This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the pre...This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the prepared surfaces are placed on top of each other and by rolling with reduction more than 50%,the bonding between layers is established.In this research,the roll bonding process was done at room temperature,without the use of lubricants and with a 70%thickness reduction.Then,the final thickness of the Ag/Al bilayer sheet reached 350μm by several stages of cold rolling.Before cold rolling,it should be noted that to decrease the hardness created due to plastic deformation,the roll-bonded samples were subjected to annealing heat treatment at 400℃for 90 min.Thus,the final samples were annealed at 200,300 and 400℃for 90 min and cooled in a furnace to examine the annealing temperature effects.The uniaxial tensile and microhardness tests measured mechanical properties.Also,to investigate the fracture mechanism,the fractography of the cross-section was examined by scanning electron microscope(SEM).To evaluate the formability of Ag/Al bilayer sheets,forming limit curves were obtained experimentally through the Nakazima test.The resistance of composites to failure due to cracking was also investigated by fracture toughness.The results showed that annealing increases the elongation and formability of the Ag/Al bilayer sheet while reduces the ultimate tensile strength and fracture toughness.However,the changing trend is not the same at different temperatures,and according to the results,the most significant effect is obtained at 300℃and aluminum layers.It was also determined that by increasing annealing temperature,the fracture mechanism from shear ductile with small and shallow dimples becomes ductile with deep cavities.展开更多
Fiber Metal Laminates(FMLs),as high-performance composite materials,demonstrate exceptional potential in a wide range of applications,such as aeronautical and astronautical industries.However,the traditional cured FML...Fiber Metal Laminates(FMLs),as high-performance composite materials,demonstrate exceptional potential in a wide range of applications,such as aeronautical and astronautical industries.However,the traditional cured FMLs possess complex interlayer stresses and low forming limits,restricting further promotion and application of FMLs.Low-constraint FMLs exhibit a lower forming resistance and better formability due to no curing during the forming process;however,the formation mechanism and response are not clear.This paper presents the Forming Limit Diagram(FLD)of low-constraint GLARE(glass fiber reinforced aluminum laminates)based on the forming limit test,and compares it with the conventionally cured laminates to evaluate the differences in the forming limit.In addition,combined with the analysis of failure mechanism and micro-deformation mechanism of specimens,the influence of different temperatures(20–80℃)and forming states(width)on the deformation performance of laminates is further explored.The results reveal that the forming limit curve of low-constraint laminates shifts up with the increase of temperature,the forming limit initially increases with the increase of width,then followed by a gradual decrease,and the maximum principal strain of low-constraint laminates is increased by 29% at 80℃ compared to 20℃.The cured laminate has a principal strain range of 0–0.02,while the low-constraint laminates have a principal strain range of 0.03–0.14.Compared with cured laminates,low-constraint laminates possess a higher forming limit due to the improvement in deformable degree between layers by resin flow and fiber slippage,which enhances their formability.This study is expected to serve as a reference for establishing forming limit criteria and optimizing forming schemes for low-constraint laminates.展开更多
Repeated unidirectional bending (RUB) was carried out to improve the texture of commercial AZ31B magnesium alloy sheets. All specimens were prepared in the rolling direction. The forming limit diagrams (FLDs) of A...Repeated unidirectional bending (RUB) was carried out to improve the texture of commercial AZ31B magnesium alloy sheets. All specimens were prepared in the rolling direction. The forming limit diagrams (FLDs) of AZ31B magnesium alloy sheet were determined experimentally by conducting stretch-forming tests at room temperature, 100, 200 and 300 ℃ Compared with the as-received sheet, the lowest limited strain of AZ31B magnesium alloy sheet with tilted texture in the FLD increased by 79% at room temperature and 104% at 100 ℃. The texture also affected the extension of the forming limit curves (FLC) in the FLD. However, the FLCs of two kinds of sheets almost overlapped at temperature above 200 ℃. It can be concluded that the reduction of (0002) texture intensity is effective to the improvement of formability not only at room temperature but also at low-and-medium temperature. The effect of texture on FLDs becomes weak with increasing temperature.展开更多
A theoretical prediction on forming limit diagram(FLD) of AZ31 magnesium alloy sheet was developed at warm temperatures based on the M-K theory. Two different yield criteria of von Mises and Hill'48 were applied in...A theoretical prediction on forming limit diagram(FLD) of AZ31 magnesium alloy sheet was developed at warm temperatures based on the M-K theory. Two different yield criteria of von Mises and Hill'48 were applied in this model. Mechanical properties of AZ31 magnesium alloy used in the prediction were obtained by uniaxial tensile tests and the Fields-Backofen equation was incorporated in the analysis. In addition, experimental FLDs of AZ31 were acquired by conducting rigid die swell test at different temperatures to verify the prediction. It is demonstrated from a comparison between the predicted and the experimental FLDs at 473 K and 523 K that the predicted results are influenced by the type of yield criterion used in the calculation, especially at lower temperatures. Furthermore, a better agreement between the predicted results and experimental data for AZ31 magnesium alloy sheet at warm temperatures was obtained when Hill'48 yield criterion was applied.展开更多
A modified Swift type flow stress—strain relation was presented in order to describe the uniaxial tension test curve reasonably. The FLD-strain (forming limit diagram made up of limit strain) of 5754O aluminum allo...A modified Swift type flow stress—strain relation was presented in order to describe the uniaxial tension test curve reasonably. The FLD-strain (forming limit diagram made up of limit strain) of 5754O aluminum alloy sheet was calculated based on the two flow stress—strain relations using Yld2000-2d yield function. By comparing the theoretical and experimental results, it is found that the calculated FLD-strain based on the modified Swift flow stress—strain relation can reasonably describe the experimental results. However, though the common Voce flow stress—strain relation can describe the deformation behavior during homogenous deformation phase accurately, the FLD-strain calculated based on it is obviously lower than the experimental result. It is concluded that the higher the hardening rate of sheet metal is, the higher the forming limit is. A method for determining the reasonable flow stress—strain relation is recommended for describing the material behavior during inhomogenous phase and the forming limit of sheet metal.展开更多
