Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery ...Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group(10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury.展开更多
Objective:To evaluate the effect of task-oriented training combined with a lower limb rehabilitation robot on improving motor function and ankle joint function in stroke patients with hemiplegia.Methods:Sixty-three st...Objective:To evaluate the effect of task-oriented training combined with a lower limb rehabilitation robot on improving motor function and ankle joint function in stroke patients with hemiplegia.Methods:Sixty-three stroke patients with hemiplegia admitted to our hospital from January 2022 to June 2024 were randomly divided into observation group(32 cases)and control group(31 cases)using the envelope method.The control group received task-oriented training,while the observation group received additional lower limb rehabilitation robot training.The motor function(Fugl-Meyer Assessment of Lower Extremity,FMA-LE)and ankle joint function(Active Dorsiflexion Range of Motion,DF AROM)were compared between the two groups.Results:After treatment,the levels of FMA-LE and DF AROM in both groups increased significantly,and the improvement in each index in the observation group was better than that in the control group(P<0.05).Conclusion:The combination of task-oriented training and lower limb rehabilitation robot training can more effectively improve the overall motor function of the lower limbs and the active dorsiflexion ability of the ankle joint in stroke patients with hemiplegia.展开更多
Objective: To investigate the effect of a self-developed balance rhythm dance program on the rehabilitation of motor function and the reduction of fall risk in elderly women with diminished balance function. Methods: ...Objective: To investigate the effect of a self-developed balance rhythm dance program on the rehabilitation of motor function and the reduction of fall risk in elderly women with diminished balance function. Methods: Fifty elderly women with reduced balance function, admitted to the Qingbar Elderly Care Center of Chongqing Medical University from December 2022 to December 2023, were randomly selected and divided into two groups. The aerobic exercise group (25 patients) received traditional treatment and rehabilitation nursing, while the balance rhythm dance intervention group (25 patients) received the balance rhythm dance intervention in addition to traditional treatment and rehabilitation nursing. The Unified Parkinson’s Disease Rating Scale (UPDRS) and Berg Balance Scale (BBS) were used as evaluation indicators to compare the intervention effects between the two groups. Results: The data revealed that the balance rhythm dance intervention significantly improved the motor ability and balance function of elderly women in the intervention group (P < 0.01), with statistically significant differences observed. Conclusion: The balance rhythm dance program plays a critical role in promoting the rehabilitation of motor function and balance ability in elderly women, effectively enhancing their quality of life.展开更多
Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in s...Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury.展开更多
BACKGROUND Mild cognitive impairment(MCI)is a transitional state between normal aging and Alzheimer's disease(AD),characterized by subtle cognitive decline.Amnestic MCI(aMCI),in particular,is a critical precursor ...BACKGROUND Mild cognitive impairment(MCI)is a transitional state between normal aging and Alzheimer's disease(AD),characterized by subtle cognitive decline.Amnestic MCI(aMCI),in particular,is a critical precursor often progressing to AD.There is growing interest in understanding the neuroanatomical correlates of aMCI,especially the role of gray matter volume(GMV)in cognitive and motor function decline.This study hypothesized that aMCI patients will exhibit reduced GMV,particularly in brain regions associated with cognition and motor control,impacting both cognitive performance and motor abilities.AIM To investigate the association of GMV with cognitive and motor functions in aMCI.METHODS In this cross-sectional study conducted from March 2022 to March 2024,45 aMCI patients and 45 normal controls from our Department of Geratology were enrolled.Voxel-based morphometry was used to compare GMV between groups.Correlation of differential GMV with cognitive scores and gait parameters was assessed via partial correlation analysis.Linear regression was used to assess associations between whole-brain GMV and gait measures.RESULTS GMV of aMCI region of interest(ROI)1 and ROI2 was negatively correlated with Activities of Daily Living(ADL)score.GMV of ROI6 was positively correlated with the total scores of Mini-Mental State Examination and Cambridge Cognitive Examination-Chinese Version(CAMCOG-C)and negatively correlated with ADL score.In the partial correlation analysis of cognitive and motor function parameters,age,gender,educational level,height,and weight were controlled,and the results showed that CAMCOG-C was negatively correlated with Dual Task of Time Up and Go Test(TUG)duration in the aMCI group.The volume of the left occipital gray matter in the aMCI group was negatively correlated with TUG.GMV of the bilateral frontal gyrus,right orbitofrontal gyrus,right occipital cleft,right supraoccipital gyrus,and left anterior central gyrus was positively correlated with walking speed.CONCLUSION GMV reduction in aMCI correlates with impaired cognition and motor function,emphasizing key roles for prefrontal,occipital,and central regions in gait disorders.展开更多
