研究生物化学系统的参数估计方法问题,给出了广义质量作用(generalized mass action,GMA)-型生物化学系统的数学模型及其数学性质。为了估计GMA-型生物化学系统的模型参数,以极小化浓度误差准则和斜率误差准则之和为优化目标,以GMA-型...研究生物化学系统的参数估计方法问题,给出了广义质量作用(generalized mass action,GMA)-型生物化学系统的数学模型及其数学性质。为了估计GMA-型生物化学系统的模型参数,以极小化浓度误差准则和斜率误差准则之和为优化目标,以GMA-型生物化学系统及其模型参数允许范围为约束,构建了一种参数估计优化模型,并设计出有效的计算方法求解构建的参数估计优化模型。数值计算与仿真结果表明,给出的GMA-型生物化学系统的参数估计方法可以获得较为精确的模型参数估计结果。展开更多
采用熔化极气体保护电弧(Gas metal arc,GMA)作为热源,以H08Mn2Si焊丝作为填充材料,开展了多层单道薄壁构件堆积层尺寸特征研究。借助金相显微镜测量了堆积层尺寸,分析了堆积层尺寸特性并阐明其成形机制。结果表明,堆积层尺寸在前四层...采用熔化极气体保护电弧(Gas metal arc,GMA)作为热源,以H08Mn2Si焊丝作为填充材料,开展了多层单道薄壁构件堆积层尺寸特征研究。借助金相显微镜测量了堆积层尺寸,分析了堆积层尺寸特性并阐明其成形机制。结果表明,堆积层尺寸在前四层处于不稳定状态,波动较大。随堆积层数的增加,堆积层层高逐渐减小并趋于稳定,堆积层层宽先减小,随后逐渐增大并趋于稳定,层宽在第二个堆积层具有极小值。进一步设计了二次回归旋转组合试验方法,采集的试验数据作为训练样本,基于神经网络算法建立了堆积工艺参数(堆积电流、行走速度、堆积电压)与堆积层尺寸的非线性模型,经测试数据样本验证表明,模型预测精度较高,堆积层尺寸预测最大相对误差小于6.98%。根据堆积层尺寸预测模型,进行了封闭路径与非封闭路径薄壁构件的堆积成形,试验结果表明,该模型能够应用于薄壁构件GMA增材制造自适应分层切片过程。展开更多
在同向双螺杆挤出机中通过熔融接枝反应制备了EPM g GMA ,将其与PBT在转矩流变仪中熔融共混可以获得增韧的PBT工程塑料 .实验中EPM g GMA接枝率的测定采用红外工作曲线法 ,选用CCl4 做溶剂以避免溶剂对样品吸收峰的干扰 .随着EPM g GMA...在同向双螺杆挤出机中通过熔融接枝反应制备了EPM g GMA ,将其与PBT在转矩流变仪中熔融共混可以获得增韧的PBT工程塑料 .实验中EPM g GMA接枝率的测定采用红外工作曲线法 ,选用CCl4 做溶剂以避免溶剂对样品吸收峰的干扰 .随着EPM g GMA接枝率的增加 ,PBT EPM g GMA的缺口冲击强度相应提高 ,共混物中EPM g GMA的粒径尺寸减小 ,当EPM g GMA的接枝率为 4 7mL 1 0 0gEPM时 ,EPM g GMA的粒径尺寸可达 0 5 μm ,PBT EPM g GMA的缺口冲击强度达到 5 1 6kJ m2 ,是纯PBT的 3展开更多
文摘研究生物化学系统的参数估计方法问题,给出了广义质量作用(generalized mass action,GMA)-型生物化学系统的数学模型及其数学性质。为了估计GMA-型生物化学系统的模型参数,以极小化浓度误差准则和斜率误差准则之和为优化目标,以GMA-型生物化学系统及其模型参数允许范围为约束,构建了一种参数估计优化模型,并设计出有效的计算方法求解构建的参数估计优化模型。数值计算与仿真结果表明,给出的GMA-型生物化学系统的参数估计方法可以获得较为精确的模型参数估计结果。
文摘采用熔化极气体保护电弧(Gas metal arc,GMA)作为热源,以H08Mn2Si焊丝作为填充材料,开展了多层单道薄壁构件堆积层尺寸特征研究。借助金相显微镜测量了堆积层尺寸,分析了堆积层尺寸特性并阐明其成形机制。结果表明,堆积层尺寸在前四层处于不稳定状态,波动较大。随堆积层数的增加,堆积层层高逐渐减小并趋于稳定,堆积层层宽先减小,随后逐渐增大并趋于稳定,层宽在第二个堆积层具有极小值。进一步设计了二次回归旋转组合试验方法,采集的试验数据作为训练样本,基于神经网络算法建立了堆积工艺参数(堆积电流、行走速度、堆积电压)与堆积层尺寸的非线性模型,经测试数据样本验证表明,模型预测精度较高,堆积层尺寸预测最大相对误差小于6.98%。根据堆积层尺寸预测模型,进行了封闭路径与非封闭路径薄壁构件的堆积成形,试验结果表明,该模型能够应用于薄壁构件GMA增材制造自适应分层切片过程。