Engineering excavation GIS (E 2 GIS) is a real-3D GIS serving for geosciences related to geo-engineering, civil engineering and mining engineering based on generalized tri-prism (GTP) model. As two instances of GTP mo...Engineering excavation GIS (E 2 GIS) is a real-3D GIS serving for geosciences related to geo-engineering, civil engineering and mining engineering based on generalized tri-prism (GTP) model. As two instances of GTP model, G\|GTP is used for the real\|3D modeling of subsurface geological bodies, and E\|GTP is used for the real\|3D modeling of subsurface engineering excavations.In the light of the discussions on the features and functions of E 2 GIS, the modeling principles of G\|GTP and E\|GTP are introduced. The two models couple together seamlessly to form an integral model for subsurface spatial objects including both geological bodies and excavations. An object\|oriented integral real\|3D data model and integral spatial topological relations are discussed.展开更多
A new method for simulation technology of laneway engineering seamless excavation based on 3D geoscience modeling(3DGM)was proposed to overcome the deficiency in current research.The generalized triprism(GTP)data mode...A new method for simulation technology of laneway engineering seamless excavation based on 3D geoscience modeling(3DGM)was proposed to overcome the deficiency in current research.The generalized triprism(GTP)data model was used as the basic modeling element in this method.The models of geological body were created by the method of rock pillar body partition(RPBP)modeling.The laneway engineering models were built with component method,while the corresponding triangles in sections were connected and transformed into tunnel GTP models.All the GTP models were converted into tetrahedron models based on the smallest vertex identifier(SVID).The simulation and spatial analysis of laneway engineering seamless excavation could be realized through the local hierarchical intersection(LHI)algorithm.The application case showed that the method was fast and effective,and it could meet the needs of design and spatial analysis for mine laneway engineering.展开更多
文摘Engineering excavation GIS (E 2 GIS) is a real-3D GIS serving for geosciences related to geo-engineering, civil engineering and mining engineering based on generalized tri-prism (GTP) model. As two instances of GTP model, G\|GTP is used for the real\|3D modeling of subsurface geological bodies, and E\|GTP is used for the real\|3D modeling of subsurface engineering excavations.In the light of the discussions on the features and functions of E 2 GIS, the modeling principles of G\|GTP and E\|GTP are introduced. The two models couple together seamlessly to form an integral model for subsurface spatial objects including both geological bodies and excavations. An object\|oriented integral real\|3D data model and integral spatial topological relations are discussed.
文摘A new method for simulation technology of laneway engineering seamless excavation based on 3D geoscience modeling(3DGM)was proposed to overcome the deficiency in current research.The generalized triprism(GTP)data model was used as the basic modeling element in this method.The models of geological body were created by the method of rock pillar body partition(RPBP)modeling.The laneway engineering models were built with component method,while the corresponding triangles in sections were connected and transformed into tunnel GTP models.All the GTP models were converted into tetrahedron models based on the smallest vertex identifier(SVID).The simulation and spatial analysis of laneway engineering seamless excavation could be realized through the local hierarchical intersection(LHI)algorithm.The application case showed that the method was fast and effective,and it could meet the needs of design and spatial analysis for mine laneway engineering.