Two numerical criteria of forming limit diagram(FLD) criterion and ductile fracture criterion(DFC) are presented for FLD prediction of 6061 aluminum. The numerical results are compared with the experimental FLD an...Two numerical criteria of forming limit diagram(FLD) criterion and ductile fracture criterion(DFC) are presented for FLD prediction of 6061 aluminum. The numerical results are compared with the experimental FLD and also punch's load-displacement curve of experimental samples. Experimental FLD of this study is calculated using hemispherical punch test of Hecker. Experimental FLD is converted to FLSD and imported to the Abaqus software to predict necking of samples. Numerical results for FLSD prediction were compared with experimental FLSD. Results show that ductile fracture criterion has higher accuracy for FLD and FLSD prediction of 6061 aluminum. Comparison of numerical and experimental results for force-displacement curve of punch shows that numerical results have a good agreement with experiment.展开更多
The conventional forming limit diagram (FLD) is described as a plot of major strain versus minor strain. However, FLD is dependent on forming history and strain path. In the present study, a forming limit stress-bas...The conventional forming limit diagram (FLD) is described as a plot of major strain versus minor strain. However, FLD is dependent on forming history and strain path. In the present study, a forming limit stress-based diagram (FLSD) has been adopted to predict the fracture limit of aluminum alloy (AA) 5052-O1 sheet. Nakazima test is simulated by plastic constitutive formula derived from the modified Gurson-Tvergaard-Needleman (GTN) model. An in situ tensile test with scanning electron microscope (SEM) is proposed to determine the parameters in GTN model. The damage evolution is observed and recorded, and the parameters of GTN model are identified through counting void fraction at three damage stages of AA5052-O 1. According to the experimental results, the original void volume fraction, the volume fraction of potential nucleated voids, the critical void volume fraction, the void volume fraction at the final failure of material are assigned as 0.002 918, 0.024 9, 0.030 103, 0.048 54, respectively. The stress and strain are obtained at the last loading step before crack. FLSD and FLD of AA5052-O 1 are plotted. Compared with the experimental Nakazima test and uniaxial tensile test, the predicted results show a good agreement. The parameters determined by in situ tensile test can be applied to the research of the forming limit for ductile metals.展开更多
The process of automobile lightweight can be promoted by the application of tailor rolled blank(TRB)in the automobile industry.Therefore,research on the formability of TRB is of good practical significance and appli...The process of automobile lightweight can be promoted by the application of tailor rolled blank(TRB)in the automobile industry.Therefore,research on the formability of TRB is of good practical significance and application value because of the enormous potential of TRB in the aspect of automobile lightweight.Aiming at the present condition of lack of researches on the influence of characteristic parameters on TRB drawing process,the drawing formability of TRB was studied with a combination method of simulation and experiment by taking square box as the research object.Firstly,drawing simulation and experiment of TRB were carried out.Then,effects of thickness transition zone(TTZ)position and blank size on the drawing formability of TRB were analyzed.Forming limit and TTZ movement for TRB square box during the drawing process were respectively discussed,when transition zones of TRB were located at different positions and blanks were of different sizes.The results indicate that lubrication condition exerts greater influence on TRB forming limit in comparison with TTZ movement,and the smaller blank size and TTZ being located at the blank center or slightly offset to the thinner side are preferable for acquiring greater forming limit and smaller TTZ movement.展开更多
In order to effectively predict the fracture of AA7075-T6 sheet, the forming limit curves of AA7075-T6 high-strength sheet were drawn according to Morciniak Kuczyski (M K) model and Lou Huh criterion, respectively. Th...In order to effectively predict the fracture of AA7075-T6 sheet, the forming limit curves of AA7075-T6 high-strength sheet were drawn according to Morciniak Kuczyski (M K) model and Lou Huh criterion, respectively. The errors between the predicted values of the two theoretical prediction models and experimental values were calculated by error analysis. The forming limit curves were verified by the punch stretch test to evaluate the prediction accuracy of M K model and Lou Huh criterion. The error analysis results show that the mean error of Lou Huh criterion with the optimal parameters for all tensile specimens is 25.04%, while the mean error of M K model for all tensile specimens is 74.24%. The prediction accuracy of Lou Huh criterion in predicting the fracture of AA7075-T6 sheet is higher. The punch stretch test results show that the forming limit curve drawn by Lou Huh criterion can effectively predict the fracture of AA7075-T6 sheet, but the prediction accuracy of M K model is relatively poor.展开更多
The Forming Limit Curve (FLC) of the third generation aluminum-lithium (Al-Li) alloy 2198-T3 is measured by conducting a hemispherical dome test with specimens of different widths. The theoretical prediction of th...The Forming Limit Curve (FLC) of the third generation aluminum-lithium (Al-Li) alloy 2198-T3 is measured by conducting a hemispherical dome test with specimens of different widths. The theoretical prediction of the FLC of 2198-T3 is based on the M-K theory utilizing respectively the von Mises, Hill'48, Hosford and Barlat 89 yield functions, and the different predicted curves due to different yield functions are compared with the experimentally measured FLC of 2198-T3. The results show that though there are differences among the four predicted curves, yet they all agree well with the experimentally measured curve. In the area near the planar strain state, the predicted curves and experimentally measured curve are very close. The predicted curve based on the Hosford yield function is more accurate under the tension-compression strain states described in the left part of the FLC, while the accuracy is better for the predicted curve based on Hill'48 yield function under the tension-tension strain states shown in the right part.展开更多