One of the core challenges faced by children with autism is repetitive motor behavior,which not only undermines their learning efficiency in the classroom but also makes it difficult for them to integrate smoothly int...One of the core challenges faced by children with autism is repetitive motor behavior,which not only undermines their learning efficiency in the classroom but also makes it difficult for them to integrate smoothly into inclusive educational settings,thereby hindering their social adaptation and overall development.This study adopted a single-case design focusing on a first-grade student with autism enrolled in a mainstream class at Xiangxue Primary School,Huangpu District,Guangzhou.Functional behavior assessment was conducted to systematically observe and analyze the student’s repetitive motor behaviors in class,on the basis of which an intervention plan was developed and implemented.The intervention incorporated antecedent control,replacement behavior training,and consequence management,supplemented by collaboration between school and family.The findings indicated that the frequency of repetitive motor behaviors decreased significantly after the intervention,while the student demonstrated improved classroom participation and peer interaction;these positive effects were maintained during the follow-up phase.The study suggests that in inclusive education settings,interventions guided by functional behavior assessment can effectively reduce problem behaviors in children with autism and enhance their classroom engagement and learning adaptability.展开更多
To guarantee the safety of the high speed maglev train system, a novel model based on the winding function theory is proposed for the long-stator linear synchronous motor(LSM), which is suitable for the real-time ca...To guarantee the safety of the high speed maglev train system, a novel model based on the winding function theory is proposed for the long-stator linear synchronous motor(LSM), which is suitable for the real-time calculation of the running state. The accurate coupled mathematical models under different internal fault conditions of the LSM are derived based on the normal model. Then the fault currents and electromagnetic forces are simulated and calculated for the major potential internal faults of the LSM, such as the single-phase short circuit, the phase-phase short circuit and the single-phase open circuit. The characteristic curve between the electromagnetic force and the armature current of the LSM, which is compared with the results from the finite element method, proves the validation of the proposed method. The fault rule is determined and the proposed analytical model also shows its feasibility in the fast fault diagnosis through the comparison of the simulation results of currents and electromagnetic forces under different internal fault types and short circuit ratios.展开更多
Studies have confirmed that low-frequency repetitive transcranial magnetic stimulation can decrease the activity of cortical neurons, and high-frequency repetitive transcranial magnetic stimulation can increase the ex...Studies have confirmed that low-frequency repetitive transcranial magnetic stimulation can decrease the activity of cortical neurons, and high-frequency repetitive transcranial magnetic stimulation can increase the excitability of cortical neurons. However, there are few studies concerning the use of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper-limb motor function after cerebral infarction. We hypothesized that different frequencies of repetitive transcranial magnetic stimulation in patients with cerebral infarction would produce different effects on the recovery of upper-limb motor function. This study enrolled 127 patients with upper-limb dysfunction during the subacute phase of cerebral infarction. These patients were randomly assigned to three groups. The low-frequency group comprised 42 patients who were treated with 1 Hz repetitive transcranial magnetic stimulation on the contralateral hemisphere primary motor cortex (M1). The high-frequency group comprised 43 patients who were treated with 10 Hz repetitive transcranial magnetic stimulation on ipsilateral M1. Finally, the sham group comprised 42 patients who were treated with 10 Hz of false stimulation on ipsilateral M1. A total of 135 seconds of stimulation was applied in the sham group and high-frequency group. At 2 weeks after treatment, cortical latency of motor-evoked potentials and central motor conduction time were significantly lower compared with before treatment. Moreover, motor function scores were significantly improved. The above indices for the low- and high-frequency groups were significantly different compared with the sham group. However, there was no significant difference between the low- and high-frequency groups. The results show that low- and high-frequency repetitive transcranial magnetic stimulation can similarly improve upper-limb motor function in patients with cerebral infarction.展开更多
Major ozonated autohemotherapy is classically used in treating ischemic disorder of the lower limbs In the present study, we performed major ozonated autohemotherapy treatment in patients with acute cerebral infarctio...Major ozonated autohemotherapy is classically used in treating ischemic disorder of the lower limbs In the present study, we performed major ozonated autohemotherapy treatment in patients with acute cerebral infarction, and assessed outcomes according to the U.S. National Institutes of Health Stroke Score, Modified Rankin Scale, and transcranial magnetic stimulation motor-evoked potential. Compared with the control group, the clinical total effective rate and the cortical potential rise rate of the upper limbs were significantly higher, the central motor conduction time of upper limb was significantly shorter, and the upper limb motor-evoked potential amplitude was significantly increased, in the ozone group. In the ozone group, the National Institutes of Health Stroke Score was positively correlated with the central motor conduction time and the motor-evoked potential amplitude of the upper limb. Central motor conduction time and motor-evoked potential amplitude of the upper limb may be effective indicators of motor-evoked potentials to assess upper limb motor function in cerebral infarct patients. Furthermore, major ozonated autohemotherapy may promote motor function recovery of the upper limb in patients with acute cerebral infarction.展开更多
Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patien...Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor func- tion test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action perfor- mance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH- 12002238).展开更多
Objective To investigate the effects of combined transplantation of neural stem cells (NSC) and olfactory ensheathing cells (OEC) on the motor function of rats with intracerebral hemorrhage. Methods In three days ...Objective To investigate the effects of combined transplantation of neural stem cells (NSC) and olfactory ensheathing cells (OEC) on the motor function of rats with intracerebral hemorrhage. Methods In three days after a rat model of caudate nucleus hemorrhage was established, NSCs and OEC, NSC, OEC (from embryos of Wistar rats) or normal saline were injected into bematomas of rats in combined transplantation group, NSC group, OEC group, and control group, respectively. Damage of neural function was scored before and in 3, 7, 14, 30 days after operation. Tissue after transplantation was observed by immunocytochemistry staining. Results The scores for the NSC, OEC and co-transplantation groups were significantly lower in 14 and 30 days after operation than in 3 days after operation (P〈0.05). The scores for the NSC and OEC groups were significantly lower than those for the control group only in 30 days after operation (P〈0.05), while the difference for the NSC-OEC group was significant in 14 days after operation (P〈0.05). Immunocytochemistry staining revealed that the transplanted OEC and NSC could survive, migrate and differentiate into neurons, astrocytes, and oligodendrocytes. The number of neural precursor cells was greater in the NSC and combined transplantation groups than in the control group. The number of neurons differentiated from NSC was significantly greater in the co-transplantation group than in the NSC group. Conclusion Co-transplantation of NSC and OEC can promote the repair of injured tissue and improve the motor fimction of rats with intracerebral hemorrhage.展开更多
A total of 29 patients were treated within 48 hours after acute subcortical cerebral infarction with Xuesaitong or Xuesaitong plus human urinary kallidinogenase for 14 days. Neurological deficits, activity of daily li...A total of 29 patients were treated within 48 hours after acute subcortical cerebral infarction with Xuesaitong or Xuesaitong plus human urinary kallidinogenase for 14 days. Neurological deficits, activity of daily living, and evaluations of distal upper limb motor functions at the 6-month follow-up showed that patients treated with Xuesaitong plus human urinary kallidinogenase recovered better than with Xuesaitong alone. In addition, functional MRI revealed that activation sites were primarily at the ipsilesional side of injury in all patients. Human urinary kallidinogenase induced hyperactivation of the ipsilesional primary sensorimotor cortex, premotor cortex, supplementary motor area, and contralesional posterior parietal cortex. Results showed that human urinary kallidinogenase improved symptoms of neurological deficiency by enhancing remodeling of long-term cortical motor function in patients with acute cerebral infarction.展开更多
Objective:Studies have shown that docosahexaenoic acid(DHA)has a beneficial effect in the treatment of spinal cord injury.A meta-analysis was used to study the effect of DHA on the neurological recovery in the rat spi...Objective:Studies have shown that docosahexaenoic acid(DHA)has a beneficial effect in the treatment of spinal cord injury.A meta-analysis was used to study the effect of DHA on the neurological recovery in the rat spinal cord injury model,and the relationship between the recovery of motor function after spinal cord injury and the time and method of administration and the dose of DHA.Data source:Published studies on the effect of DHA on spinal cord injury animal models from seven databases were searched from their inception to January 2019,including PubMed,MEDLINE,EMBASE,the China National Knowledge Infrastructure,Wanfang,VIP,and SinoMed databases.The search terms included“spinal cord injury”“docosahexaenoic acid”,and“rats”.Data selection:Studies that evaluated the influence of DHA in rat models of spinal cord injury for locomotor functional recovery were included.The intervention group included any form of DHA treatment and the control group included treatment with normal saline,vehicle solution or no treatment.The Systematic Review Centre for Laboratory animal Experimentation’s risk of bias assessment tool was used for the quality assessment of the included studies.Literature inclusion,quality evaluation and data extraction were performed by two researchers.Meta-analysis was then conducted on all studies that met the inclusion criteria.Statistical analysis was performed on the data using RevMan 5.1.2.software.Outcome measures:The primary outcome measure was the score on the