zhiyi Xu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第4期477-488,共12页
Grain boundary diffusion process(GBDP)was first proposed for sintered Nd-Fe-B magnets to achieve the high utilization efficiency of heavy rare earth elements.Recent success of fabricating high performance nanocomposit... Grain boundary diffusion process(GBDP)was first proposed for sintered Nd-Fe-B magnets to achieve the high utilization efficiency of heavy rare earth elements.Recent success of fabricating high performance nanocomposite magnets by GBDP indicates that this method also exerts huge applicable potential on hot-deformed Nd-Fe-B magnets.In this review,the development and magnetic property enhancement mechanisms of different diffusion methods proposed on hot-deformed magnets were thoroughly elucidated.Moreover,the improve room for further property enhancement and the accompanying problems of GBDP on hot-deformed magnets are also discussed in this article. 展开更多
关键词 Hot-deformed Nd-Fe-B magnets grain boundary diffusion process Magnetic properties Micromagnetic simulations Rare earths
原文传递
Simultaneous enhancement of coercivity and electric resistivity of Nd-Fe-B magnets by Pr-Tb-Al-Cu synergistic grain boundary diffusion toward high-temperature motor rotors 被引量:4
10
作者 Jiayi He Jinwen Hu +9 位作者 Bang Zhou Haoyang Jia Xiaolian Liu Zhenhua Zhang Lin Wen Lizhong Zhao Hongya Yu Xichun Zhong Xuefeng Zhang Zhongwu Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第23期54-64,共11页
To high-power permanent magnetic motors,it is critical for Nd-Fe-B magnets to maintain the desirable coercivity at high-temperature operating conditions.To address this,two approaches have been proven effective:(1)enh... To high-power permanent magnetic motors,it is critical for Nd-Fe-B magnets to maintain the desirable coercivity at high-temperature operating conditions.To address this,two approaches have been proven effective:(1)enhancing the room temperature coercivity;(2)reducing the eddy current loss.However,these two items are difficult to be simultaneously achieved.Here,the grain boundary diffusion(GBD)of the Pr-Tb-Al-Cu-based source is applied to enhance the coercivity and electric resistivity at room temperature from 1101 kA m-1 and 2.13×10–6Ωm to 1917 kA m-1 and 2.60×10–6Ωm,and those at 120°C from 384 kA m-1 and 4.31×10–6Ωm to 783 kA m-1 and 4.86×10–6Ωm,respectively.Such optimization is ascribed to the improved formation depth of Tb-rich 2:14:1 shells with large magnetocrystalline anisotropy and the increased intergranular Pr-based oxides with high electric resistivity,induced by the coordination effects of Tb and Pr,as proven by the atomic-scale observations and the first principles calculations.It thus results in the simultaneously improved output power and energy efficiency of the motor because of the combination of magnetic thermal stability enhancement and eddy current loss reduction,as theoretically confirmed by electromagnetic simulation. 展开更多
关键词 ND-FE-B grain boundary diffusion COERCIVITY Electrical resistivity Eddy current loss
原文传递
Effects of grain boundary diffusion process on magnetic properties enhancement and microstructure evolution of hot-deformed Nd-Fe-B magnets 被引量:4
11
作者 Jiayi He Yukun Liu +3 位作者 Zhigao Yu Jiali Cao Hongya Yu Zhongwu Liu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第5期698-704,I0003,共8页
Grain boundary diffusion(GBD)process is an important approach for producing Nd-Fe-B magnets with high coercivity and high thermal stability.The GBD for hot-deformed Nd-Fe-B magnets with nanocrystalline micro structure... Grain boundary diffusion(GBD)process is an important approach for producing Nd-Fe-B magnets with high coercivity and high thermal stability.The GBD for hot-deformed Nd-Fe-B magnets with nanocrystalline micro structure is more complicated compared to sintered magnets.Here,we investigated the effects of different GBD methods,i.e.,intergranular addition(in-situ GBD 1#),in-situ GBD from magnet surface during hot pressing and hot deformation(in-situ GBD 2#),and conventional GBD,on the magnetic properties and microstructure of hot deformed magnets.After the treatment by these three GBD approaches using 2 wt%Pr_(40)Tb_(30)Cu_(30)diffusion source,the coercivity of