期刊文献+

基于MEEMD-GAELM组合模型的短期风电功率预测 被引量:7

A Hybrid MEEMD-GAELM Based Model for Short-term Wind Power Prediction
原文传递
导出
摘要 考虑到风电功率短期预测的准确性对电网调度具有重要作用,提出了一种由改进的集成经验稳态分解(MEEMD)与基于遗传算法优化的极限学习机(GAELM)相结合的短期风功率组合预测模型,首先对原始风功率时间序列进行总体平均经验模态分解(CEEMD),通过排列熵剔除异常分量,再对剩余分量进行经验模态分解(EMD),其结果即为MEEMD分解所得分量,对分量分别建立GAELM预测模型,将各分量预测结果相加,即得到最终预测结果。对东北某风电场实测数据进行试验表明,与传统预测方法相比,组合预测模型有效提高了短期风功率预测的精确性。 In order to improve the accuracy of short-term wind power prediction,this paper proposes a hybrid shortterm wind power prediction model,which combines the modified Ensemble Empirical Mode Decomposition(MEEMD)and the Extreme Learning Machine based on genetic algorithm optimization(GAELM).Firstly,the original wind power time series is decomposed by CEEMD,the abnormal components are eliminated by Permutation Entropy.And then the residual components are decomposed by EMD.The results are the components obtained by MEEMD decomposition.The GAELM prediction model is established for the components respectively.The final prediction results are obtained by adding the prediction results of each component.The experimental results of a wind farm in Northeast China are compared with the traditional prediction method,it proves that the combined prediction method improves the accuracy of short-term wind power prediction effectively.
作者 陈籽君 丁云飞 CHEN Zi-jun;DING Yun-fei(School of Electrical Engineering.Shanghai Dianji University.Shanghai 201306,China)
出处 《水电能源科学》 北大核心 2020年第8期207-210,共4页 Water Resources and Power
关键词 短期风功率预测 GAELM MEEMD 极限学习机 遗传算法 排列熵 short-term wind power prediction GAELM MEEMD extreme learning machine genetic algorithm permutation entropy
  • 相关文献

参考文献7

二级参考文献65

  • 1刘秀清,宇仁德,范东凯.基于广义回归神经网络的交通事故预测[J].山东理工大学学报(自然科学版),2007,21(2):28-31. 被引量:11
  • 2于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].北京:科学出版社,2007.
  • 3Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,Proc.Roy.Soc.London,1998,454:903-995.
  • 4Huang N E,Shen Z,Long R S.A new view of nonlinear water waves-the Hilbert spectrum,Ann.Rev.Fluid Mech,1999,31:417-457.
  • 5Huang N E,Wu Z.A review on Hilbert-Huang transform:Method and its applications to geophysical studies,Adv ances in Adaptive Data Analysis 2009,1:1-23.
  • 6Gai G H.The processing of rotor startup signals based on empirical mode decomposition[J].Mechanical Systems and Signal Processing,2006,20:225-235.
  • 7Deering R,Kaiser J F.The use of masking signal to improve emprical mode decomposition[C]// IEEE International Conference on Acoustics,Speech,and Signal Processing.Philadelphia,USA,2005,Ⅳ:485-488.
  • 8Wu Z H,Huang N E.Ensemble empirical mode decomposition:A noise assisted data analysis method[J].Advances in Adaptive Data Analysis,2009,1:1-41.
  • 9Yeh J R,Shieh J S.Complementary ensemble empirical mode decomposition:A noise enhanced data analysis method[J],Advances in Adaptive Data Analysis,2010,2 (2):135-156.
  • 10Bandt C,Pompe B.Permutation entropy:a natural complexity measure for time series[J].Physical Review Letters,The American Physiological Society,2002:174102 (1-4).

共引文献299

同被引文献80

引证文献7

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部