Basso,Beattie,and Bresnahan scale.Secondary outcome measures were the sloping plate test,balance beam test,stair test and grid exploration test.Results:A total of 12 related studies were included,3 of which were of higher quality and the remaining 9 were of lower quality.The highest mean Basso,Beattie,and Bresnahan scale score occurred at 42 days after DHA treatment in spinal cord injury rats.At 21 days after treatment,the mean difference in Basso,Beattie,Bresnahan scores between the DHA group and the control group was the most significant(pooled MD=4.14;95%CI=3.58–4.70;P<0.00001).In the subgroup analysis,improvement in the Basso,Beattie,and Bresnahan scale score was more significant in rats administered DHA intravenously(pooled MD=2.74;95%CI=1.41–4.07;P<0.0001)and subcutaneously(pooled MD=2.99;95%CI=2.29–3.69;P<0.00001)than in the groups administered DHA orally(pooled MD=3.04;95%CI=–1.01 to 7.09;P=0.14).Intravenous injection of DHA at 250 nmol/kg(pooled MD=2.94;95%CI=2.47–3.41;P<0.00001]and 1000 nmol/kg[pooled MD=3.60;95%CI=2.66–4.54;P<0.00001)significantly improved the Basso,Beattie,and Bresnahan scale score in rats and promoted the recovery of motor function.Conclusion:DHA can promote motor functional recovery after spinal cord injury in rats.The administration of DHA by intravenous or subcutaneous injection is more effective than oral administration of DHA.Intravenous injection of DHA at doses of 250 nmol/kg or 1000 nmol/kg is beneficial.Because of the small number and the low quality of the included studies,more high-quality research is needed in future to substantiate the results.展开更多
Low frequency (≤ 1 Hz) repetitive transcranial magnetic stimulation (rTMS) can affect the excitability of the cerebral cortex and synaptic plasticity. Although this is a common method for clinical treatment of ce...Low frequency (≤ 1 Hz) repetitive transcranial magnetic stimulation (rTMS) can affect the excitability of the cerebral cortex and synaptic plasticity. Although this is a common method for clinical treatment of cerebral infarction, whether it promotes the recovery of motor function remains controversial. Twenty patients with cerebral infarction combined with hemiparalysis were equally and randomly divided into a low frequency rTMS group and a control group. The patients in the low frequency rTMS group were given 1-Hz rTMS to the contralateral primary motor cortex with a stimulus intensity of 90% motor threshold, 30 minutes/day. The patients in the control group were given sham stimulation. After 14 days of treatment, clinical function scores (National Institute of Health Stroke Scale, Barthel Index, and Fugl-Meyer Assessment) improved significantly in the low frequency rTMS group, and the effects were better than that in the control group. We conclude that low frequency (1 Hz) rTMS for 14 days can help improve motor function after cerebral infarction.展开更多
Peri-lesional reorganization is one of the motor recovery mechanisms following stroke. A 23-year-old female who presented with complete paralysis of the right extremities at the onset of infarct in the left middle cer...Peri-lesional reorganization is one of the motor recovery mechanisms following stroke. A 23-year-old female who presented with complete paralysis of the right extremities at the onset of infarct in the left middle cerebral artery territory was included. She slowly recovered some function, and could extend the affected knee with resistance after 9 months. Diffusion tensor tractography, functional MRI, and transcranial magnetic stimulation testing were performed at 7 years after onset. Results showed that diffusion tensor tractography of the affected (left) hemisphere passed through the medial corona radiata at, or around, the wall of the lateral ventricle. The contralateral primary sensorimotor cortex was activated during affected knee movements. The motor-evoked potential, which was obtained from the affected leg, exhibited corticospinal tract characteristics. Results indicated that motor function of the affected leg recovered via the corticospinal tract, which descended through the corona radiata medial to the infarct. The motor function of the affected leg was reorganized to the medial corona radiata following infarct to the middle cerebral artery territory.展开更多
Hemiparesis is one of the most common consequences of stroke. Advanced rehabilitation techniques are essential for restoring motor function in hemiplegic patients. Functional electrical stimulation applied to the affe...Hemiparesis is one of the most common consequences of stroke. Advanced rehabilitation techniques are essential for restoring motor function in hemiplegic patients. Functional electrical stimulation applied to the affected limb based on myoelectric signal from the unaffected limb is a promising therapy for hemiplegia. In this study, we developed a prototype system for evaluating this novel functional electrical stimulation-control strategy. Based on surface electromyography and a vector machine model, a self-administered, muki-movement, force-modulation functional electrical stimulation-prototype system for hemiplegia was implemented. This paper discusses the hardware design, the algorithm of the system, and key points of the self-oscillation-prone system. The experimental results demonstrate the feasibility of the prototype system for further clinical trials, which is being conducted to evaluate the efficacy of the proposed rehabilitation technique.展开更多
基金supported by the NIH (R01NS103481, R01NS111776, and R01NS131489)Indiana Department of Health (ISDH58180)(all to WW)。
文摘Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group(10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury.