the hot-deformed magnet increases from 1281 to 1567,1412 and 2022 kA/m,respectively.The coercivity enhancement is attributed to the formation of local(Nd,Tb)2Fe14B phase with stro ng magnetic anisotropy.Reduced grain orientation is found in both in-situ GBD 1#and conventional GBD treated samples mainly due to the local stress state variation and the rotation of platelet grains.Interestingly,the in-situ GBD 2#processed sample has a high orientation at diffusion surface,which may be caused by the modified surface state of the magnet by the diffusion source.Compared with the in-situ GBD processes,the conventional GBD exhibits a higher utilization efficiency of Tb.Since the in-situ GBD is effective to treat thick hot-deformed magnets,further effort should be aimed at enhancing its diffusion efficiency. 展开更多
关键词 ND-FE-B grain boundary diffusion COERCIVITY hot deformation Crystal orientatio
原文传递
Influence of Pr-Al-Co alloy diffusion source on magnetic properties and microstructure of sintered Nd-Fe-B magnets processed by grain boundary diffusion 被引量:2
12
作者 Lei Jin Jinhao Zhu +6 位作者 Guangfei Ding Zhehuan Jin Bo Zheng Xuejing Cao Shuai Guo Renjie Chen Aru Yan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第12期1885-1893,I0003,共10页
In this study,the influence of the content of Al and Co in the diffusion source on the magnetic performance and microstructure of the diffused magnet was studied by grain boundary diffusion treatment with Pr_(70)Al_(3... In this study,the influence of the content of Al and Co in the diffusion source on the magnetic performance and microstructure of the diffused magnet was studied by grain boundary diffusion treatment with Pr_(70)Al_(30-x)Co_(x)(x=0 at%,10 at%,15 at%,20 at%,30 at%)alloys.When the Co content in the diffusion source increases from 0 at%to 10 at%,the coercivity enhancement in the Pr_(70)Al_(20)Co_(10)diffused magnet is the highest,increased from 1.62 to 2.24 T,higher than 2.01 T of the Pr_(70)Al_(30)diffused magnet.With further increase of Co content in the diffused source,the coercivity of the diffused magnet decreases gradually,the coercivity of Pr_(70)Al_(15)Co_(15),Pr_(70)Al_(20)Co_(10)and Pr_(70)Co_(30)diffused magnet is 2.15,1.99 and1.81 T,respectively.Microstructural analysis shows that plenty of continuous grain boundary phases(CGBPs)can be formed in the Pr_(70)Al_(20)Co_(10)diffused magnet under the synergistic effect of Al and Co,which leads to the enhancement of magnetic isolation between more adjacent grains.However,the amount of CGBP in the diffused magnets gradually decreases with the further increase of Co content in the diffusion source. 展开更多
关键词 ND-FE-B COERCIVITY Pr-AI-Co alloys grain boundary diffusion Rare earths
原文传递
Coercivity enhancement of hot-deformed NdFeB permanent magnets with AlCuZn eutectic alloy grain boundary diffusion 被引量:2
13
作者 Ye-Qi Yu Kuo-She Li +5 位作者 Hai-Jun Peng Xin-Yuan Bai Ning-Tao Quan Kai-Wen Wu Yang Luo Dun-Bo Yu 《Rare Metals》 SCIE EI CAS CSCD 2022年第1期226-231,共6页
It is approved that grain boundary diffusion is an effective method to increase the coercivity of hot-deformed NdFeB magnet.In this paper,a new rare earth-free grain boundary diffusion source of hot-deformed magnet wa... It is approved that grain boundary diffusion is an effective method to increase the coercivity of hot-deformed NdFeB magnet.In this paper,a new rare earth-free grain boundary diffusion source of hot-deformed magnet was studied.AlCuZn powders blended with commercial NdFeB powders were hot-compacted to obtain fully dense magnets,hot-deformed into anisotropic magnets and finally annealed to gain better homogeneity.Initially,the influences of annealing temperature and time on the magnetic properties of the specimens were studied and the optimal parameters of 600℃ and 60 min were achieved.Then,by changing the proportions of AlCuZn grain boundary diffusion,the coercivity,remanence and maximum energy product of the hot-deformed NdFeB magnets were examined.The result showed that with 1.0 wt%AlCuZn grain boundary diffusion and annealing at 600℃ for 60 min,the coercivity rose from 828 to 987 kA·m^(-1) without deteriorating the remanence.Microstructural analysis confirmed that AlCuZn diffused into the intergranular boundaries and the magnet diffused with AlCuZn possessed finer grains than that of without AlCuZn grain boundary diffusion. 展开更多
