In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are of...In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are often constrained by the reliance on off-chip light sources and detectors.In this study,we demonstrate an InAs/GaAsSb superlattice mid-infrared waveguide integrated detector.The GaAsSb waveguide layer and the InAs/GaAsSb superlattice absorbing layer are connected through evanescent coupling,facilitating efficient and highquality detection of mid-infrared light with minimal loss.We conducted a simulation to analyze the photoelectric characteristics of the device.Additionally,we investigated the factors that affect the integration of the InAs/GaAs⁃Sb superlattice photodetector and the GaAsSb waveguide.Optimal thicknesses and lengths for the absorption lay⁃er are determined.When the absorption layer has a thickness of 0.3μm and a length of 50μm,the noise equiva⁃lent power reaches its minimum value,and the quantum efficiency can achieve a value of 68.9%.The utilization of waveguide detectors constructed with Ⅲ-Ⅴ materials offers a more convenient means of integrating mid-infra⁃red light sources and achieving photoelectric detection chips.展开更多
为了研制满足光纤通讯需求的高性能半导体激光器,对压应变In Ga As Sb/Ga As Sb量子阱激光器有源区进行了研究。根据应变量子阱能带理论、固体模型理论和克龙尼克-潘纳模型,确定了激射波长与量子阱材料组分及阱宽的关系。基于Lastip软...为了研制满足光纤通讯需求的高性能半导体激光器,对压应变In Ga As Sb/Ga As Sb量子阱激光器有源区进行了研究。根据应变量子阱能带理论、固体模型理论和克龙尼克-潘纳模型,确定了激射波长与量子阱材料组分及阱宽的关系。基于Lastip软件建立了条宽为50μm、腔长为800μm的半导体激光器仿真模型,模拟器件的输出特性,讨论了量子阱个数对器件光电特性的影响。结果表明:当量子阱组分为In0.44Ga0.56As0.92Sb0.08/Ga As0.92Sb0.08、阱宽为9 nm、量子阱个数为2时,器件的性能达到最佳,阈值电流为48 m A,斜率效率为0.76 W/A。展开更多
The epi material growth of GaAsSb based DHBTs with InAlAs emitters are investigated using a 4×100mm multi-wafer production Riber 49 MBE reactor fully equipped with real-time in-situ sensors including an absorptio...The epi material growth of GaAsSb based DHBTs with InAlAs emitters are investigated using a 4×100mm multi-wafer production Riber 49 MBE reactor fully equipped with real-time in-situ sensors including an absorption band edge spectroscope and an optical-based flux monitor.The state-of-the-art hole mobilities are obtained from 100nm thick carbon-doped GaAsSb.A Sb composition variation of less than ±0.1 atomic percent across a 4×100mm platen configuration has been achieved.The large area InAlAs/GaAsSb/InP DHBT device demonstrates excellent DC characteristics,such as BV_CEO>6V and a DC current gain of 45 at 1kA/cm2 for an emitter size of 50μm×50μm.The devices have a 40nm thick GaAsSb base with p-doping of 4.5×1019cm-3.Devices with an emitter size of 4μm×30μm have a current gain variation less than 2% across the fully processed 100mm wafer.f_t and f_max are over 50GHz,with a power efficiency of 50%,which are comparable to standard power GaAs HBT results.These results demonstrate the potential application of GaAsSb/InP DHBT for power amplifiers and the feasibility of multi-wafer MBE for mass production of GaAsSb-based HBTs.展开更多
基金Supported by the National Natural Science Foundation of China(NSFC)(61904183,61974152,62104237,62004205)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y202057)+1 种基金Shanghai Science and Technology Committee Rising-Star Program(20QA1410500)Shanghai Sail Plans(21YF1455000)。
文摘In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are often constrained by the reliance on off-chip light sources and detectors.In this study,we demonstrate an InAs/GaAsSb superlattice mid-infrared waveguide integrated detector.The GaAsSb waveguide layer and the InAs/GaAsSb superlattice absorbing layer are connected through evanescent coupling,facilitating efficient and highquality detection of mid-infrared light with minimal loss.We conducted a simulation to analyze the photoelectric characteristics of the device.Additionally,we investigated the factors that affect the integration of the InAs/GaAs⁃Sb superlattice photodetector and the GaAsSb waveguide.Optimal thicknesses and lengths for the absorption lay⁃er are determined.When the absorption layer has a thickness of 0.3μm and a length of 50μm,the noise equiva⁃lent power reaches its minimum value,and the quantum efficiency can achieve a value of 68.9%.The utilization of waveguide detectors constructed with Ⅲ-Ⅴ materials offers a more convenient means of integrating mid-infra⁃red light sources and achieving photoelectric detection chips.
文摘为了研制满足光纤通讯需求的高性能半导体激光器,对压应变In Ga As Sb/Ga As Sb量子阱激光器有源区进行了研究。根据应变量子阱能带理论、固体模型理论和克龙尼克-潘纳模型,确定了激射波长与量子阱材料组分及阱宽的关系。基于Lastip软件建立了条宽为50μm、腔长为800μm的半导体激光器仿真模型,模拟器件的输出特性,讨论了量子阱个数对器件光电特性的影响。结果表明:当量子阱组分为In0.44Ga0.56As0.92Sb0.08/Ga As0.92Sb0.08、阱宽为9 nm、量子阱个数为2时,器件的性能达到最佳,阈值电流为48 m A,斜率效率为0.76 W/A。
文摘The epi material growth of GaAsSb based DHBTs with InAlAs emitters are investigated using a 4×100mm multi-wafer production Riber 49 MBE reactor fully equipped with real-time in-situ sensors including an absorption band edge spectroscope and an optical-based flux monitor.The state-of-the-art hole mobilities are obtained from 100nm thick carbon-doped GaAsSb.A Sb composition variation of less than ±0.1 atomic percent across a 4×100mm platen configuration has been achieved.The large area InAlAs/GaAsSb/InP DHBT device demonstrates excellent DC characteristics,such as BV_CEO>6V and a DC current gain of 45 at 1kA/cm2 for an emitter size of 50μm×50μm.The devices have a 40nm thick GaAsSb base with p-doping of 4.5×1019cm-3.Devices with an emitter size of 4μm×30μm have a current gain variation less than 2% across the fully processed 100mm wafer.f_t and f_max are over 50GHz,with a power efficiency of 50%,which are comparable to standard power GaAs HBT results.These results demonstrate the potential application of GaAsSb/InP DHBT for power amplifiers and the feasibility of multi-wafer MBE for mass production of GaAsSb-based HBTs.