文摘Objective:To evaluate the effect of task-oriented training combined with a lower limb rehabilitation robot on improving motor function and ankle joint function in stroke patients with hemiplegia.Methods:Sixty-three stroke patients with hemiplegia admitted to our hospital from January 2022 to June 2024 were randomly divided into observation group(32 cases)and control group(31 cases)using the envelope method.The control group received task-oriented training,while the observation group received additional lower limb rehabilitation robot training.The motor function(Fugl-Meyer Assessment of Lower Extremity,FMA-LE)and ankle joint function(Active Dorsiflexion Range of Motion,DF AROM)were compared between the two groups.Results:After treatment,the levels of FMA-LE and DF AROM in both groups increased significantly,and the improvement in each index in the observation group was better than that in the control group(P<0.05).Conclusion:The combination of task-oriented training and lower limb rehabilitation robot training can more effectively improve the overall motor function of the lower limbs and the active dorsiflexion ability of the ankle joint in stroke patients with hemiplegia.
基金Chongqing Sports Scientific Research Project“Research and Development of Balance Rhythm Dance and Its Application in Reducing Fall Risk in Older Women”(Project No.D202209)Chongqing Nursing Vocational College College-level Project“Research on the Talent Training Model of Field Engineers in the Intelligent Health Care Sector Based on Rehabilitation Assistive Devices under the‘Integration of Science and Education’Approach”(Project No.Y202307)+1 种基金Chongqing Science and Technology Bureau Research Project“Investigating the Impact of Electro-acupuncture Applied to Antagonist Muscles on Walking Ability in Stroke Patients with Hemiplegia Based on the Principle of Reciprocal Inhibition”(Project No.CSTC2019JXJL130019)Chongqing Traditional Chinese Medicine Hospital Research Project“The Alterations in the Pelvic Floor Muscle Group Following Acupuncture Treatment for Postpartum Stress Urinary Incontinence Were Evaluated Using SWE Technology”(Project No.jxyn2021-2-23)。
文摘Objective: To investigate the effect of a self-developed balance rhythm dance program on the rehabilitation of motor function and the reduction of fall risk in elderly women with diminished balance function. Methods: Fifty elderly women with reduced balance function, admitted to the Qingbar Elderly Care Center of Chongqing Medical University from December 2022 to December 2023, were randomly selected and divided into two groups. The aerobic exercise group (25 patients) received traditional treatment and rehabilitation nursing, while the balance rhythm dance intervention group (25 patients) received the balance rhythm dance intervention in addition to traditional treatment and rehabilitation nursing. The Unified Parkinson’s Disease Rating Scale (UPDRS) and Berg Balance Scale (BBS) were used as evaluation indicators to compare the intervention effects between the two groups. Results: The data revealed that the balance rhythm dance intervention significantly improved the motor ability and balance function of elderly women in the intervention group (P < 0.01), with statistically significant differences observed. Conclusion: The balance rhythm dance program plays a critical role in promoting the rehabilitation of motor function and balance ability in elderly women, effectively enhancing their quality of life.
基金supported by the National Natural Science Foundation of China,Nos.82072165 and 82272256(both to XM)the Key Project of Xiangyang Central Hospital,No.2023YZ03(to RM)。
文摘Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury.
基金Supported by Zhejiang Province Traditional Chinese Medicine Science and Technology Plan Project,No.2023ZL460Zhejiang Province Traditional Chinese Medicine Modernization Special Project,No.2021ZX011。
文摘BACKGROUND Mild cognitive impairment(MCI)is a transitional state between normal aging and Alzheimer's disease(AD),characterized by subtle cognitive decline.Amnestic MCI(aMCI),in particular,is a critical precursor often progressing to AD.There is growing interest in understanding the neuroanatomical correlates of aMCI,especially the role of gray matter volume(GMV)in cognitive and motor function decline.This study hypothesized that aMCI patients will exhibit reduced GMV,particularly in brain regions associated with cognition and motor control,impacting both cognitive performance and motor abilities.AIM To investigate the association of GMV with cognitive and motor functions in aMCI.METHODS In this cross-sectional study conducted from March 2022 to March 2024,45 aMCI patients and 45 normal controls from our Department of Geratology were enrolled.Voxel-based morphometry was used to compare GMV between groups.Correlation of differential GMV with cognitive scores and gait parameters was assessed via partial correlation analysis.Linear regression was used to assess associations between whole-brain GMV and gait measures.RESULTS GMV of aMCI region of interest(ROI)1 and ROI2 was negatively correlated with Activities of Daily Living(ADL)score.GMV of ROI6 was positively correlated with the total scores of Mini-Mental State Examination and Cambridge Cognitive Examination-Chinese Version(CAMCOG-C)and negatively correlated with ADL score.In the partial correlation analysis of cognitive and motor function parameters,age,gender,educational level,height,and weight were controlled,and the results showed that CAMCOG-C was negatively correlated with Dual Task of Time Up and Go Test(TUG)duration in the aMCI group.The volume of the left occipital gray matter in the aMCI group was negatively correlated with TUG.GMV of the bilateral frontal gyrus,right orbitofrontal gyrus,right occipital cleft,right supraoccipital gyrus,and left anterior central gyrus was positively correlated with walking speed.CONCLUSION GMV reduction in aMCI correlates with impaired cognition and motor function,emphasizing key roles for prefrontal,occipital,and central regions in gait disorders.