The forming limit curve (FLC) can be obtained by means of curve fitting the limit strain points of different strain paths. The theory of percent regression analysis is applied to the curve fitting of forming limit e...The forming limit curve (FLC) can be obtained by means of curve fitting the limit strain points of different strain paths. The theory of percent regression analysis is applied to the curve fitting of forming limit experimental data.Forecast intervals of FLC percentiles can be calculated. Thus reliability and confidence level can be considered. The theoretical method to get the limits of limit strain points distributing region is presented, and the FLC position can be adjusted according to practical requirement. Method for establishing FLC with high reliability using small samples is presented at the same time. This method can make full use of the current experimental data and the previous data.Compared with the traditional method that can only use current experimental data, fewer specimens are required in the present method to obtain the same precision and the result is more accurate with the same number of specimens.展开更多
The influence of initial groove angle on strain rate inside and outside groove of Ti6Al4V alloy was investigated.Based on the evolution of strain rate inside and outside groove,the effect of strain rate difference on ...The influence of initial groove angle on strain rate inside and outside groove of Ti6Al4V alloy was investigated.Based on the evolution of strain rate inside and outside groove,the effect of strain rate difference on the evolution of normal stress and effective stress inside and outside groove was also analyzed.The results show that when linear loading path changes from uniaxial tension to equi-biaxial tension,the initial groove angle plays a weaker role in the evolution of strain rate in the M-K model.Due to the constraint of force equilibrium between inside and outside groove,the strain rate difference makes the normal stress inside groove firstly decrease and then increase during calculation,which makes the prediction algorithm of forming limit convergent at elevated temperature.The decrease of normal stress inside groove is mainly caused by high temperature softening effect and the rotation of groove,while the increase of normal stress inside groove is mainly due to strain rate hardening effect.展开更多
Forming limit diagram (FLD) is an important performance index to describe the maximum limit of principal strains that can be sustained by sheet metals till to the onset of localized necking. It offers a convenient and...Forming limit diagram (FLD) is an important performance index to describe the maximum limit of principal strains that can be sustained by sheet metals till to the onset of localized necking. It offers a convenient and useful tool to predict the forming limit in the sheet metal forming processes. In the present study, FLD has been determined experimentally for Ti?6Al?4V alloy at 400 °C by conducting a Nakazima test with specimens of different widths. Additionally, for theoretical FLD prediction, various anisotropic yield criteria (Barlat 1989, Barlat 1996, Hill 1993) and different hardening models viz., Hollomon power law (HPL), Johnson?Cook (JC), modified Zerilli–Armstrong (m-ZA), modified Arrhenius (m-Arr) models have been developed. Theoretical FLDs have been determined using Marciniak and Kuczynski (M?K) theory incorporating the developed yield criteria and constitutive models. It has been observed that the effect of yield model is more pronounced than the effect of constitutive model for theoretical FLDs prediction. However, the value of thickness imperfection factor (f0) is solely dependent on hardening model. Hill (1993) yield criterion is best suited for FLD prediction in the right hand side region. Moreover, Barlat (1989) yield criterion is best suited for FLD prediction in left hand side region. Therefore, the proposed hybrid FLD in combination with Barlat (1989) and Hill (1993) yield models with m-Arr hardening model is in the best agreement with experimental FLD.展开更多
Commercially pure titanium(CP Ti) has been actively used in the plate heat exchanger due to its light weight, high specific strength, and excellent corrosion resistance. However, researches for the plastic deformati...Commercially pure titanium(CP Ti) has been actively used in the plate heat exchanger due to its light weight, high specific strength, and excellent corrosion resistance. However, researches for the plastic deformation characteristics and press formability of the CP Ti sheet are not much in comparison with automotive steels and aluminum alloys. The mechanical properties and hardening behavior evaluated in stress-strain relation of the CP Ti sheet are clarified in relation with press formability. The flow curve denoting true stress-true strain relation for CP Ti sheet is fitted well by the Kim-Tuan hardening equation rather than Voce and Swift models. The forming limit curve(FLC) of CP Ti sheet as a criterion for press formability was experimentally evaluated by punch stretching test and analytically predicted via Hora's modified maximum force criterion. The predicted FLC by adopting Kim-Tuan hardening model and appropriate yield function shows good correlation with the experimental results of punch stretching test.展开更多
Forming limit of metal foil is an important index to evaluate its formability,and is of considerable significance to improve the quality of products.The ductile fracture(DF)behavior in microscale plastic deformation i...Forming limit of metal foil is an important index to evaluate its formability,and is of considerable significance to improve the quality of products.The ductile fracture(DF)behavior in microscale plastic deformation is remarkably affected by the geometry and grain size.To explore the size-dependent forming limit curve(FLC),the Holmberg and Marciniak tests of SUS304 foils with the thicknesses of less than 0.1 mm and diverse grain sizes were performed.In addition,the validity and feasibility of three types of existing failure models including Swift/Hill,MarciniakKuczynski(M-K)and DF criteria for predicting the micro-scaled FLCs were discussed.It is found that the Swift/Hill model possesses the worst accuracy with predicting deviation above 50%.Four classical DF criteria including Freudenthal,Ayada,Brozzo and Oh show great difference,and Oh model considering plastic anisotropy presents the best precision.The predicted deviation of M-K model is aggravated with increasing grain size and decreasing foil thickness,which is attributed to the intensified free surface roughening and transformation of fracture mechanism with miniaturization.This research thus provides a deeper understanding and valuable reference for the widespread application of FLC in microforming.展开更多
Based on plasticity theory and physical experiments, the quantitative relationships between elongation δ obtained byuniaxial tensile test and forming limits of tensile stamping operations are given, which mainly reso...Based on plasticity theory and physical experiments, the quantitative relationships between elongation δ obtained byuniaxial tensile test and forming limits of tensile stamping operations are given, which mainly resolves the problem thatforming limits can be derived from simple tensile test. The forming limit nomogram of tensile stamping operationsis also established to apply to engineering.展开更多
