The rapid advancement of modern electronics has led to a surge in solid electronic waste,which poses significant environmental and health challenges.This review focuses on recent developments in paper-based electronic...The rapid advancement of modern electronics has led to a surge in solid electronic waste,which poses significant environmental and health challenges.This review focuses on recent developments in paper-based electronic devices fabricated through low-cost,hand-printing techniques,with particular emphasis on their applications in energy harvesting,storage,and sensing.Unlike conventional plastic-based substrates,cellulose paper offers several advantages,including biodegradability,recyclability,and low fabrication cost.By integrating functional nanomaterials such as two-dimensional chalcogenides,metal oxides,conductive polymers,and carbon-based structures onto paper,researchers have achieved high-performance devices such as broadband photodetectors(responsivity up to 52 mA/W),supercapacitors(energy density~15.1 mWh/cm^(2)),and pressure sensors(sensitivity~18.42 kPa^(-1)).The hand-printing approach,which eliminates the need for sophisticated equipment and toxic solvents,offers a promising route for scalable,sustainable,and disposable electronics.This review outlines fabrication methods and key performance metrics,and discusses the current challenges and future directions for realizing robust,flexible devices aligned with green technology and the United Nation’s Sustainable Development Goals.展开更多
Flexible electronics offer a multitude of advantages,such as flexibility,lightweight property,portability,and high durability.These unique properties allow for seamless applications to curved and soft surfaces,leading...Flexible electronics offer a multitude of advantages,such as flexibility,lightweight property,portability,and high durability.These unique properties allow for seamless applications to curved and soft surfaces,leading to extensive utilization across a wide range of fields in consumer electronics.These applications,for example,span integrated circuits,solar cells,batteries,wearable devices,bio-implants,soft robotics,and biomimetic applications.Recently,flexible electronic devices have been developed using a variety of materials such as organic,carbon-based,and inorganic semiconducting materials.Silicon(Si)owing to its mature fabrication process,excellent electrical,optical,thermal properties,and cost efficiency,remains a compelling material choice for flexible electronics.Consequently,the research on ultra-thin Si in the context of flexible electronics is studied rigorously nowadays.The thinning of Si is crucially important for flexible electronics as it reduces its bending stiffness and the resultant bending strain,thereby enhancing flexibility while preserving its exceptional properties.This review provides a comprehensive overview of the recent efforts in the fabrication techniques for forming ultra-thin Si using top-down and bottom-up approaches and explores their utilization in flexible electronics and their applications.展开更多
The burgeoning interest in flexible electronics necessitates the creation of patterning technology specifically tailored for flexible substrates and complex surface morphologies.Among a variety of patterning technique...The burgeoning interest in flexible electronics necessitates the creation of patterning technology specifically tailored for flexible substrates and complex surface morphologies.Among a variety of patterning techniques,transfer printing emerges as one of the most efficient,cost-effective,and scalable methods.It boasts the ability for high-throughput fabrication of 0–3D micro-and nano-structures on flexible substrates,working in tandem with traditional lithography methods.This review highlights the critical issue of transfer printing:the flawless transfer of devices during the pick-up and printing process.We encapsulate recent advancements in numerous transfer printing techniques,with a particular emphasis on strategies to control adhesion forces at the substrate/device/stamp interfaces.These strategies are employed to meet the requirements of competing fractures for successful pick-up and print processes.The mechanism,advantages,disadvantages,and typical applications of each transfer printing technique will be thoroughly discussed.The conclusion section provides design guidelines and probes potential directions for future advancements.展开更多
This study employs theoretical analysis to explore the application prospects of flexible electronics technology in wearable devices. The research first reviews the development history and theoretical foundations of fl...This study employs theoretical analysis to explore the application prospects of flexible electronics technology in wearable devices. The research first reviews the development history and theoretical foundations of flexible electronics technology, including materials science, electronic engineering, and human-computer interaction theory. Through systematic analysis, the study evaluates the theoretical potential of flexible displays, flexible sensors, and flexible energy storage devices in wearable technology. The research finds that flexible electronics technology can significantly improve the comfort, functionality, and durability of wearable devices. Theoretical analysis indicates that flexible sensors have unique advantages in physiological monitoring and human-computer interaction, while flexible displays and batteries may revolutionize the form and usage patterns of wearable devices. However, the study also points out theoretical challenges faced by flexible electronics technology, such as material stability and feasibility of large-scale manufacturing. To address these challenges, the research proposes an interdisciplinary research framework, emphasizing the synergistic innovation of materials science, electronic engineering, and ergonomics. Finally, the study envisions the theoretical prospects of integrating flexible electronics with other emerging technologies, providing directions for future research.展开更多
Flexible electronics and optoelectronics exhibit inevitable trends in next-generation intelligent industries,including healthcare and wellness,electronic skins,the automotive industry,and foldable or rollable displays...Flexible electronics and optoelectronics exhibit inevitable trends in next-generation intelligent industries,including healthcare and wellness,electronic skins,the automotive industry,and foldable or rollable displays.Traditional bulk-material-based flexible devices considerably rely on lattice-matched crystal structures and are usually plagued by unavoidable chemical disorders at the interface.Two-dimensional van der Waals materials(2D VdWMs)have exceptional multifunctional properties,including large specific area,dangling-bond-free interface,plane-to-plane van der Waals interactions,and excellent mechanical,electrical,and optical properties.Thus,2D VdWMs have considerable application potential in functional intelligent flexible devices.To utilize the unique properties of 2D VdWMs and their van der Waals heterostructures,new designs and configurations of electronics and optoelectronics have emerged.However,these new designs and configurations do not consider lattice mismatch and process incompatibility issues.In this review,we summarized the recently reported 2D VdWM-based flexible electronic and optoelectronic devices with various functions thoroughly.Moreover,we identified the challenges and opportunities for further applications of 2D VdWM-based flexible electronics and optoelectronics.展开更多