文摘One of the core challenges faced by children with autism is repetitive motor behavior,which not only undermines their learning efficiency in the classroom but also makes it difficult for them to integrate smoothly into inclusive educational settings,thereby hindering their social adaptation and overall development.This study adopted a single-case design focusing on a first-grade student with autism enrolled in a mainstream class at Xiangxue Primary School,Huangpu District,Guangzhou.Functional behavior assessment was conducted to systematically observe and analyze the student’s repetitive motor behaviors in class,on the basis of which an intervention plan was developed and implemented.The intervention incorporated antecedent control,replacement behavior training,and consequence management,supplemented by collaboration between school and family.The findings indicated that the frequency of repetitive motor behaviors decreased significantly after the intervention,while the student demonstrated improved classroom participation and peer interaction;these positive effects were maintained during the follow-up phase.The study suggests that in inclusive education settings,interventions guided by functional behavior assessment can effectively reduce problem behaviors in children with autism and enhance their classroom engagement and learning adaptability.
文摘To guarantee the safety of the high speed maglev train system, a novel model based on the winding function theory is proposed for the long-stator linear synchronous motor(LSM), which is suitable for the real-time calculation of the running state. The accurate coupled mathematical models under different internal fault conditions of the LSM are derived based on the normal model. Then the fault currents and electromagnetic forces are simulated and calculated for the major potential internal faults of the LSM, such as the single-phase short circuit, the phase-phase short circuit and the single-phase open circuit. The characteristic curve between the electromagnetic force and the armature current of the LSM, which is compared with the results from the finite element method, proves the validation of the proposed method. The fault rule is determined and the proposed analytical model also shows its feasibility in the fast fault diagnosis through the comparison of the simulation results of currents and electromagnetic forces under different internal fault types and short circuit ratios.
基金several colleague therapists of the Rehabilitation Medicine Department of the Affiliated Hospital of Qingdao University of China for their support and selfless help
文摘Studies have confirmed that low-frequency repetitive transcranial magnetic stimulation can decrease the activity of cortical neurons, and high-frequency repetitive transcranial magnetic stimulation can increase the excitability of cortical neurons. However, there are few studies concerning the use of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper-limb motor function after cerebral infarction. We hypothesized that different frequencies of repetitive transcranial magnetic stimulation in patients with cerebral infarction would produce different effects on the recovery of upper-limb motor function. This study enrolled 127 patients with upper-limb dysfunction during the subacute phase of cerebral infarction. These patients were randomly assigned to three groups. The low-frequency group comprised 42 patients who were treated with 1 Hz repetitive transcranial magnetic stimulation on the contralateral hemisphere primary motor cortex (M1). The high-frequency group comprised 43 patients who were treated with 10 Hz repetitive transcranial magnetic stimulation on ipsilateral M1. Finally, the sham group comprised 42 patients who were treated with 10 Hz of false stimulation on ipsilateral M1. A total of 135 seconds of stimulation was applied in the sham group and high-frequency group. At 2 weeks after treatment, cortical latency of motor-evoked potentials and central motor conduction time were significantly lower compared with before treatment. Moreover, motor function scores were significantly improved. The above indices for the low- and high-frequency groups were significantly different compared with the sham group. However, there was no significant difference between the low- and high-frequency groups. The results show that low- and high-frequency repetitive transcranial magnetic stimulation can similarly improve upper-limb motor function in patients with cerebral infarction.
基金supported by the Guangdong Province Medical Science Research Fund, No. B200258
文摘Major ozonated autohemotherapy is classically used in treating ischemic disorder of the lower limbs In the present study, we performed major ozonated autohemotherapy treatment in patients with acute cerebral infarction, and assessed outcomes according to the U.S. National Institutes of Health Stroke Score, Modified Rankin Scale, and transcranial magnetic stimulation motor-evoked potential. Compared with the control group, the clinical total effective rate and the cortical potential rise rate of the upper limbs were significantly higher, the central motor conduction time of upper limb was significantly shorter, and the upper limb motor-evoked potential amplitude was significantly increased, in the ozone group. In the ozone group, the National Institutes of Health Stroke Score was positively correlated with the central motor conduction time and the motor-evoked potential amplitude of the upper limb. Central motor conduction time and motor-evoked potential amplitude of the upper limb may be effective indicators of motor-evoked potentials to assess upper limb motor function in cerebral infarct patients. Furthermore, major ozonated autohemotherapy may promote motor function recovery of the upper limb in patients with acute cerebral infarction.