关键词 AlCuZn grain boundary diffusion Hotdeformed Coercivity enhancement
原文传递
Correlation of Magnetic Properties of Co/Cr Bilayer Thin Films with Grain Boundary Diffusion
14
作者 Gaowu Qin Bo Yang Wenli Pei Yuping Ren 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第6期789-794,共6页
The microstructure and magnetic properties of Co/Cr bilayer films were examined before and after postdeposition annealing by using transmission electron microscopy (TEM), X-ray diffraction (XRD) technique and vibr... The microstructure and magnetic properties of Co/Cr bilayer films were examined before and after postdeposition annealing by using transmission electron microscopy (TEM), X-ray diffraction (XRD) technique and vibrating sample magnetometer (VSM). A model of grain boundary (GB) Cr-rich phase growth involving GB diffusion derived from the Cr underlayer was proposed to elucidate the kinetics of the paramagnetic Cr-rich phase growth along Co GBs within the Co layer. The correlation of the GB Cr-rich phase formation with the magnetic Co grain isolation and accordingly, improvement of magnetic properties was experimentally investigated and discussed in detail. Our analysis results are well consistent with previous micromagnetic simulations on the improvement of magnetic properties by the magnetic grain isolation. The results provide some insights into the processing-structure-property relationships of the Co/Cr bilayer films, and thus suggest that the magnetic grain isolation be feasible not only in longitudinal recording media, but also be effective in tuning the exchange coupling of magnetic grains in perpendicular recording media via the GB diffusion from underlayer and/or overlayer. 展开更多
关键词 Magnetic recording media grain boundary diffusion Magnetic isolation Co/Cr thin films
原文传递
Coercivity enhancement of sintered Nd–Fe–B magnets by grain boundary diffusion with Pr_(80-x)Al_(x)Cu_(20)alloys
15
作者 金哲欢 金磊 +10 位作者 丁广飞 郭帅 郑波 樊思宁 王志翔 范晓东 朱金豪 陈仁杰 闫阿儒 潘晶 刘新才 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期516-521,共6页
A grain boundary diffusion(GBD)process with Pr_(80-x)Al_(x)Cu_(20)(x=0,10,15,20)low melting point alloys was applied to commercial 42M sintered Nd–Fe–B magnets.The best coercivity enhancement of a diffused magnet wa... A grain boundary diffusion(GBD)process with Pr_(80-x)Al_(x)Cu_(20)(x=0,10,15,20)low melting point alloys was applied to commercial 42M sintered Nd–Fe–B magnets.The best coercivity enhancement of a diffused magnet was for the Pr_(65)Al_(15)Cu_(20)GBD magnet,from 16.38 kOe to 22.38 kOe.Microstructural investigations indicated that increase in the Al content in the diffusion source can form a continuous grain boundary(GB)phase,optimizing the microstructure to enhance the coercivity.The coercivity enhancement is mainly due to the formation of a continuous GB phase to separate the main phase grains.Exchange decoupling between the adjacent main phase grains is enhanced after the GBD process.Meanwhile,the introduction of Al can effectively promote the infiltration of Pr into the magnet,which increases the diffusion rate of rare-earth elements within a certain range.This work provides a feasible method to enhance coercivity and reduce the use of rare-earth resources by partial replacement of rare-earth elements with non-rare-earth elements in the diffusion source. 展开更多
关键词 Nd–Fe–B grain boundary diffusion coercivity enhancement grain boundary phase
原文传递
Optimization of the grain boundary diffusion process by doping gallium and zirconium in Nd–Fe–B sintered magnets
16
作者 李之藤 徐海波 +5 位作者 刘峰 赖荣舜 武仁杰 李志彬 张洋洋 马强 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期649-655,共7页