Flexible electronics technology is considered as a revolutionary technology to unlock the bottleneck of traditional rigid electronics that prevalent for decades,thereby fueling the next-generation electronics.In the p...Flexible electronics technology is considered as a revolutionary technology to unlock the bottleneck of traditional rigid electronics that prevalent for decades,thereby fueling the next-generation electronics.In the past few decades,the research on flexible electronic devices based on organic materials has witnessed rapid development and substantial achievements,and inorganic semiconductors are also now beginning to shine in the field of flexible electronics.As validated by the latest research,some of the inorganic semiconductors,particularly those at low dimension,unexpectedly exhibited excellent mechanical flexibility on top of superior electrical properties.Herein,we bring together a comprehensive analysis on the recently burgeoning low-dimension inorganic semiconductor materials in flexible electronics,including one-dimensional(1D)inorganic semiconductor nanowires(NWs)and two-dimensional(2D)transition metal dichalcogenides(TMDs).The fundamental electrical properties,optical properties,mechanical properties and strain engineering of materials,and their performance in flexible device applications are discussed in detail.We also propose current challenges and predict future development directions including material synthesis and device fabrication and integration.展开更多
The conventional analytical method of predicting strain in a thin film under bending is restricted to the uniform material assumption, while in flexible electronics, the film/substrate structure is widely used with mi...The conventional analytical method of predicting strain in a thin film under bending is restricted to the uniform material assumption, while in flexible electronics, the film/substrate structure is widely used with mismatched material properties taken into account. In this paper,a piecewise model is proposed to analyze the axial strain in a thin film of flexible electronics with the shear modification factor and principle of virtual work. The excellent agreement between analytical prediction and finite element results indicates that the model is capable of predicting the strain of the film/substrate structure in flexible electronics, whose mechanical stability and electrical performance is dependent on the strain state in the thin film.展开更多
As a potential flexible substrate for flexible electronics, a polymer-sandwiched ultra-thin silicon platform is stud- ied. SU-8 photoresist coated on the silicon membrane improves its flexibility as shown by an ANSYS ...As a potential flexible substrate for flexible electronics, a polymer-sandwiched ultra-thin silicon platform is stud- ied. SU-8 photoresist coated on the silicon membrane improves its flexibility as shown by an ANSYS simulation. Using the plasma enhanced chemical vapor deposited Si02/Si3N4 composite film as an etching mask, a 4" silicon- (100) wafer is thinned to 26[tm without rupture in a 30wt.% KOH solution. The thinned wafer is coated on both sides with 20 pm of SU-8 photoresist and is cut into strips. Then the strips are bent by a caliper to measure its bending radius. A sector model of bending deformation is adopted to estimate the radius of curvature. The determined minimal bending radius of the polymer-sandwiched ultra-thin silicon layer is no more than 3.3mm. The fabrication process of this sandwich structure can be used as a post-fabrication process for high performance flexible electronics.展开更多
Laminated hard-soft integrated structures play a significant role in the fabrication and development of flexible electronics devices. Flexible electronics have advantageous characteristics such as soft and light-weigh...Laminated hard-soft integrated structures play a significant role in the fabrication and development of flexible electronics devices. Flexible electronics have advantageous characteristics such as soft and light-weight, can be folded,twisted, flipped inside-out, or be pasted onto other surfaces of arbitrary shapes. In this paper, an analytical model is presented to study the mechanics of laminated hard-soft structures in flexible electronics under a stickup state. Thirdorder polynomials are used to describe the displacement field,and the principle of virtual work is adopted to derive the governing equations and boundary conditions. The normal strain and the shear stress along the thickness direction in the bimaterial region are obtained analytically, which agree well with the results from finite element analysis. The analytical model can be used to analyze stickup state laminated structures, and can serve as a valuable reference for the failure prediction and optimal design of flexible electronics in the future.展开更多
Flexible electronics is an emerging technology,which breaks through the constraints of traditional rigid electronics,enabling electronic devices to adapt to various complex application scenarios.Meanwhile,a variety of...Flexible electronics is an emerging technology,which breaks through the constraints of traditional rigid electronics,enabling electronic devices to adapt to various complex application scenarios.Meanwhile,a variety of functions including sensing,actuation and energy harvesting,promote flexible electronics to be widely used in healthcare,robotics,Internet of Things,and so on.Micro/nanomanufacturing is the key technology to realize flexible electronics.Through micro/nanomanufacturing,various micro/nano-scale electronic components such as transistors and sensors can be precisely fabricated on flexible substrates,endowing flexible electronics with excellent performance.On the other hand,the development of flexible electronics also provides new challenges for micro/nanomanufacturing,due to the new flexible materials and device morphology.Currently,flexible electronics and micro/nanomanufacturing have attracted great at-tention from researchers around the world.Scientists explore new materials and techniques to further expand the applications of flexible electronics.On this basis,we have organized a special topic on“Flexible Electronics and Micro/Nanomanufacturing”in National Science Open(NSO)to discuss the development of flexible electronics.The topic focuses on key issues in the design and manufacturing of flexible electronics.We have invited nine scientists from different fields to present their latest research findings and prospective analyses of flexible electronics systematically.展开更多