基金supported by the Sub-Project under National "Twelfth Five-Year" Plan for Science&Technology Support Project in China,No.2011BAI08B11the Research Project of China Rehabilitation Research Center,No.2014-3
文摘Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor func- tion test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action perfor- mance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH- 12002238).
基金supported by the National Natural Science Foundation of China (30570628 & 30770751)
文摘Objective To investigate the effects of combined transplantation of neural stem cells (NSC) and olfactory ensheathing cells (OEC) on the motor function of rats with intracerebral hemorrhage. Methods In three days after a rat model of caudate nucleus hemorrhage was established, NSCs and OEC, NSC, OEC (from embryos of Wistar rats) or normal saline were injected into bematomas of rats in combined transplantation group, NSC group, OEC group, and control group, respectively. Damage of neural function was scored before and in 3, 7, 14, 30 days after operation. Tissue after transplantation was observed by immunocytochemistry staining. Results The scores for the NSC, OEC and co-transplantation groups were significantly lower in 14 and 30 days after operation than in 3 days after operation (P〈0.05). The scores for the NSC and OEC groups were significantly lower than those for the control group only in 30 days after operation (P〈0.05), while the difference for the NSC-OEC group was significant in 14 days after operation (P〈0.05). Immunocytochemistry staining revealed that the transplanted OEC and NSC could survive, migrate and differentiate into neurons, astrocytes, and oligodendrocytes. The number of neural precursor cells was greater in the NSC and combined transplantation groups than in the control group. The number of neurons differentiated from NSC was significantly greater in the co-transplantation group than in the NSC group. Conclusion Co-transplantation of NSC and OEC can promote the repair of injured tissue and improve the motor fimction of rats with intracerebral hemorrhage.
基金supported by the Science and Technology Program of Guangzhou,No.2006Z12E0119Guangzhou Science and Technology Key Project,No.122732961131543
文摘A total of 29 patients were treated within 48 hours after acute subcortical cerebral infarction with Xuesaitong or Xuesaitong plus human urinary kallidinogenase for 14 days. Neurological deficits, activity of daily living, and evaluations of distal upper limb motor functions at the 6-month follow-up showed that patients treated with Xuesaitong plus human urinary kallidinogenase recovered better than with Xuesaitong alone. In addition, functional MRI revealed that activation sites were primarily at the ipsilesional side of injury in all patients. Human urinary kallidinogenase induced hyperactivation of the ipsilesional primary sensorimotor cortex, premotor cortex, supplementary motor area, and contralesional posterior parietal cortex. Results showed that human urinary kallidinogenase improved symptoms of neurological deficiency by enhancing remodeling of long-term cortical motor function in patients with acute cerebral infarction.
基金supported by the National Natural Science Foundation of China,No.81704096,81603635,81873317(to MY,JY,XJC)Shanghai Science and Technology Commission-Key Project of Traditional Chinese Medicine,No.16401970100(to YJW)+4 种基金the Shanghai Traditional Chinese Medicine Medical Center of Chronic Disease of China,No.2017ZZ01010(to YJW)the National Thirteenth Five-Year Science and Technology Major Special Project for New Drug Innovation and Development of China,No.2017ZX09304001(to YJW)the Program for Innovative Research Team of Ministry of Science and Technology of China,No.2015RA4002(to YJW)the “Innovation Team” Development Projects of China,No.IRT1270(to YJW)the Three Years Action to Accelerate the Development of Traditional Chinese Medicine Plan of China,No.ZY(2018-2020)-CCCX-3003(to YJW)
文摘Objective:Studies have shown that docosahexaenoic acid(DHA)has a beneficial effect in the treatment of spinal cord injury.A meta-analysis was used to study the effect of DHA on the neurological recovery in the rat spinal cord injury model,and the relationship between the recovery of motor function after spinal cord injury and the time and method of administration and the dose of DHA.Data source:Published studies on the effect of DHA on spinal cord injury animal models from seven databases were searched from their inception to January 2019,including PubMed,MEDLINE,EMBASE,the China National Knowledge Infrastructure,Wanfang,VIP,and SinoMed databases.The search terms included“spinal cord injury”“docosahexaenoic acid”,and“rats”.Data selection:Studies that evaluated the influence of DHA in rat models of spinal cord injury for locomotor functional recovery were included.The intervention group included any form of DHA treatment and the control group included treatment with normal saline,vehicle solution or no treatment.The Systematic Review Centre for Laboratory animal Experimentation’s risk of bias assessment tool was used for the quality assessment of the included studies.Literature inclusion,quality evaluation and data extraction were performed by two researchers.Meta-analysis was then conducted on all studies that met the inclusion criteria.Statistical analysis was performed on the data using RevMan 5.1.2.software.Outcome measures:The primary outcome measure was the score