Nano-scale CuF_(2) with superior electrochemical activity was successfully prepared by a mixed solvent co-precipitation method.The SEM and TEM analyses demonstrated that the methanol concentration had a pronounced eff...Nano-scale CuF_(2) with superior electrochemical activity was successfully prepared by a mixed solvent co-precipitation method.The SEM and TEM analyses demonstrated that the methanol concentration had a pronounced effect on both the particle size and the extent of agglomeration.With the increase in methanol content,the particle size and agglomeration of CuF_(2) decreased first and then increased.When the volume ratio of methanol to deionized water was 1:1,the CuF_(2) particles exhibited the smallest size and the lowest degree of agglomeration.CuF_(2) synthesized with 50%methanol exhibited superior electrochemical performances with a voltage plateau above 3 V and a 1st discharge capacity of 525.8 mAh·g^(-1) at 0.01 C due to the synergistic influence of the particle size and dispersion.The analysis results using electrochemical impedance spectroscopy(EIS)and constant current intermittent titration technique(GITT)affirmed the addition of methanol was beneficial for promoting Li+diffusion and accelerating electrochemical reaction kinetics of CuF_(2).展开更多
Objective To improve the accuracy and professionalism of question-answering(QA)model in traditional Chinese medicine(TCM)lung cancer by integrating large language models with structured knowledge graphs using the know...Objective To improve the accuracy and professionalism of question-answering(QA)model in traditional Chinese medicine(TCM)lung cancer by integrating large language models with structured knowledge graphs using the knowledge graph(KG)to text-enhanced retrievalaugmented generation(KG2TRAG)method.Methods The TCM lung cancer model(TCMLCM)was constructed by fine-tuning Chat-GLM2-6B on the specialized datasets Tianchi TCM,HuangDi,and ShenNong-TCM-Dataset,as well as a TCM lung cancer KG.The KG2TRAG method was applied to enhance the knowledge retrieval,which can convert KG triples into natural language text via ChatGPT-aided linearization,leveraging large language models(LLMs)for context-aware reasoning.For a comprehensive comparison,MedicalGPT,HuatuoGPT,and BenTsao were selected as the baseline models.Performance was evaluated using bilingual evaluation understudy(BLEU),recall-oriented understudy for gisting evaluation(ROUGE),accuracy,and the domain-specific TCM-LCEval metrics,with validation from TCM oncology experts assessing answer accuracy,professionalism,and usability.Results The TCMLCM model achieved the optimal performance across all metrics,including a BLEU score of 32.15%,ROUGE-L of 59.08%,and an accuracy rate of 79.68%.Notably,in the TCM-LCEval assessment specific to the field of TCM,its performance was 3%−12%higher than that of the baseline model.Expert evaluations highlighted superior performance in accuracy and professionalism.Conclusion TCMLCM can provide an innovative solution for TCM lung cancer QA,demonstrating the feasibility of integrating structured KGs with LLMs.This work advances intelligent TCM healthcare tools and lays a foundation for future AI-driven applications in traditional medicine.展开更多
This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investi...This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investigation in methanol steam reforming(MSR).Various catalysts were prepared under different conditions,such as calcination temperature,calcination atmosphere,and heating rate.Characterization techniques including BET,XRD,XPS,SEM and H2-TPR were employed to analyze the samples.The results revealed significant effects of calcination temperature on the phase compositions,specific surface area,reduction performance,and surface properties of the CA-T catalysts.Based on the findings,a synthesis route of CuAlO_(2) via the solid-phase method was proposed,highlighting the importance of high calcination temperature,nitrogen atmosphere,and low heating rate for CuAlO_(2) formation.Catalytic evaluation data demonstrated that CuAlO_(2) could catalyze MSR without pre-reduction,with the catalytic performance of CA-T catalysts being notably influenced by calcination temperature.Among the prepared catalysts,the CA-1100 catalyst exhibited the highest catalytic activity and stability.The findings of this study might be useful for the further study of the catalytic material for sustained release catalysis,including the synthesis of catalytic materials and the regulation of sustained release catalytic performance.展开更多
The study focused on the modification with platinum of dark defective titania obtained via pulsed laser ablation. Both the method of Pt introduction and the nature of the Pt precursor were varied. All samples exhibite...The study focused on the modification with platinum of dark defective titania obtained via pulsed laser ablation. Both the method of Pt introduction and the nature of the Pt precursor were varied. All samples exhibited similar phase compositions, specific surface areas, and Pt contents. High-resolution transmission electron microscopy coupled with pulsed CO adsorption revealed increased dispersity when photoreduction and the hydroxonitrate complex (Me _(4) N) _(2) [Pt _(2) (OH) _(2) (NO _(3) ) _(8) ] were used. The sample featured a high content of single-atom species and subnano-sized Pt clusters. The X-ray photoelectron spectroscopy results showed that the photoreduction method facilitated the appearance of a larger number of Pt ^(2+) states, which appeared owing to the strong metal-support interaction (SMSI) eff ect of the transfer of electron density from the electron-saturated defects on the TiO _(2) surface to Pt ^(4+) . In the hydrogen evolution reaction, samples with a significant fraction of the Pt ^(2+) ionic component, capable of generating short-lived Pt^(0) single-atom sites under irradiation due to the SMSI eff ect, exhibited the highest photocatalytic activity. The 0.5Pt(C)/TiO_(2) -Ph sample exhibited the highest hydrogen yield with a quantum efficiency of 0.53, retaining its activity even after 8 h of operation.展开更多
文摘Nano-scale CuF_(2) with superior electrochemical activity was successfully prepared by a mixed solvent co-precipitation method.The SEM and TEM analyses demonstrated that the methanol concentration had a pronounced effect on both the particle size and the extent of agglomeration.With the increase in methanol content,the particle size and agglomeration of CuF_(2) decreased first and then increased.When the volume ratio of methanol to deionized water was 1:1,the CuF_(2) particles exhibited the smallest size and the lowest degree of agglomeration.CuF_(2) synthesized with 50%methanol exhibited superior electrochemical performances with a voltage plateau above 3 V and a 1st discharge capacity of 525.8 mAh·g^(-1) at 0.01 C due to the synergistic influence of the particle size and dispersion.The analysis results using electrochemical impedance spectroscopy(EIS)and constant current intermittent titration technique(GITT)affirmed the addition of methanol was beneficial for promoting Li+diffusion and accelerating electrochemical reaction kinetics of CuF_(2).