A new approach for predicting forming limit curves(FLCs)at elevated temperatures was proposed herein.FLCs are often used to predict failure and determine the optimal forming parameters of automotive parts.First,a grap...A new approach for predicting forming limit curves(FLCs)at elevated temperatures was proposed herein.FLCs are often used to predict failure and determine the optimal forming parameters of automotive parts.First,a graphical method based on a modified maximum force criterion was applied to estimate the FLCs of 22MnB5 boron steel sheets at room temperature using various hardening laws.Subsequently,the predicted FLC data at room temperature were compared with corresponding data obtained from Nakazima's tests to obtain the best prediction.To estimate the FLC at elevated temperatures,tensile tests were conducted at various temperatures to determine the ratios of equivalent fracture strains between the corresponding elevated temperatures and room temperature.FLCs at elevated temperatures could be established based on obtained ratios.However,the predicted FLCs at elevated temperatures did not agree well with the corresponding FLC experimental data of Zhou et al.A new method was proposed herein to improve the prediction of FLCs at elevated temperatures.An FLC calculated at room tem-perature was utilized to predict the failure of Nakazima's samples via finite element simulation.Based on the simulation results at room temperature,the mathematical relationships between the equivalent ductile fracture strain versus stress triaxiality and strain ratio were established and then combined with ratios between elevated and room temperatures to calculate the FLCs at different temperatures.The predicted FLCs at elevated temperatures agree well with the corresponding experimental FLC data.展开更多
The isothermal local loading forming technology provides a feasible way to form Ti-alloy large-scale rib-web components in aerospace and aviation fields.However,the local loading process forming limit is restricted by...The isothermal local loading forming technology provides a feasible way to form Ti-alloy large-scale rib-web components in aerospace and aviation fields.However,the local loading process forming limit is restricted by forming defects in the transitional region.In this work,the feasibility of controlling forming defects and improving the process forming limit by adjusting die parameters is explored through finite element(FE) simulation.It is found that the common cavum and folding defects in the transitional region are significantly influenced by the fillet radii of left rib and middle rib,respectively.The cavum and folding defects can be effectively controlled by increasing the fillet radii of left rib and middle rib,respectively.The process forming limits considering forming defects in the transitional region are determined by the stepwise searching method under various die parameters.Moreover,the relationship between the process forming limit and die parameters is developed through the response surface methodology(RSM).The developed RSM models suggest that increasing the fillet radii of left and middle ribs is effective to improve the process forming limit during local loading forming of rib-web components.The results will provide technical basis for the design of die parameters and the reduction amount,which is of great importance to control forming defects and improve the process forming limit in local loading forming of Ti-alloy large-scale rib-web components.展开更多
This paper presents the application of anisotropic damage theory to the study of forming limit diagram of A12024T3 aluminum alloy sheet. In the prediction of limiting strains of the aluminum sheet structure, a finite ...This paper presents the application of anisotropic damage theory to the study of forming limit diagram of A12024T3 aluminum alloy sheet. In the prediction of limiting strains of the aluminum sheet structure, a finite element cell model has been constructed. The cell model consists of two phases, the aluminum alloy matrix and the intermetallic cluster. The material behavior of the aluminum alloy matrix is described with a fully coupled elasto-plastic damage constitutive equation. The intermetallic cluster is assumed to be elastic and brittle. By varying the stretching ratio, the limiting strains of the sheet under biaxial stretching have been predicted by using the necking criterion proposed. The prediction is in good agreement with the experimental findings. Moreover, the finite element cell model can provide information for understanding the microscopic damage mechanism of the aluminum alloy. Over-estimation of the limit strains may result if the effect of material damage is ignored in the sheet metal forming study.展开更多
Plane-strain forming limit strain (also known as FLD0) is an important data point on a forming limit diagram (FLD). The effects of friction coefficients and material parameters on the specimen width associated wit...Plane-strain forming limit strain (also known as FLD0) is an important data point on a forming limit diagram (FLD). The effects of friction coefficients and material parameters on the specimen width associated with the FLDo (W FLD0) in Marciniak test were studied by finite element simulation. WFLD0 was expressed as a function of the Lankford coefficients, n-value, k-value and sheet thickness and validated with various sheet materials. The determination of W FLD0 is of significance not only to reduce iterative attempts to accurately obtain FLDo, but also to obtain a full valid FLD with the least number of test specimens, which largely increases the efficiency and reduces cost to experimentally measure valid FLDs.展开更多
基金Project(4013311)supported by the National Science Foundation of Iran(INSF)。
文摘This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the prepared surfaces are placed on top of each other and by rolling with reduction more than 50%,the bonding between layers is established.In this research,the roll bonding process was done at room temperature,without the use of lubricants and with a 70%thickness reduction.Then,the final thickness of the Ag/Al bilayer sheet reached 350μm by several stages of cold rolling.Before cold rolling,it should be noted that to decrease the hardness created due to plastic deformation,the roll-bonded samples were subjected to annealing heat treatment at 400℃for 90 min.Thus,the final samples were annealed at 200,300 and 400℃for 90 min and cooled in a furnace to examine the annealing temperature effects.The uniaxial tensile and microhardness tests measured mechanical properties.Also,to investigate the fracture mechanism,the fractography of the cross-section was examined by scanning electron microscope(SEM).To evaluate the formability of Ag/Al bilayer sheets,forming limit curves were obtained experimentally through the Nakazima test.The resistance of composites to failure due to cracking was also investigated by fracture toughness.The results showed that annealing increases the elongation and formability of the Ag/Al bilayer sheet while reduces the ultimate tensile strength and fracture toughness.However,the changing trend is not the same at different temperatures,and according to the results,the most significant effect is obtained at 300℃and aluminum layers.It was also determined that by increasing annealing temperature,the fracture mechanism from shear ductile with small and shallow dimples becomes ductile with deep cavities.