on the Basso,Beattie,and Bresnahan scale.Secondary outcome measures were the sloping plate test,balance beam test,stair test and grid exploration test.Results:A total of 12 related studies were included,3 of which were of higher quality and the remaining 9 were of lower quality.The highest mean Basso,Beattie,and Bresnahan scale score occurred at 42 days after DHA treatment in spinal cord injury rats.At 21 days after treatment,the mean difference in Basso,Beattie,Bresnahan scores between the DHA group and the control group was the most significant(pooled MD=4.14;95%CI=3.58–4.70;P<0.00001).In the subgroup analysis,improvement in the Basso,Beattie,and Bresnahan scale score was more significant in rats administered DHA intravenously(pooled MD=2.74;95%CI=1.41–4.07;P<0.0001)and subcutaneously(pooled MD=2.99;95%CI=2.29–3.69;P<0.00001)than in the groups administered DHA orally(pooled MD=3.04;95%CI=–1.01 to 7.09;P=0.14).Intravenous injection of DHA at 250 nmol/kg(pooled MD=2.94;95%CI=2.47–3.41;P<0.00001]and 1000 nmol/kg[pooled MD=3.60;95%CI=2.66–4.54;P<0.00001)significantly improved the Basso,Beattie,and Bresnahan scale score in rats and promoted the recovery of motor function.Conclusion:DHA can promote motor functional recovery after spinal cord injury in rats.The administration of DHA by intravenous or subcutaneous injection is more effective than oral administration of DHA.Intravenous injection of DHA at doses of 250 nmol/kg or 1000 nmol/kg is beneficial.Because of the small number and the low quality of the included studies,more high-quality research is needed in future to substantiate the results.
基金supported by the National Natural Science Foundation of China,No.30540058,30770714the Natural Science Foundation of Beijing of China,No.7052030+2 种基金the Talents Foundation of Organization Department of the Beijing Municipal Committee in Chinathe Beijing Science Plan Project Fund of China,No.Z0005187040191-1the Research Foundation of Capital Medical Development of China,No.2007-2068
文摘Low frequency (≤ 1 Hz) repetitive transcranial magnetic stimulation (rTMS) can affect the excitability of the cerebral cortex and synaptic plasticity. Although this is a common method for clinical treatment of cerebral infarction, whether it promotes the recovery of motor function remains controversial. Twenty patients with cerebral infarction combined with hemiparalysis were equally and randomly divided into a low frequency rTMS group and a control group. The patients in the low frequency rTMS group were given 1-Hz rTMS to the contralateral primary motor cortex with a stimulus intensity of 90% motor threshold, 30 minutes/day. The patients in the control group were given sham stimulation. After 14 days of treatment, clinical function scores (National Institute of Health Stroke Scale, Barthel Index, and Fugl-Meyer Assessment) improved significantly in the low frequency rTMS group, and the effects were better than that in the control group. We conclude that low frequency (1 Hz) rTMS for 14 days can help improve motor function after cerebral infarction.
基金the Korea Research Foundation funded by the Korean Government, No.KRF-2008-314-E00173
文摘Peri-lesional reorganization is one of the motor recovery mechanisms following stroke. A 23-year-old female who presented with complete paralysis of the right extremities at the onset of infarct in the left middle cerebral artery territory was included. She slowly recovered some function, and could extend the affected knee with resistance after 9 months. Diffusion tensor tractography, functional MRI, and transcranial magnetic stimulation testing were performed at 7 years after onset. Results showed that diffusion tensor tractography of the affected (left) hemisphere passed through the medial corona radiata at, or around, the wall of the lateral ventricle. The contralateral primary sensorimotor cortex was activated during affected knee movements. The motor-evoked potential, which was obtained from the affected leg, exhibited corticospinal tract characteristics. Results indicated that motor function of the affected leg recovered via the corticospinal tract, which descended through the corona radiata medial to the infarct. The motor function of the affected leg was reorganized to the medial corona radiata following infarct to the middle cerebral artery territory.
基金supported by the National Natural Science Foundation of China,No.90307013,90707005a grant from the Science&Technology Pillar Program of Jiangsu Province in China,No.BE2013706
文摘Hemiparesis is one of the most common consequences of stroke. Advanced rehabilitation techniques are essential for restoring motor function in hemiplegic patients. Functional electrical stimulation applied to the affected limb based on myoelectric signal from the unaffected limb is a promising therapy for hemiplegia. In this study, we developed a prototype system for evaluating this novel functional electrical stimulation-control strategy. Based on surface electromyography and a vector machine model, a self-administered, muki-movement, force-modulation functional electrical stimulation-prototype system for hemiplegia was implemented. This paper discusses the hardware design, the algorithm of the system, and key points of the self-oscillation-prone system. The experimental results demonstrate the feasibility of the prototype system for further clinical trials, which is being conducted to evaluate the efficacy of the proposed rehabilitation technique.