基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2145).
文摘Objective To improve the accuracy and professionalism of question-answering(QA)model in traditional Chinese medicine(TCM)lung cancer by integrating large language models with structured knowledge graphs using the knowledge graph(KG)to text-enhanced retrievalaugmented generation(KG2TRAG)method.Methods The TCM lung cancer model(TCMLCM)was constructed by fine-tuning Chat-GLM2-6B on the specialized datasets Tianchi TCM,HuangDi,and ShenNong-TCM-Dataset,as well as a TCM lung cancer KG.The KG2TRAG method was applied to enhance the knowledge retrieval,which can convert KG triples into natural language text via ChatGPT-aided linearization,leveraging large language models(LLMs)for context-aware reasoning.For a comprehensive comparison,MedicalGPT,HuatuoGPT,and BenTsao were selected as the baseline models.Performance was evaluated using bilingual evaluation understudy(BLEU),recall-oriented understudy for gisting evaluation(ROUGE),accuracy,and the domain-specific TCM-LCEval metrics,with validation from TCM oncology experts assessing answer accuracy,professionalism,and usability.Results The TCMLCM model achieved the optimal performance across all metrics,including a BLEU score of 32.15%,ROUGE-L of 59.08%,and an accuracy rate of 79.68%.Notably,in the TCM-LCEval assessment specific to the field of TCM,its performance was 3%−12%higher than that of the baseline model.Expert evaluations highlighted superior performance in accuracy and professionalism.Conclusion TCMLCM can provide an innovative solution for TCM lung cancer QA,demonstrating the feasibility of integrating structured KGs with LLMs.This work advances intelligent TCM healthcare tools and lays a foundation for future AI-driven applications in traditional medicine.
基金supported by the Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology(2023yjrc51)the National Natural Science Foundation of China(22172184)+2 种基金the Foundation of State Key Laboratory of Coal Conversion(J24-25-603)the Fundamental Research Project of ICC-CAS(SCJC-DT-2023-01)Weiqiao-UCAS Special Projects on Low-Carbon Technology Development(GYY-DTFZ-2022-015)。
文摘This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investigation in methanol steam reforming(MSR).Various catalysts were prepared under different conditions,such as calcination temperature,calcination atmosphere,and heating rate.Characterization techniques including BET,XRD,XPS,SEM and H2-TPR were employed to analyze the samples.The results revealed significant effects of calcination temperature on the phase compositions,specific surface area,reduction performance,and surface properties of the CA-T catalysts.Based on the findings,a synthesis route of CuAlO_(2) via the solid-phase method was proposed,highlighting the importance of high calcination temperature,nitrogen atmosphere,and low heating rate for CuAlO_(2) formation.Catalytic evaluation data demonstrated that CuAlO_(2) could catalyze MSR without pre-reduction,with the catalytic performance of CA-T catalysts being notably influenced by calcination temperature.Among the prepared catalysts,the CA-1100 catalyst exhibited the highest catalytic activity and stability.The findings of this study might be useful for the further study of the catalytic material for sustained release catalysis,including the synthesis of catalytic materials and the regulation of sustained release catalytic performance.
文摘The study focused on the modification with platinum of dark defective titania obtained via pulsed laser ablation. Both the method of Pt introduction and the nature of the Pt precursor were varied. All samples exhibited similar phase compositions, specific surface areas, and Pt contents. High-resolution transmission electron microscopy coupled with pulsed CO adsorption revealed increased dispersity when photoreduction and the hydroxonitrate complex (Me _(4) N) _(2) [Pt _(2) (OH) _(2) (NO _(3) ) _(8) ] were used. The sample featured a high content of single-atom species and subnano-sized Pt clusters. The X-ray photoelectron spectroscopy results showed that the photoreduction method facilitated the appearance of a larger number of Pt ^(2+) states, which appeared owing to the strong metal-support interaction (SMSI) eff ect of the transfer of electron density from the electron-saturated defects on the TiO _(2) surface to Pt ^(4+) . In the hydrogen evolution reaction, samples with a significant fraction of the Pt ^(2+) ionic component, capable of generating short-lived Pt^(0) single-atom sites under irradiation due to the SMSI eff ect, exhibited the highest photocatalytic activity. The 0.5Pt(C)/TiO_(2) -Ph sample exhibited the highest hydrogen yield with a quantum efficiency of 0.53, retaining its activity even after 8 h of operation.