基金supported by the National Natural Science Fund of China(Nos.52005153,12227801,32300666,12072005,U23A2607)the Tianjin"Project+Team"Key Training Program,China(No.XC202052)+4 种基金the Key Program of Research and Development of Hebei Province,China(Nos.202030507040009,23311812D)the Natural Science Foundation of Hebei Province,China(No.E2023202183)the Project of High-Level Team Construction Introduction of Hebei Province,China(No.244A7620D)the Research Cooperation Project of Universities Stationed in Hebei Province and Shijiazhuang City,China(No.241080114A)Hebei Province Military-Civilian Integration Science and Technology Innovation Project,China(No.SJMYF2022X15)。
文摘Fiber Metal Laminates(FMLs),as high-performance composite materials,demonstrate exceptional potential in a wide range of applications,such as aeronautical and astronautical industries.However,the traditional cured FMLs possess complex interlayer stresses and low forming limits,restricting further promotion and application of FMLs.Low-constraint FMLs exhibit a lower forming resistance and better formability due to no curing during the forming process;however,the formation mechanism and response are not clear.This paper presents the Forming Limit Diagram(FLD)of low-constraint GLARE(glass fiber reinforced aluminum laminates)based on the forming limit test,and compares it with the conventionally cured laminates to evaluate the differences in the forming limit.In addition,combined with the analysis of failure mechanism and micro-deformation mechanism of specimens,the influence of different temperatures(20–80℃)and forming states(width)on the deformation performance of laminates is further explored.The results reveal that the forming limit curve of low-constraint laminates shifts up with the increase of temperature,the forming limit initially increases with the increase of width,then followed by a gradual decrease,and the maximum principal strain of low-constraint laminates is increased by 29% at 80℃ compared to 20℃.The cured laminate has a principal strain range of 0–0.02,while the low-constraint laminates have a principal strain range of 0.03–0.14.Compared with cured laminates,low-constraint laminates possess a higher forming limit due to the improvement in deformable degree between layers by resin flow and fiber slippage,which enhances their formability.This study is expected to serve as a reference for establishing forming limit criteria and optimizing forming schemes for low-constraint laminates.
基金Project(CSTC2010AA4035)supported by Scientific and Technological Project of Chongqing Science and Technology Commission,ChinaProject(50504019)supported by the National Natural Science Foundation of China+1 种基金Project(CDJZR11130008)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(CDJXS10130001)supported by the Chongqing University Postgraduates'Science and Innovation Fund,China
文摘Repeated unidirectional bending (RUB) was carried out to improve the texture of commercial AZ31B magnesium alloy sheets. All specimens were prepared in the rolling direction. The forming limit diagrams (FLDs) of AZ31B magnesium alloy sheet were determined experimentally by conducting stretch-forming tests at room temperature, 100, 200 and 300 ℃ Compared with the as-received sheet, the lowest limited strain of AZ31B magnesium alloy sheet with tilted texture in the FLD increased by 79% at room temperature and 104% at 100 ℃. The texture also affected the extension of the forming limit curves (FLC) in the FLD. However, the FLCs of two kinds of sheets almost overlapped at temperature above 200 ℃. It can be concluded that the reduction of (0002) texture intensity is effective to the improvement of formability not only at room temperature but also at low-and-medium temperature. The effect of texture on FLDs becomes weak with increasing temperature.
基金Project(51375328)supported by the National Natural Science Foundation of ChinaProject(20143009)supported by Graduates Innovation Project of Shanxi Province,ChinaProject(2015-036)supported by Shanxi Scholarship Council of China
文摘A theoretical prediction on forming limit diagram(FLD) of AZ31 magnesium alloy sheet was developed at warm temperatures based on the M-K theory. Two different yield criteria of von Mises and Hill'48 were applied in this model. Mechanical properties of AZ31 magnesium alloy used in the prediction were obtained by uniaxial tensile tests and the Fields-Backofen equation was incorporated in the analysis. In addition, experimental FLDs of AZ31 were acquired by conducting rigid die swell test at different temperatures to verify the prediction. It is demonstrated from a comparison between the predicted and the experimental FLDs at 473 K and 523 K that the predicted results are influenced by the type of yield criterion used in the calculation, especially at lower temperatures. Furthermore, a better agreement between the predicted results and experimental data for AZ31 magnesium alloy sheet at warm temperatures was obtained when Hill'48 yield criterion was applied.