The realization of natural and authentic facial expressions in humanoid robots poses a challenging and prominent research domain,encompassing interdisciplinary facets including mechanical design,sensing and actuation ...The realization of natural and authentic facial expressions in humanoid robots poses a challenging and prominent research domain,encompassing interdisciplinary facets including mechanical design,sensing and actuation control,psychology,cognitive science,flexible electronics,artificial intelligence(AI),etc.We have traced the recent developments of humanoid robot heads for facial expressions,discussed major challenges in embodied AI and flexible electronics for facial expression recognition and generation,and highlighted future trends in this field.Developing humanoid robot heads with natural and authentic facial expressions demands collaboration in interdisciplinary fields such as multi-modal sensing,emotional computing,and human-robot interactions(HRIs)to advance the emotional anthropomorphism of humanoid robots,bridging the gap between humanoid robots and human beings and enabling seamless HRIs.展开更多
Self-rectifying memristor(SRM)arrays hold tremendous potential in high-density data storage and energy efficient neuromorphic computing.However,SRM arrays are mostly developed on rigid substrates and lack mechanical f...Self-rectifying memristor(SRM)arrays hold tremendous potential in high-density data storage and energy efficient neuromorphic computing.However,SRM arrays are mostly developed on rigid substrates and lack mechanical flexibility,limiting their applications in intelligent electronic skin,wearable technologies,etc.Here,we present a high performance SRM array based on Pt/HfO_(2)/Ta_(2)O_(5−x)/Ti heterojunctions,which can be fabricated on a flexible polyimides(PI)substrate and demonstrates exceptional memristive performance under bending conditions(bending radius(R)=1 cm,rectifying ratio>10^(4),retention time>10^(4) s and endurance>105 cycles).We demonstrate a 16×16 flexible memristor array offering noise filtering and data storage capabilities,which can be used to accurately process and store the signals transmitted by a pressure sensor array.This research represents an important advancement towards the realization of next-generation high-performance flexible electronics.展开更多
Hydrogels electrolytes with flexibility and high conductivity have been widely used in kinds of flexible electronics.However,hydrogels always suffer from the inevitable freezing of water at subzero temperatures,which ...Hydrogels electrolytes with flexibility and high conductivity have been widely used in kinds of flexible electronics.However,hydrogels always suffer from the inevitable freezing of water at subzero temperatures,which results in the sacrificing of their electrical properties.Herein,an anti-freezing,flexible hydrogel based on in situ reduction of graphene oxide(GO)and laponite has been developed as electrolyte for high performance supercapacitor and sensitive sensors.The crosslinked GO and laponite in polyacrylamide(PAM)resulted in an enhanced mechanical property,while the in-situ reduction of GO in the hydrogel enhanced the conductivity and diminishes the aggregated of GO.These features guarantee a reliable electro signal as sensor and a high performance of the supercapacitor.Besides,in the process of preparation of reduced graphene oxide(rGO)hydrogel,the addition of ethylene glycol(EG)and KOH,endows the hydrogel antifreeze properties.This anti-freezing electrolyte can be stretched to a strain of 1600%and maintained a specific capacitance of 37.38 F·g^(-1) at-20℃.In addition,the photothermal conversion character of rGO in the hydrogel,endows it’s the potential application in wound healing.The overall merits of the hydrogel will open up a new avenue for sensitive sensor and energy storage device in practical applications.展开更多
Miniaturization and flexibility are becoming the trend in the development of electronic products. These key features are driving new methods in the manufacturing of such products. Printed electronics technology is a n...Miniaturization and flexibility are becoming the trend in the development of electronic products. These key features are driving new methods in the manufacturing of such products. Printed electronics technology is a novel additive manufacturing technique that uses active inks to print onto a diverse set of substrates, realizing large-area, low-cost, flexible and green manufacturing of electronic products. These advantageous properties make it extremely compatible with flexible electronics fabrication and extend as far as offering revolutionary methods in the production of flexible electronic devices. In this paper, the details of a printing process system are introduced, including the materials that can be employed as inks, common substrates, and the most recently reported printing strategies. An assessment of future setbacks and developments of printed flexible electronics is also presented.展开更多
Electrohydrodynamic(EHD)printing technique,which deposits micro/nanostructures through high electric force,has recently attracted significant research interest owing to their fascinating characteristics in high resolu...Electrohydrodynamic(EHD)printing technique,which deposits micro/nanostructures through high electric force,has recently attracted significant research interest owing to their fascinating characteristics in high resolution(<1μm),wide material applicability(ink viscosity 1–10000 cps),tunable printing modes(electrospray,electrospinning,and EHD jet printing),and compatibility with flexible/wearable applications.Since the laboratory level of the EHD printed electronics'resolution and efficiency is gradually approaching the commercial application level,an urgent need for developing EHD technique from laboratory into industrialization have been put forward.Herein,we first discuss the EHD printing technique,including the ink design,droplet formation,and key technologies for promoting printing efficiency/accuracy.Then we summarize the recent progress of EHD printing in fabrication of displays,organic field-effect transistors(OFETs),transparent electrodes,and sensors and actuators.Finally,a brief summary and the outlook for future research effort are presented.展开更多