As the channel for grain boundary diffusion(GBD)in Nd–Fe–B magnets,grain boundary(GB)phases have a very important effect on GBD.As doping elements that are commonly used to regulate the GB phases in Nd–Fe–B sinter... As the channel for grain boundary diffusion(GBD)in Nd–Fe–B magnets,grain boundary(GB)phases have a very important effect on GBD.As doping elements that are commonly used to regulate the GB phases in Nd–Fe–B sintered magnets,the influences of Ga and Zr on GBD were investigated in this work.The results show that the Zr-doped magnet has the highest coercivity increment(7.97 kOe)by GBD,which is almost twice that of the Ga-doped magnet(4.32 kOe)and the magnet without Ga and Zr(3.24 kOe).Microstructure analysis shows that ZrB_(2)formed in the Zr-doped magnet plays a key role in increasing the diffusion depth.A continuous diffusion channel in the magnet can form because of the presence of ZrB_(2).ZrB_(2)can also increase the defect concentration in GB phases,which can facilitate GBD.Although Ga can also improve the diffusion depth,its effect is not very obvious.The micromagnetic simulation based on the experimental results also proves that the distribution of Tb in the Zr-doped magnet after GBD is beneficial to coercivity.This study reveals that the doping elements Ga and Zr in Nd–Fe–B play an important role in GBD,and could provide a new perspective for researchers to improve the effects of GBD. 展开更多
关键词 Nd–Fe–B sintered magnet ZrB_(2)phase grain boundary diffusion micromagnetic simulation
原文传递
Effect of Grain Refinement on Grain Boundary Diffusion Process and Magnetic Properties of Sintered NdFeB Magnets
17
作者 Wang Mei Liu Weiming +8 位作者 Peng Buzhuang Wang Qian Wang Fei Zhang Yumeng Gu Xiaoqian Wang Qi Xiao Guiyong Liu Yan Zhu Xinde 《稀有金属材料与工程》 2025年第11期2768-2776,共9页
Three types of NdFeB magnets with the same composition and different grain sizes were prepared,and then the grain boundary diffusion was conducted using metal Tb under the same technical parameters.The effect of grain... Three types of NdFeB magnets with the same composition and different grain sizes were prepared,and then the grain boundary diffusion was conducted using metal Tb under the same technical parameters.The effect of grain size on the grain boundary diffusion process and properties of sintered NdFeB magnets was investigated.The diffusion process was assessed using X-ray diffractometer,field emission scanning electron microscope,and electron probe microanalyzer.The magnetic properties of the magnet before and after diffusion were investigated.The results show that the grain refinement of the magnet leads to higher Tb utilization efficiency and results in higher coercivity at different temperatures.It can be attributed to the formation of a deeper and more complete core-shell structure,resulting in better magnetic isolation and higher anisotropy of the Nd_(2)Fe_(14)B grains.This work may shed light on developing high coercivity with low heavy rare earth elements through grain refinement. 展开更多
关键词 sintered NdFeB magnets grain refinement grain boundary diffusion coercivity
原文传递
Elevated temperature magnetic microstructures and demagnetization mechanism for grain boundary diffused dual-main-phase(Nd,Ce)-Fe-B magnets 被引量:1
18
作者 Yifei Xiao Lele Zhang +7 位作者 Wei Yang Tao Liu Qisong Sun Xiaolong Song Yikun Fang Anhua Li Minggang Zhu Wei Li 《Journal of Materials Science & Technology》 2025年第4期10-23,共14页
The combination of dual-main-phase(DMP)(Nd,Ce)-Fe-B magnets and grain boundary diffusion process(GBDP)is currently a research topic for obtaining high-cost performance materials in rare earth permanent magnet fields.T... The combination of dual-main-phase(DMP)(Nd,Ce)-Fe-B magnets and grain boundary diffusion process(GBDP)is currently a research topic for obtaining high-cost performance materials in rare earth permanent magnet fields.The novel structural features of GBDP(Nd,Ce)-Fe-B magnets give a version of different domain reversal processes from those of non-diffused magnets.In this work,the in-situ magnetic domain evolution of the DMP magnets was observed at elevated temperatures,and the temperature demagnetization and coercivity mechanism of the GBDP dual-main-phase(Nd,Ce)-Fe-B magnets are discussed.The results show that the shell composition of different types of grains in DMP magnets is similar,while the magnetic microstructure results indicate the Ce-rich grains tend to demagnetize first.Dy-rich shell with a high anisotropic field caused by GBDP leads to an increase in the nucleation field,which enhances the coercivity.It is found that much more grains exhibit single domain characteristics in the remanent state for GBDP dual-main-phase(Nd,Ce)-Fe-B magnets.In addition,the grains that undergo demagnetization first are Ce-rich or Nd-rich grains,which is different from that of non-diffused magnets.These results were not found in previous studies but can be intuitively characterized from the perspective of magnetic domains in this work,providing a new perspective and understanding of the performance improvement of magnetic materials. 展开更多