基金Project(51005010)supported by the National Natural Science Foundation of China
文摘A modified Swift type flow stress—strain relation was presented in order to describe the uniaxial tension test curve reasonably. The FLD-strain (forming limit diagram made up of limit strain) of 5754O aluminum alloy sheet was calculated based on the two flow stress—strain relations using Yld2000-2d yield function. By comparing the theoretical and experimental results, it is found that the calculated FLD-strain based on the modified Swift flow stress—strain relation can reasonably describe the experimental results. However, though the common Voce flow stress—strain relation can describe the deformation behavior during homogenous deformation phase accurately, the FLD-strain calculated based on it is obviously lower than the experimental result. It is concluded that the higher the hardening rate of sheet metal is, the higher the forming limit is. A method for determining the reasonable flow stress—strain relation is recommended for describing the material behavior during inhomogenous phase and the forming limit of sheet metal.
文摘Two numerical criteria of forming limit diagram(FLD) criterion and ductile fracture criterion(DFC) are presented for FLD prediction of 6061 aluminum. The numerical results are compared with the experimental FLD and also punch's load-displacement curve of experimental samples. Experimental FLD of this study is calculated using hemispherical punch test of Hecker. Experimental FLD is converted to FLSD and imported to the Abaqus software to predict necking of samples. Numerical results for FLSD prediction were compared with experimental FLSD. Results show that ductile fracture criterion has higher accuracy for FLD and FLSD prediction of 6061 aluminum. Comparison of numerical and experimental results for force-displacement curve of punch shows that numerical results have a good agreement with experiment.
基金Aeronautical Science Foundation of China (03H53048)
文摘The conventional forming limit diagram (FLD) is described as a plot of major strain versus minor strain. However, FLD is dependent on forming history and strain path. In the present study, a forming limit stress-based diagram (FLSD) has been adopted to predict the fracture limit of aluminum alloy (AA) 5052-O1 sheet. Nakazima test is simulated by plastic constitutive formula derived from the modified Gurson-Tvergaard-Needleman (GTN) model. An in situ tensile test with scanning electron microscope (SEM) is proposed to determine the parameters in GTN model. The damage evolution is observed and recorded, and the parameters of GTN model are identified through counting void fraction at three damage stages of AA5052-O 1. According to the experimental results, the original void volume fraction, the volume fraction of potential nucleated voids, the critical void volume fraction, the void volume fraction at the final failure of material are assigned as 0.002 918, 0.024 9, 0.030 103, 0.048 54, respectively. The stress and strain are obtained at the last loading step before crack. FLSD and FLD of AA5052-O 1 are plotted. Compared with the experimental Nakazima test and uniaxial tensile test, the predicted results show a good agreement. The parameters determined by in situ tensile test can be applied to the research of the forming limit for ductile metals.
基金Item Sponsored by National Natural Science Foundation of China(51105068,51475086)Fundamental Research Funds for the Central Universities of China(N130323003,XNB201413)Science and Technology Research Project for Higher School of Hebei Province of China(Z2013068)
文摘The process of automobile lightweight can be promoted by the application of tailor rolled blank(TRB)in the automobile industry.Therefore,research on the formability of TRB is of good practical significance and application value because of the enormous potential of TRB in the aspect of automobile lightweight.Aiming at the present condition of lack of researches on the influence of characteristic parameters on TRB drawing process,the drawing formability of TRB was studied with a combination method of simulation and experiment by taking square box as the research object.Firstly,drawing simulation and experiment of TRB were carried out.Then,effects of thickness transition zone(TTZ)position and blank size on the drawing formability of TRB were analyzed.Forming limit and TTZ movement for TRB square box during the drawing process were respectively discussed,when transition zones of TRB were located at different positions and blanks were of different sizes.The results indicate that lubrication condition exerts greater influence on TRB forming limit in comparison with TTZ movement,and the smaller blank size and TTZ being located at the blank center or slightly offset to the thinner side are preferable for acquiring greater forming limit and smaller TTZ movement.
基金Project (51775481) supported by the National Natural Science Foundation of ChinaProject (E2019203418) supported by the Natural Science Foundation of Hebei Province, ChinaProject (ZD2017078) supported by the Science and Technology Plan of Hebei Higher School of Education Department, China。
文摘In order to effectively predict the fracture of AA7075-T6 sheet, the forming limit curves of AA7075-T6 high-strength sheet were drawn according to Morciniak Kuczyski (M K) model and Lou Huh criterion, respectively. The errors between the predicted values of the two theoretical prediction models and experimental values were calculated by error analysis. The forming limit curves were verified by the punch stretch test to evaluate the prediction accuracy of M K model and Lou Huh criterion. The error analysis results show that the mean error of Lou Huh criterion with the optimal parameters for all tensile specimens is 25.04%, while the mean error of M K model for all tensile specimens is 74.24%. The prediction accuracy of Lou Huh criterion in predicting the fracture of AA7075-T6 sheet is higher. The punch stretch test results show that the forming limit curve drawn by Lou Huh criterion can effectively predict the fracture of AA7075-T6 sheet, but the prediction accuracy of M K model is relatively poor.