Flexible electronics has emerged as a continuously growing field of study.Two-dimensional(2D)materials often act as conductors and electrodes in elec-tronic devices,holding significant promise in the design of high-pe...Flexible electronics has emerged as a continuously growing field of study.Two-dimensional(2D)materials often act as conductors and electrodes in elec-tronic devices,holding significant promise in the design of high-performance,flexible electronics.Numerous studies have focused on harnessing the potential of these materials for the development of such devices.However,to date,the incorporation of 2D materials in flexible electronics has rarely been summa-rized or reviewed.Consequently,there is an urgent need to develop compre-hensive reviews for rapid updates on this evolving landscape.This review covers progress in complex material architectures based on 2D materials,including interfaces,heterostructures,and 2D/polymer composites.Addition-ally,it explores flexible and wearable energy storage and conversion,display and touch technologies,and biomedical applications,together with integrated design solutions.Although the pursuit of high-performance and high-sensitivity instruments remains a primary objective,the integrated design of flexible electronics with 2D materials also warrants consideration.By combin-ing multiple functionalities into a singular device,augmented by machine learning and algorithms,we can potentially surpass the performance of existing wearable technologies.Finally,we briefly discuss the future trajectory of this burgeoning field.This review discusses the recent advancements in flex-ible sensors made from 2D materials and their applications in integrated archi-tecture and device design.展开更多
The development of electronic products and increased electronic waste have triggered a series of ecological problems on Earth.Meanwhile,amidst energy crises and the pursuit of carbon neutrality,the recycling of discar...The development of electronic products and increased electronic waste have triggered a series of ecological problems on Earth.Meanwhile,amidst energy crises and the pursuit of carbon neutrality,the recycling of discarded biomass has attracted the attention of many researchers.In recent years,the transformation of discarded biomass into value-added electronic products has emerged as a promising endeavor in the field of green and flexible electronics.In this review,the attempts and advancements in biomass conversion into flexible electronic materials and devices are systematically summarized.We focus on reviewing the research progress in biomass conversion into substrates,electrodes,and materials tailored for optical and thermal management.Furthermore,we explore component combinations suitable for applications in environmental monitoring and health management.Finally,we discuss the challenges in techniques and cost-effectiveness currently faced by biomass conversion into flexible electronic devices and propose improvement strategies.Drawing insights from both fundamental research and industrial applications,we offer prospects for future developments in this burgeoning field.展开更多
As a novel material,liquid metal has attracted the attention of scientists for its unique properties and wide potential applications.In this paper,the basic concepts,properties,and behaviors of liquid metals under dif...As a novel material,liquid metal has attracted the attention of scientists for its unique properties and wide potential applications.In this paper,the basic concepts,properties,and behaviors of liquid metals under different conditions are introduced,and the latest advances in their synthesis methods and application felds are discussed.The development status of liquid metal in science and industry is also introduced.The latest research progress of liquid metals is systematically reviewed,and the potential and application prospect of liquid metals in materials science,engineering,and electronic techology are revealed.The research scope covers the wide application of liquid metals in nanotechnology,materials engineering,electronic technology,energy,and other fields,as well as the latest application cases of liquid metals in flexible electronic devices,sensors,catalysts,energy storage,and other fields.At the same time,the core disputes and problems to be solved in the field of liquid metals are discussed.Through the comments on liquid metals,we hope to provide reference and guidance for researchers and promote the further development in the field of liquid metals.This review would help stimulate more people's interest in liquid metals and encourage innovation and application development in this field.展开更多
This special issue will include reviews,regular papers,and short communications,and reports in the fields for next generation electronics and photonics.The topics include but not restricted in advanced microelectronic...This special issue will include reviews,regular papers,and short communications,and reports in the fields for next generation electronics and photonics.The topics include but not restricted in advanced microelectronic devices and materials,low-dimensional materials and novel nanodevice applications,flexible/wearable/implantable electronics,wide bandgap semiconductor materials and devices,photoelectronics,photonics,advanced display technologies,nanophotonics,integrated quantum photonics,photovoltaics,energy harvesting and self-powered wireless sensing,sensors,micro-actuators,MEMS,microfluidics,and bioMEMS,etc.展开更多
In the past decade,the global industry and research attentions on intelligent skin-like electronics have boosted their applications in diverse fields including human healthcare,Internet of Things,human–machine interf...In the past decade,the global industry and research attentions on intelligent skin-like electronics have boosted their applications in diverse fields including human healthcare,Internet of Things,human–machine interfaces,artificial intelligence and soft robotics.Among them,flexible humidity sensors play a vital role in noncontact measurements relying on the unique property of rapid response to humidity change.This work presents an overview of recent advances in flexible humidity sensors using various active functional materials for contactless monitoring.Four categories of humidity sensors are highlighted based on resistive,capacitive,impedance-type and voltage-type working mechanisms.Furthermore,typical strategies including chemical doping,structural design and Joule heating are introduced to enhance the performance of humidity sensors.Drawing on the noncontact perception capability,human/plant healthcare management,human-machine interactions as well as integrated humidity sensor-based feedback systems are presented.The burgeoning innovations in this research field will benefit human society,especially during the COVID-19 epidemic,where cross-infection should be averted and contactless sensation is highly desired.展开更多
基金The Consortium for Scientific Research,Indore(CSR,Indore)(No.CRS/2021-22/01/426)is acknowledged by the authorsFor the research facilities,the authors are grateful to CHARUSAT University.
