本文提出一种基于GraphSAGE(graph sample and aggregate)算法的配电网故障定位方法。以对系统侧母线电压进行形态学黑帽运算的结果启动故障定位算法;利用GSA模型自主挖掘网络拓扑和零序电流特征,根据节点特征和标签建立函数映射,评估...本文提出一种基于GraphSAGE(graph sample and aggregate)算法的配电网故障定位方法。以对系统侧母线电压进行形态学黑帽运算的结果启动故障定位算法;利用GSA模型自主挖掘网络拓扑和零序电流特征,根据节点特征和标签建立函数映射,评估线路运行状态从而实现故障定位。基于PSCAD/EMTDC仿真平台搭建IEEE33节点模型,测试结果表明所提配电网故障定位方法可行且有效。并且配电网拓扑变化时,该方法无需重新训练模型即能获得可靠的故障定位结果,验证了方法的鲁棒性和对拓扑变化的适应性。展开更多
文摘万有引力搜索算法(gravitational search algorithm,GSA)相比于传统的优化算法具有收敛速度快、开拓性能强等特点,但GSA易陷入早熟收敛和局部最优,搜索能力较弱.为此,提出一种基于改进的Tent混沌万有引力搜索算法(gravitational search algorithm based on improved tent chaos,ITC-GSA).首先,改进Tent混沌映射来初始化种群,利用Tent混沌序列随机性、遍历性和规律性的特性使得初始种群随机性和遍历性在可行域内,具有加强算法的全局搜索能力;其次,引入引力常数G的动态调整策略提高算法的收敛速度和收敛精度;再次,设计成熟度指标判断种群成熟度,并使用Tent混沌搜索有效抑制算法早熟收敛,帮助种群跳出局部最优;最后,对10个基准函数进行仿真实验,结果表明所提算法能够有效克服GSA易陷入早熟收敛和局部最优的缺点,提高算法的收敛速度和寻优精度.
文摘本文提出一种基于GraphSAGE(graph sample and aggregate)算法的配电网故障定位方法。以对系统侧母线电压进行形态学黑帽运算的结果启动故障定位算法;利用GSA模型自主挖掘网络拓扑和零序电流特征,根据节点特征和标签建立函数映射,评估线路运行状态从而实现故障定位。基于PSCAD/EMTDC仿真平台搭建IEEE33节点模型,测试结果表明所提配电网故障定位方法可行且有效。并且配电网拓扑变化时,该方法无需重新训练模型即能获得可靠的故障定位结果,验证了方法的鲁棒性和对拓扑变化的适应性。