基金co-supported by National Natural Science Foundation of China (No.50905008)Fund of National Engineering and Research Center for Commercial Aircraft Manufacturing (No.SAMC12-JS-15-008)
文摘The Forming Limit Curve (FLC) of the third generation aluminum-lithium (Al-Li) alloy 2198-T3 is measured by conducting a hemispherical dome test with specimens of different widths. The theoretical prediction of the FLC of 2198-T3 is based on the M-K theory utilizing respectively the von Mises, Hill'48, Hosford and Barlat 89 yield functions, and the different predicted curves due to different yield functions are compared with the experimentally measured FLC of 2198-T3. The results show that though there are differences among the four predicted curves, yet they all agree well with the experimentally measured curve. In the area near the planar strain state, the predicted curves and experimentally measured curve are very close. The predicted curve based on the Hosford yield function is more accurate under the tension-compression strain states described in the left part of the FLC, while the accuracy is better for the predicted curve based on Hill'48 yield function under the tension-tension strain states shown in the right part.
文摘The forming limit curve (FLC) can be obtained by means of curve fitting the limit strain points of different strain paths. The theory of percent regression analysis is applied to the curve fitting of forming limit experimental data.Forecast intervals of FLC percentiles can be calculated. Thus reliability and confidence level can be considered. The theoretical method to get the limits of limit strain points distributing region is presented, and the FLC position can be adjusted according to practical requirement. Method for establishing FLC with high reliability using small samples is presented at the same time. This method can make full use of the current experimental data and the previous data.Compared with the traditional method that can only use current experimental data, fewer specimens are required in the present method to obtain the same precision and the result is more accurate with the same number of specimens.
基金Project(51775023)supported by the National Natural Science Foundation of ChinaProject(YWF-18-BJ-J-75)supported by the Fundamental Research Funds for the Central Universities,China
文摘The influence of initial groove angle on strain rate inside and outside groove of Ti6Al4V alloy was investigated.Based on the evolution of strain rate inside and outside groove,the effect of strain rate difference on the evolution of normal stress and effective stress inside and outside groove was also analyzed.The results show that when linear loading path changes from uniaxial tension to equi-biaxial tension,the initial groove angle plays a weaker role in the evolution of strain rate in the M-K model.Due to the constraint of force equilibrium between inside and outside groove,the strain rate difference makes the normal stress inside groove firstly decrease and then increase during calculation,which makes the prediction algorithm of forming limit convergent at elevated temperature.The decrease of normal stress inside groove is mainly caused by high temperature softening effect and the rotation of groove,while the increase of normal stress inside groove is mainly due to strain rate hardening effect.
基金The financial support received for this research work from Department of Science and Technology (DST), Government of India, SERB-DST, SR/FTP/ETA0056/2011
文摘Forming limit diagram (FLD) is an important performance index to describe the maximum limit of principal strains that can be sustained by sheet metals till to the onset of localized necking. It offers a convenient and useful tool to predict the forming limit in the sheet metal forming processes. In the present study, FLD has been determined experimentally for Ti?6Al?4V alloy at 400 °C by conducting a Nakazima test with specimens of different widths. Additionally, for theoretical FLD prediction, various anisotropic yield criteria (Barlat 1989, Barlat 1996, Hill 1993) and different hardening models viz., Hollomon power law (HPL), Johnson?Cook (JC), modified Zerilli–Armstrong (m-ZA), modified Arrhenius (m-Arr) models have been developed. Theoretical FLDs have been determined using Marciniak and Kuczynski (M?K) theory incorporating the developed yield criteria and constitutive models. It has been observed that the effect of yield model is more pronounced than the effect of constitutive model for theoretical FLDs prediction. However, the value of thickness imperfection factor (f0) is solely dependent on hardening model. Hill (1993) yield criterion is best suited for FLD prediction in the right hand side region. Moreover, Barlat (1989) yield criterion is best suited for FLD prediction in left hand side region. Therefore, the proposed hybrid FLD in combination with Barlat (1989) and Hill (1993) yield models with m-Arr hardening model is in the best agreement with experimental FLD.
基金supported by the National Research Foundation of Korea (NRF) granted by the Korea government [2014R1A2A2A01005903]Priority Research Centers Program (2010-0020089)support from a grant [R0003356] (Tuning Professional Support Center in Daegu Metropolitan City) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea)
文摘Commercially pure titanium(CP Ti) has been actively used in the plate heat exchanger due to its light weight, high specific strength, and excellent corrosion resistance. However, researches for the plastic deformation characteristics and press formability of the CP Ti sheet are not much in comparison with automotive steels and aluminum alloys. The mechanical properties and hardening behavior evaluated in stress-strain relation of the CP Ti sheet are clarified in relation with press formability. The flow curve denoting true stress-true strain relation for CP Ti sheet is fitted well by the Kim-Tuan hardening equation rather than Voce and Swift models. The forming limit curve(FLC) of CP Ti sheet as a criterion for press formability was experimentally evaluated by punch stretching test and analytically predicted via Hora's modified maximum force criterion. The predicted FLC by adopting Kim-Tuan hardening model and appropriate yield function shows good correlation with the experimental results of punch stretching test.