文摘The rapid advancement of modern electronics has led to a surge in solid electronic waste,which poses significant environmental and health challenges.This review focuses on recent developments in paper-based electronic devices fabricated through low-cost,hand-printing techniques,with particular emphasis on their applications in energy harvesting,storage,and sensing.Unlike conventional plastic-based substrates,cellulose paper offers several advantages,including biodegradability,recyclability,and low fabrication cost.By integrating functional nanomaterials such as two-dimensional chalcogenides,metal oxides,conductive polymers,and carbon-based structures onto paper,researchers have achieved high-performance devices such as broadband photodetectors(responsivity up to 52 mA/W),supercapacitors(energy density~15.1 mWh/cm^(2)),and pressure sensors(sensitivity~18.42 kPa^(-1)).The hand-printing approach,which eliminates the need for sophisticated equipment and toxic solvents,offers a promising route for scalable,sustainable,and disposable electronics.This review outlines fabrication methods and key performance metrics,and discusses the current challenges and future directions for realizing robust,flexible devices aligned with green technology and the United Nation’s Sustainable Development Goals.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2024-00353768)the Yonsei Fellowship, funded by Lee Youn Jae. This study was funded by the KIST Institutional Program Project No. 2E31603-22-140 (K J Y). S M W acknowledges the support by National Research Foundation of Korea (NRF) grant funded by the Korea government (Grant Nos. NRF-2021R1C1C1009410, NRF2022R1A4A3032913 and RS-2024-00411904)
文摘Flexible electronics offer a multitude of advantages,such as flexibility,lightweight property,portability,and high durability.These unique properties allow for seamless applications to curved and soft surfaces,leading to extensive utilization across a wide range of fields in consumer electronics.These applications,for example,span integrated circuits,solar cells,batteries,wearable devices,bio-implants,soft robotics,and biomimetic applications.Recently,flexible electronic devices have been developed using a variety of materials such as organic,carbon-based,and inorganic semiconducting materials.Silicon(Si)owing to its mature fabrication process,excellent electrical,optical,thermal properties,and cost efficiency,remains a compelling material choice for flexible electronics.Consequently,the research on ultra-thin Si in the context of flexible electronics is studied rigorously nowadays.The thinning of Si is crucially important for flexible electronics as it reduces its bending stiffness and the resultant bending strain,thereby enhancing flexibility while preserving its exceptional properties.This review provides a comprehensive overview of the recent efforts in the fabrication techniques for forming ultra-thin Si using top-down and bottom-up approaches and explores their utilization in flexible electronics and their applications.
基金financial support from the RGC Senior Research Fellowship Scheme(SRFS2122-5S04)General Research Fund(15304322)+1 种基金RGC Postdoctoral Fellowship(PDFS2324-5S10)State Key Laboratory for Ultraprecision Machining Technology(1-BBXR).
文摘The burgeoning interest in flexible electronics necessitates the creation of patterning technology specifically tailored for flexible substrates and complex surface morphologies.Among a variety of patterning techniques,transfer printing emerges as one of the most efficient,cost-effective,and scalable methods.It boasts the ability for high-throughput fabrication of 0–3D micro-and nano-structures on flexible substrates,working in tandem with traditional lithography methods.This review highlights the critical issue of transfer printing:the flawless transfer of devices during the pick-up and printing process.We encapsulate recent advancements in numerous transfer printing techniques,with a particular emphasis on strategies to control adhesion forces at the substrate/device/stamp interfaces.These strategies are employed to meet the requirements of competing fractures for successful pick-up and print processes.The mechanism,advantages,disadvantages,and typical applications of each transfer printing technique will be thoroughly discussed.The conclusion section provides design guidelines and probes potential directions for future advancements.
文摘This study employs theoretical analysis to explore the application prospects of flexible electronics technology in wearable devices. The research first reviews the development history and theoretical foundations of flexible electronics technology, including materials science, electronic engineering, and human-computer interaction theory. Through systematic analysis, the study evaluates the theoretical potential of flexible displays, flexible sensors, and flexible energy storage devices in wearable technology. The research finds that flexible electronics technology can significantly improve the comfort, functionality, and durability of wearable devices. Theoretical analysis indicates that flexible sensors have unique advantages in physiological monitoring and human-computer interaction, while flexible displays and batteries may revolutionize the form and usage patterns of wearable devices. However, the study also points out theoretical challenges faced by flexible electronics technology, such as material stability and feasibility of large-scale manufacturing. To address these challenges, the research proposes an interdisciplinary research framework, emphasizing the synergistic innovation of materials science, electronic engineering, and ergonomics. Finally, the study envisions the theoretical prospects of integrating flexible electronics with other emerging technologies, providing directions for future research.
基金supported by the Natural Science Foundation of Beijing Municipality(No.Z180011)the National Natural Science Foundation of China(Nos.51991340,51991342,51972022,92163205,and 52188101)+2 种基金the National Key Research and Development Program of China(No.2016YFA0202701)the Fundamental Research Funds for the Central Universities(No.FRF-TP-19-025A3)the Overseas Expertise Introduction Projects for Discipline Innovation(No.B14003)。
文摘Flexible electronics and optoelectronics exhibit inevitable trends in next-generation intelligent industries,including healthcare and wellness,electronic skins,the automotive industry,and foldable or rollable displays.Traditional bulk-material-based flexible devices considerably rely on lattice-matched crystal structures and are usually plagued by unavoidable chemical disorders at the interface.Two-dimensional van der Waals materials(2D VdWMs)have exceptional multifunctional properties,including large specific area,dangling-bond-free interface,plane-to-plane van der Waals interactions,and excellent mechanical,electrical,and optical properties.Thus,2D VdWMs have considerable application potential in functional intelligent flexible devices.To utilize the unique properties of 2D VdWMs and their van der Waals heterostructures,new designs and configurations of electronics and optoelectronics have emerged.However,these new designs and configurations do not consider lattice mismatch and process incompatibility issues.In this review,we summarized the recently reported 2D VdWM-based flexible electronic and optoelectronic devices with various functions thoroughly.Moreover,we identified the challenges and opportunities for further applications of 2D VdWM-based flexible electronics and optoelectronics.