关键词 Magnetic microstructures Dual-main-phase (Nd Ce)-Fe-B Diffused Dy Rare earth permanent magnet materials grain boundary diffusion process(GBDP)
原文传递
Diffusion behavior along Nd-Fe-B grain boundaries in different directions and mechanism of coercivity strengthening
19
作者 Shengwu Shen Munan Yang +7 位作者 Shuwei Zhong Hang Wang Sangen Luo Jiajie Li Xi Yu Sajjad Ur Rehman Ihor Bulyk Haijiao Xie 《Journal of Rare Earths》 2025年第4期766-773,I0005,共9页
In this study,DyF_(3)powder was sprayed onto the polar and side surfaces of the magnets to determine the anisotropic diffusion mechanism of Dy in the sintered Nd-Fe-B magnet.The coercivity and squareness of the magnet... In this study,DyF_(3)powder was sprayed onto the polar and side surfaces of the magnets to determine the anisotropic diffusion mechanism of Dy in the sintered Nd-Fe-B magnet.The coercivity and squareness of the magnet in which the diffusion of Dy is perpendicular to the c-axis(a-magnet)are lower than those of the magnet with the diffusion of Dy parallel to the c-axis(c-magnet).Compared with the c-magnet,the a-magnet has a longer Dy-enrichment region from the diffusion surface,where Dy is enriched in the 2:14:1 grain.By contrast,the Dy concentration in the grain boundaries beyond the Dy enrichment region is lower in the a-magnet.Moreover,the Dy shells beyond the Dy enrichment region in the a-magnet are distributed on the side surfaces of the 2:14:1 grains but not on the polar surfaces.Based on the micromagnetic simulation,the Dy shells on the polar surfaces of the grains are more effective in enhancing coercivity.According to first-principle calculations,Dy migrating through 001 into the Nd vacancy in the Nd_(2)Fe_(14)B crystal has a higher diffusion barrier,thus indicating that the lattice diffusion of Dy parallel to the c-axis is more difficult. 展开更多
关键词 ND-FE-B grain boundary diffusion Anisotropic diffusion Micromagnetic simulation First-principle calculations Rare earths
原文传递
Microstructure,microchemistry,and micro-magnetism of dysprosium grain boundary diffused(Nd,Ce)-Fe-B magnets
20
作者 Yifei Xiao Lele Zhang +6 位作者 Tao Liu Qisong Sun Xiaolong Song Yikun Fang Anhua Li Minggang Zhu Wei Li 《Journal of Rare Earths》 2025年第3期556-568,I0005,共14页
The microstructure of(Nd,Ce)-Fe-B sintered magnets with different diffusion depths was characterized by a magnetic force microscope,and the relationship between the magnetic properties and the local structure of grain... The microstructure of(Nd,Ce)-Fe-B sintered magnets with different diffusion depths was characterized by a magnetic force microscope,and the relationship between the magnetic properties and the local structure of grain boundary diffused magnets is discussed.The domains perpendicular to the c-axis(easy magnetization direction)show a typical maze-like pattern,while those parallel to the c-axis show the characte ristics of plate domains.The significant gradient change is shown in the concentration of Dy with the direction of diffusion from the surface to the interior.Dy diffuses along grain boundaries and(Dy,Nd)_(2)Fe_(14)B layer with a high anisotropy field formed around the grains.Through in-situ electron probe micro-analysis/magnetic force microscopy(EPMA/MFM),it is found that the average domain width decreases,and the proportion of single domain grains increases as diffusion depth increases.This is caused by both the change of concentration and distribution of Dy.The grain boundary diffusion process changes the microstructure and microchemistry inside the magnet,and these local magnetism differences can be reflected by the configuration of the magnetic domain structure. 展开更多
关键词 Magnetic microstructures (Nd Ce)-Fe-B Rare earths Magnetic force microscope grain boundary diffusion process(GBDP) In-situ
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部