基金funding support to this research from the National Natural Science Foundation of China(Nos.51605018 and 51635005)Beijing Municipal Natural Science Foundation of China(No.3172022)。
文摘Forming limit of metal foil is an important index to evaluate its formability,and is of considerable significance to improve the quality of products.The ductile fracture(DF)behavior in microscale plastic deformation is remarkably affected by the geometry and grain size.To explore the size-dependent forming limit curve(FLC),the Holmberg and Marciniak tests of SUS304 foils with the thicknesses of less than 0.1 mm and diverse grain sizes were performed.In addition,the validity and feasibility of three types of existing failure models including Swift/Hill,MarciniakKuczynski(M-K)and DF criteria for predicting the micro-scaled FLCs were discussed.It is found that the Swift/Hill model possesses the worst accuracy with predicting deviation above 50%.Four classical DF criteria including Freudenthal,Ayada,Brozzo and Oh show great difference,and Oh model considering plastic anisotropy presents the best precision.The predicted deviation of M-K model is aggravated with increasing grain size and decreasing foil thickness,which is attributed to the intensified free surface roughening and transformation of fracture mechanism with miniaturization.This research thus provides a deeper understanding and valuable reference for the widespread application of FLC in microforming.
文摘Based on plasticity theory and physical experiments, the quantitative relationships between elongation δ obtained byuniaxial tensile test and forming limits of tensile stamping operations are given, which mainly resolves the problem thatforming limits can be derived from simple tensile test. The forming limit nomogram of tensile stamping operationsis also established to apply to engineering.
基金funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under Grant Number 107.02-2019.300.
文摘A new approach for predicting forming limit curves(FLCs)at elevated temperatures was proposed herein.FLCs are often used to predict failure and determine the optimal forming parameters of automotive parts.First,a graphical method based on a modified maximum force criterion was applied to estimate the FLCs of 22MnB5 boron steel sheets at room temperature using various hardening laws.Subsequently,the predicted FLC data at room temperature were compared with corresponding data obtained from Nakazima's tests to obtain the best prediction.To estimate the FLC at elevated temperatures,tensile tests were conducted at various temperatures to determine the ratios of equivalent fracture strains between the corresponding elevated temperatures and room temperature.FLCs at elevated temperatures could be established based on obtained ratios.However,the predicted FLCs at elevated temperatures did not agree well with the corresponding FLC experimental data of Zhou et al.A new method was proposed herein to improve the prediction of FLCs at elevated temperatures.An FLC calculated at room tem-perature was utilized to predict the failure of Nakazima's samples via finite element simulation.Based on the simulation results at room temperature,the mathematical relationships between the equivalent ductile fracture strain versus stress triaxiality and strain ratio were established and then combined with ratios between elevated and room temperatures to calculate the FLCs at different temperatures.The predicted FLCs at elevated temperatures agree well with the corresponding experimental FLC data.
基金the support of the National Natural Science Foundation of China(Nos.51605388,51675433)111 Project(B08040)+2 种基金the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)in China(Grant No.131-QP-2015)the Fundamental Research Funds for the Central Universitiesthe Open Research Fund of State Key Laboratory of Materials Processing and Die&Mold Technology at Huazhong University of Science and Technology
文摘The isothermal local loading forming technology provides a feasible way to form Ti-alloy large-scale rib-web components in aerospace and aviation fields.However,the local loading process forming limit is restricted by forming defects in the transitional region.In this work,the feasibility of controlling forming defects and improving the process forming limit by adjusting die parameters is explored through finite element(FE) simulation.It is found that the common cavum and folding defects in the transitional region are significantly influenced by the fillet radii of left rib and middle rib,respectively.The cavum and folding defects can be effectively controlled by increasing the fillet radii of left rib and middle rib,respectively.The process forming limits considering forming defects in the transitional region are determined by the stepwise searching method under various die parameters.Moreover,the relationship between the process forming limit and die parameters is developed through the response surface methodology(RSM).The developed RSM models suggest that increasing the fillet radii of left and middle ribs is effective to improve the process forming limit during local loading forming of rib-web components.The results will provide technical basis for the design of die parameters and the reduction amount,which is of great importance to control forming defects and improve the process forming limit in local loading forming of Ti-alloy large-scale rib-web components.
基金Project supported by the Research Committee of The Hong Kong Polytechnic University (No.G-YX34).
文摘This paper presents the application of anisotropic damage theory to the study of forming limit diagram of A12024T3 aluminum alloy sheet. In the prediction of limiting strains of the aluminum sheet structure, a finite element cell model has been constructed. The cell model consists of two phases, the aluminum alloy matrix and the intermetallic cluster. The material behavior of the aluminum alloy matrix is described with a fully coupled elasto-plastic damage constitutive equation. The intermetallic cluster is assumed to be elastic and brittle. By varying the stretching ratio, the limiting strains of the sheet under biaxial stretching have been predicted by using the necking criterion proposed. The prediction is in good agreement with the experimental findings. Moreover, the finite element cell model can provide information for understanding the microscopic damage mechanism of the aluminum alloy. Over-estimation of the limit strains may result if the effect of material damage is ignored in the sheet metal forming study.
文摘Plane-strain forming limit strain (also known as FLD0) is an important data point on a forming limit diagram (FLD). The effects of friction coefficients and material parameters on the specimen width associated with the FLDo (W FLD0) in Marciniak test were studied by finite element simulation. WFLD0 was expressed as a function of the Lankford coefficients, n-value, k-value and sheet thickness and validated with various sheet materials. The determination of W FLD0 is of significance not only to reduce iterative attempts to accurately obtain FLDo, but also to obtain a full valid FLD with the least number of test specimens, which largely increases the efficiency and reduces cost to experimentally measure valid FLDs.