基金supported by the Natural Science Foundation of China(No.51902101)Natural Science Foundation of Jiangsu Province(No.BK20201381)+1 种基金Science Foundation of Nanjing University of Posts and Telecommunications(No.NY219144)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX22_0254).
文摘Flexible electronics technology is considered as a revolutionary technology to unlock the bottleneck of traditional rigid electronics that prevalent for decades,thereby fueling the next-generation electronics.In the past few decades,the research on flexible electronic devices based on organic materials has witnessed rapid development and substantial achievements,and inorganic semiconductors are also now beginning to shine in the field of flexible electronics.As validated by the latest research,some of the inorganic semiconductors,particularly those at low dimension,unexpectedly exhibited excellent mechanical flexibility on top of superior electrical properties.Herein,we bring together a comprehensive analysis on the recently burgeoning low-dimension inorganic semiconductor materials in flexible electronics,including one-dimensional(1D)inorganic semiconductor nanowires(NWs)and two-dimensional(2D)transition metal dichalcogenides(TMDs).The fundamental electrical properties,optical properties,mechanical properties and strain engineering of materials,and their performance in flexible device applications are discussed in detail.We also propose current challenges and predict future development directions including material synthesis and device fabrication and integration.
基金support from the National Natural Science Foundation of China(No.11172022)the support by the China Postdoctoral Science Foundation(No.2013M530907)the National Natural Science Foundation of China(No.11302039)
文摘The conventional analytical method of predicting strain in a thin film under bending is restricted to the uniform material assumption, while in flexible electronics, the film/substrate structure is widely used with mismatched material properties taken into account. In this paper,a piecewise model is proposed to analyze the axial strain in a thin film of flexible electronics with the shear modification factor and principle of virtual work. The excellent agreement between analytical prediction and finite element results indicates that the model is capable of predicting the strain of the film/substrate structure in flexible electronics, whose mechanical stability and electrical performance is dependent on the strain state in the thin film.
基金Supported by the State Scholarship Fund of Chinathe Open Research Fund of Shanghai Key Laboratory of Multidimensional Information Processing of East China Normal University
文摘As a potential flexible substrate for flexible electronics, a polymer-sandwiched ultra-thin silicon platform is stud- ied. SU-8 photoresist coated on the silicon membrane improves its flexibility as shown by an ANSYS simulation. Using the plasma enhanced chemical vapor deposited Si02/Si3N4 composite film as an etching mask, a 4" silicon- (100) wafer is thinned to 26[tm without rupture in a 30wt.% KOH solution. The thinned wafer is coated on both sides with 20 pm of SU-8 photoresist and is cut into strips. Then the strips are bent by a caliper to measure its bending radius. A sector model of bending deformation is adopted to estimate the radius of curvature. The determined minimal bending radius of the polymer-sandwiched ultra-thin silicon layer is no more than 3.3mm. The fabrication process of this sandwich structure can be used as a post-fabrication process for high performance flexible electronics.
基金supported by the National Natural Science Foundation of China (Grants 11572022 and 11172022)
文摘Laminated hard-soft integrated structures play a significant role in the fabrication and development of flexible electronics devices. Flexible electronics have advantageous characteristics such as soft and light-weight, can be folded,twisted, flipped inside-out, or be pasted onto other surfaces of arbitrary shapes. In this paper, an analytical model is presented to study the mechanics of laminated hard-soft structures in flexible electronics under a stickup state. Thirdorder polynomials are used to describe the displacement field,and the principle of virtual work is adopted to derive the governing equations and boundary conditions. The normal strain and the shear stress along the thickness direction in the bimaterial region are obtained analytically, which agree well with the results from finite element analysis. The analytical model can be used to analyze stickup state laminated structures, and can serve as a valuable reference for the failure prediction and optimal design of flexible electronics in the future.
文摘Flexible electronics is an emerging technology,which breaks through the constraints of traditional rigid electronics,enabling electronic devices to adapt to various complex application scenarios.Meanwhile,a variety of functions including sensing,actuation and energy harvesting,promote flexible electronics to be widely used in healthcare,robotics,Internet of Things,and so on.Micro/nanomanufacturing is the key technology to realize flexible electronics.Through micro/nanomanufacturing,various micro/nano-scale electronic components such as transistors and sensors can be precisely fabricated on flexible substrates,endowing flexible electronics with excellent performance.On the other hand,the development of flexible electronics also provides new challenges for micro/nanomanufacturing,due to the new flexible materials and device morphology.Currently,flexible electronics and micro/nanomanufacturing have attracted great at-tention from researchers around the world.Scientists explore new materials and techniques to further expand the applications of flexible electronics.On this basis,we have organized a special topic on“Flexible Electronics and Micro/Nanomanufacturing”in National Science Open(NSO)to discuss the development of flexible electronics.The topic focuses on key issues in the design and manufacturing of flexible electronics.We have invited nine scientists from different fields to present their latest research findings and prospective analyses of flexible electronics systematically.
基金supported by the National Natural Science Foundation of China(nos.52188102 and 51925503)the Science and Technology Development Fund of Macao SAR(file na.0117/2024/AMJ)+1 种基金Zhuhai UM Science&Technology Research Institute(CP-009-2024)the State Key Laboratory of Intelligent Manufacturing Equipment and Tech-nology(IMETKF2024003),HUST,Wuhan,China.
文摘The realization of natural and authentic facial expressions in humanoid robots poses a challenging and prominent research domain,encompassing interdisciplinary facets including mechanical design,sensing and actuation control,psychology,cognitive science,flexible electronics,artificial intelligence(AI),etc.We have traced the recent developments of humanoid robot heads for facial expressions,discussed major challenges in embodied AI and flexible electronics for facial expression recognition and generation,and highlighted future trends in this field.Developing humanoid robot heads with natural and authentic facial expressions demands collaboration in interdisciplinary fields such as multi-modal sensing,emotional computing,and human-robot interactions(HRIs)to advance the emotional anthropomorphism of humanoid robots,bridging the gap between humanoid robots and human beings and enabling seamless HRIs.
