期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于MEEMD-GAELM组合模型的短期风电功率预测
被引量:
7
1
作者
陈籽君
丁云飞
《水电能源科学》
北大核心
2020年第8期207-210,共4页
考虑到风电功率短期预测的准确性对电网调度具有重要作用,提出了一种由改进的集成经验稳态分解(MEEMD)与基于遗传算法优化的极限学习机(GAELM)相结合的短期风功率组合预测模型,首先对原始风功率时间序列进行总体平均经验模态分解(CEEMD)...
考虑到风电功率短期预测的准确性对电网调度具有重要作用,提出了一种由改进的集成经验稳态分解(MEEMD)与基于遗传算法优化的极限学习机(GAELM)相结合的短期风功率组合预测模型,首先对原始风功率时间序列进行总体平均经验模态分解(CEEMD),通过排列熵剔除异常分量,再对剩余分量进行经验模态分解(EMD),其结果即为MEEMD分解所得分量,对分量分别建立GAELM预测模型,将各分量预测结果相加,即得到最终预测结果。对东北某风电场实测数据进行试验表明,与传统预测方法相比,组合预测模型有效提高了短期风功率预测的精确性。
展开更多
关键词
短期风功率预测
gaelm
MEEMD
极限学习机
遗传算法
排列熵
原文传递
题名
基于MEEMD-GAELM组合模型的短期风电功率预测
被引量:
7
1
作者
陈籽君
丁云飞
机构
上海电机学院电气学院
出处
《水电能源科学》
北大核心
2020年第8期207-210,共4页
文摘
考虑到风电功率短期预测的准确性对电网调度具有重要作用,提出了一种由改进的集成经验稳态分解(MEEMD)与基于遗传算法优化的极限学习机(GAELM)相结合的短期风功率组合预测模型,首先对原始风功率时间序列进行总体平均经验模态分解(CEEMD),通过排列熵剔除异常分量,再对剩余分量进行经验模态分解(EMD),其结果即为MEEMD分解所得分量,对分量分别建立GAELM预测模型,将各分量预测结果相加,即得到最终预测结果。对东北某风电场实测数据进行试验表明,与传统预测方法相比,组合预测模型有效提高了短期风功率预测的精确性。
关键词
短期风功率预测
gaelm
MEEMD
极限学习机
遗传算法
排列熵
Keywords
short-term wind power prediction
gaelm
MEEMD
extreme learning machine
genetic algorithm
permutation entropy
分类号
TM614 [电气工程—电力系统及自动化]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于MEEMD-GAELM组合模型的短期风电功率预测
陈籽君
丁云飞
《水电能源科学》
北大核心
2020
7
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部