基金This work was supported by the financial support from the National Key Research and Development Program of China(Nos.2021YFA1202600 and 2023YFF0719600)the National Natural Science Foundation of China(Nos.U23A20322,92164108,62174164 and U22A2075)+3 种基金Natural Science Foundation of Zhejiang Province(No.LR23E020001)Hunan Provincial Natural Science Foundation(Nos.2023JJ50009 and 2023JJ30599)Talent Plan of Shanghai Branch,Chinese Academy of Sciences(No.CASSHB-QNPD-2023-022)Ningbo Technology Project(No.2022A-007-C).
文摘Self-rectifying memristor(SRM)arrays hold tremendous potential in high-density data storage and energy efficient neuromorphic computing.However,SRM arrays are mostly developed on rigid substrates and lack mechanical flexibility,limiting their applications in intelligent electronic skin,wearable technologies,etc.Here,we present a high performance SRM array based on Pt/HfO_(2)/Ta_(2)O_(5−x)/Ti heterojunctions,which can be fabricated on a flexible polyimides(PI)substrate and demonstrates exceptional memristive performance under bending conditions(bending radius(R)=1 cm,rectifying ratio>10^(4),retention time>10^(4) s and endurance>105 cycles).We demonstrate a 16×16 flexible memristor array offering noise filtering and data storage capabilities,which can be used to accurately process and store the signals transmitted by a pressure sensor array.This research represents an important advancement towards the realization of next-generation high-performance flexible electronics.
基金supported by the National Key R&D Program of China(No.2018YFA0209302)the National Natural Science Foundation of China(Nos.21976177,22276191).
文摘Hydrogels electrolytes with flexibility and high conductivity have been widely used in kinds of flexible electronics.However,hydrogels always suffer from the inevitable freezing of water at subzero temperatures,which results in the sacrificing of their electrical properties.Herein,an anti-freezing,flexible hydrogel based on in situ reduction of graphene oxide(GO)and laponite has been developed as electrolyte for high performance supercapacitor and sensitive sensors.The crosslinked GO and laponite in polyacrylamide(PAM)resulted in an enhanced mechanical property,while the in-situ reduction of GO in the hydrogel enhanced the conductivity and diminishes the aggregated of GO.These features guarantee a reliable electro signal as sensor and a high performance of the supercapacitor.Besides,in the process of preparation of reduced graphene oxide(rGO)hydrogel,the addition of ethylene glycol(EG)and KOH,endows the hydrogel antifreeze properties.This anti-freezing electrolyte can be stretched to a strain of 1600%and maintained a specific capacitance of 37.38 F·g^(-1) at-20℃.In addition,the photothermal conversion character of rGO in the hydrogel,endows it’s the potential application in wound healing.The overall merits of the hydrogel will open up a new avenue for sensitive sensor and energy storage device in practical applications.
文摘Miniaturization and flexibility are becoming the trend in the development of electronic products. These key features are driving new methods in the manufacturing of such products. Printed electronics technology is a novel additive manufacturing technique that uses active inks to print onto a diverse set of substrates, realizing large-area, low-cost, flexible and green manufacturing of electronic products. These advantageous properties make it extremely compatible with flexible electronics fabrication and extend as far as offering revolutionary methods in the production of flexible electronic devices. In this paper, the details of a printing process system are introduced, including the materials that can be employed as inks, common substrates, and the most recently reported printing strategies. An assessment of future setbacks and developments of printed flexible electronics is also presented.
基金National Key Research and Development Program of China,Grant/Award Number:2018YFA0703200National Natural Science Foundation of China,Grant/Award Number:52075209+1 种基金Innovation Project of Optics Valley Laboratory,Grant/Award Number:OVL2021BG007Natural Science Foundation for Distinguished Young Scholars of Hubei province of China,Grant/Award Number:2022CFA066。
文摘Electrohydrodynamic(EHD)printing technique,which deposits micro/nanostructures through high electric force,has recently attracted significant research interest owing to their fascinating characteristics in high resolution(<1μm),wide material applicability(ink viscosity 1–10000 cps),tunable printing modes(electrospray,electrospinning,and EHD jet printing),and compatibility with flexible/wearable applications.Since the laboratory level of the EHD printed electronics'resolution and efficiency is gradually approaching the commercial application level,an urgent need for developing EHD technique from laboratory into industrialization have been put forward.Herein,we first discuss the EHD printing technique,including the ink design,droplet formation,and key technologies for promoting printing efficiency/accuracy.Then we summarize the recent progress of EHD printing in fabrication of displays,organic field-effect transistors(OFETs),transparent electrodes,and sensors and actuators.Finally,a brief summary and the outlook for future research effort are presented.
基金supported by National Key Research and Development Program(No.2022YFE0124200)National Natural Science Foundation of China(No.U2241221)+9 种基金J.P.thanks the Natural Science Foundation of Shandong Province for Excellent Young Scholars(YQ2022041)the fund(No.SKT2203)from the State Key Laboratories of Transducer TechnologyShanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences for support.W.Z.thanks the Major Scientific and Technological Innovation Project of Shandong Province(2021CXGC010603)NSFC(No.52022037)Taishan Scholars Project Special Funds(TSQN201812083)The Project was supported by the Foundation(No.GZKF202107)of State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology,Shandong Academy of Sciences.M.H.R.thanks NSFC(No.52071225)the National Science Center and the Czech Republic under the European Regional Development Fund(ERDF)“Institute of Environmental Technology-Excellent Research”(No.CZ.02.1.01/0.0/0.0/16_019/0000853)the SinoGerman Center for Research Promotion(SGC)for support(No.GZ 1400).
文摘Flexible electronics has emerged as a continuously growing field of study.Two-dimensional(2D)materials often act as conductors and electrodes in elec-tronic devices,holding significant promise in the design of high-performance,flexible electronics.Numerous studies have focused on harnessing the potential of these materials for the development of such devices.However,to date,the incorporation of 2D materials in flexible electronics has rarely been summa-rized or reviewed.Consequently,there is an urgent need to develop compre-hensive reviews for rapid updates on this evolving landscape.This review covers progress in complex material architectures based on 2D materials,including interfaces,heterostructures,and 2D/polymer composites.Addition-ally,it explores flexible and wearable energy storage and conversion,display and touch technologies,and biomedical applications,together with integrated design solutions.Although the pursuit of high-performance and high-sensitivity instruments remains a primary objective,the integrated design of flexible electronics with 2D materials also warrants consideration.By combin-ing multiple functionalities into a singular device,augmented by machine learning and algorithms,we can potentially surpass the performance of existing wearable technologies.Finally,we briefly discuss the future trajectory of this burgeoning field.This review discusses the recent advancements in flex-ible sensors made from 2D materials and their applications in integrated archi-tecture and device design.
基金supported by the National Key R&D Program of China(2018YFA0901700)National Natural Science Foundation of China(22278241)+1 种基金a grant from the Institute Guo Qiang,Tsinghua University(2021GQG1016)Department of Chemical Engineering-iBHE Joint Cooperation Fund。
文摘The development of electronic products and increased electronic waste have triggered a series of ecological problems on Earth.Meanwhile,amidst energy crises and the pursuit of carbon neutrality,the recycling of discarded biomass has attracted the attention of many researchers.In recent years,the transformation of discarded biomass into value-added electronic products has emerged as a promising endeavor in the field of green and flexible electronics.In this review,the attempts and advancements in biomass conversion into flexible electronic materials and devices are systematically summarized.We focus on reviewing the research progress in biomass conversion into substrates,electrodes,and materials tailored for optical and thermal management.Furthermore,we explore component combinations suitable for applications in environmental monitoring and health management.Finally,we discuss the challenges in techniques and cost-effectiveness currently faced by biomass conversion into flexible electronic devices and propose improvement strategies.Drawing insights from both fundamental research and industrial applications,we offer prospects for future developments in this burgeoning field.
基金financially supported by Scientific Research Fund of Chongqing Municipal Education Commission[KJQN202201306]Major Cultivation Program of Chongqing University of Arts and Sciences[P2022HH06]Natural Science Foundation of Yongchuan District[2023yc-jckx20067].
文摘As a novel material,liquid metal has attracted the attention of scientists for its unique properties and wide potential applications.In this paper,the basic concepts,properties,and behaviors of liquid metals under different conditions are introduced,and the latest advances in their synthesis methods and application felds are discussed.The development status of liquid metal in science and industry is also introduced.The latest research progress of liquid metals is systematically reviewed,and the potential and application prospect of liquid metals in materials science,engineering,and electronic techology are revealed.The research scope covers the wide application of liquid metals in nanotechnology,materials engineering,electronic technology,energy,and other fields,as well as the latest application cases of liquid metals in flexible electronic devices,sensors,catalysts,energy storage,and other fields.At the same time,the core disputes and problems to be solved in the field of liquid metals are discussed.Through the comments on liquid metals,we hope to provide reference and guidance for researchers and promote the further development in the field of liquid metals.This review would help stimulate more people's interest in liquid metals and encourage innovation and application development in this field.
文摘This special issue will include reviews,regular papers,and short communications,and reports in the fields for next generation electronics and photonics.The topics include but not restricted in advanced microelectronic devices and materials,low-dimensional materials and novel nanodevice applications,flexible/wearable/implantable electronics,wide bandgap semiconductor materials and devices,photoelectronics,photonics,advanced display technologies,nanophotonics,integrated quantum photonics,photovoltaics,energy harvesting and self-powered wireless sensing,sensors,micro-actuators,MEMS,microfluidics,and bioMEMS,etc.
基金supported by the National Science and Technology Innovation 2030 Major Project(Grant No.2022ZD0208601)the National Natural Science Foundation of China(Grant No.52105593 and 51975513)the Natural Science Foundation of Zhejiang Province,China(No.LR20E050003)。
文摘In the past decade,the global industry and research attentions on intelligent skin-like electronics have boosted their applications in diverse fields including human healthcare,Internet of Things,human–machine interfaces,artificial intelligence and soft robotics.Among them,flexible humidity sensors play a vital role in noncontact measurements relying on the unique property of rapid response to humidity change.This work presents an overview of recent advances in flexible humidity sensors using various active functional materials for contactless monitoring.Four categories of humidity sensors are highlighted based on resistive,capacitive,impedance-type and voltage-type working mechanisms.Furthermore,typical strategies including chemical doping,structural design and Joule heating are introduced to enhance the performance of humidity sensors.Drawing on the noncontact perception capability,human/plant healthcare management,human-machine interactions as well as integrated humidity sensor-based feedback systems are presented.The burgeoning innovations in this research field will benefit human society,especially during the COVID-19 epidemic,where cross-infection should be averted and contactless sensation is highly desired.