期刊文献+
共找到107篇文章
< 1 2 6 >
每页显示 20 50 100
General and efficient parallel approach of finite element-boundary integral-multilevel fast multipole algorithm 被引量:3
1
作者 Pan Xiaomin Sheng Xinqing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期207-212,共6页
A general and efficient parallel approach is proposed for the first time to parallelize the hybrid finiteelement-boundary-integral-multi-level fast multipole algorithm (FE-BI-MLFMA). Among many algorithms of FE-BI-M... A general and efficient parallel approach is proposed for the first time to parallelize the hybrid finiteelement-boundary-integral-multi-level fast multipole algorithm (FE-BI-MLFMA). Among many algorithms of FE-BI-MLFMA, the decomposition algorithm (DA) is chosen as a basis for the parallelization of FE-BI-MLFMA because of its distinct numerical characteristics suitable for parallelization. On the basis of the DA, the parallelization of FE-BI-MLFMA is carried out by employing the parallelized multi-frontal method for the matrix from the finiteelement method and the parallelized MLFMA for the matrix from the boundary integral method respectively. The programming and numerical experiments of the proposed parallel approach are carried out in the high perfor- mance computing platform CEMS-Liuhui. Numerical experiments demonstrate that FE-BI-MLFMA is efficiently parallelized and its computational capacity is greatly improved without losing accuracy, efficiency, and generality. 展开更多
关键词 finite element-boundary integral-multilevel fast multipole algorithm parallelization.
在线阅读 下载PDF
Parallel finite element algorithm based on full domain partition for stationary Stokes equations
2
作者 尚月强 何银年 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第5期643-650,共8页
Based on the full domain partition, a parallel finite element algorithm for the stationary Stokes equations is proposed and analyzed. In this algorithm, each subproblem is defined in the entire domain. Majority of the... Based on the full domain partition, a parallel finite element algorithm for the stationary Stokes equations is proposed and analyzed. In this algorithm, each subproblem is defined in the entire domain. Majority of the degrees of freedom are associated with the relevant subdomain. Therefore, it can be solved in parallel with other subproblems using an existing sequential solver without extensive recoding. This allows the algorithm to be implemented easily with low communication costs. Numerical results are given showing the high efficiency of the parallel algorithm. 展开更多
关键词 Stokes equations finite element parallel algorithm full domain partition
在线阅读 下载PDF
A Full Predictor-Corrector Finite Element Method for the One-Dimensional Heat Equation with Time-Dependent Singularities
3
作者 Jake L. Nkeck 《Journal of Applied Mathematics and Physics》 2024年第4期1364-1382,共19页
The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent ... The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent singularities on the one-dimensional heat equation. The method is based on a Fourier decomposition of the solution and an extraction formula of the coefficients of the singularities coupled with a predictor-corrector algorithm. The method recovers the optimal convergence rate of the finite element method on a quasi-uniform mesh refinement. Numerical results are carried out to show the efficiency of the method. 展开更多
关键词 SINGULARITIES finite element Methods Heat Equation Predictor-Corrector algorithm
在线阅读 下载PDF
A parallel two-level finite element method for the Navier-Stokes equations
4
作者 尚月强 罗振东 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第11期1429-1438,共10页
Based on domain decomposition, a parallel two-level finite element method for the stationary Navier-Stokes equations is proposed and analyzed. The basic idea of the method is first to solve the Navier-Stokes equations... Based on domain decomposition, a parallel two-level finite element method for the stationary Navier-Stokes equations is proposed and analyzed. The basic idea of the method is first to solve the Navier-Stokes equations on a coarse grid, then to solve the resulted residual equations in parallel on a fine grid. This method has low communication complexity. It can be implemented easily. By local a priori error estimate for finite element discretizations, error bounds of the approximate solution are derived. Numerical results are also given to illustrate the high efficiency of the method. 展开更多
关键词 Navier-Stokes equations finite element two-level method overlapping domain decomposition parallel algorithm
在线阅读 下载PDF
CHARACTERISTIC GALERKIN METHOD FOR CONVECTION-DIFFUSION EQUATIONS AND IMPLICIT ALGORITHM USING PRECISE INTEGRATION 被引量:3
5
作者 李锡夔 武文华 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1999年第4期371-382,共12页
This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using prec... This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using precise integration method. With the operator splitting procedure, the precise integration method is introduced to determine the material derivative in the convection-diffusion equation, consequently, the physical quantities of material points. An implicit algorithm with a combination of both the precise and the traditional numerical integration procedures in time domain in the Lagrange coordinates for the characteristic Galerkin method is formulated. The stability analysis of the algorithm shows that the unconditional stability of present implicit algorithm is enhanced as compared with that of the traditional implicit numerical integration procedure. The numerical results validate the presented method in solving convection-diffusion equations. As compared with SUPG method and explicit characteristic Galerkin method, the present method gives the results with higher accuracy and better stability. 展开更多
关键词 convection-diffusion equation characteristic Galerkin method finite element procedure precise integration implicit algorithm
在线阅读 下载PDF
LOCAL AND PARALLEL FINITE ELEMENT METHOD FOR THE MIXED NAVIER-STOKES/DARCY MODEL WITH BEAVERS-JOSEPH INTERFACE CONDITIONS 被引量:2
6
作者 杜光芝 左立云 《Acta Mathematica Scientia》 SCIE CSCD 2017年第5期1331-1347,共17页
In this paper, we consider the mixed Navier-Stokes/Darcy model with BeaversJoseph interface conditions. Based on two-grid discretizations, a local and parallel finite element algorithm for this mixed model is proposed... In this paper, we consider the mixed Navier-Stokes/Darcy model with BeaversJoseph interface conditions. Based on two-grid discretizations, a local and parallel finite element algorithm for this mixed model is proposed and analyzed. Optimal errors are obtained and numerical experiments are presented to show the efficiency and effectiveness of the local and parallel finite element algorithm. 展开更多
关键词 Navier-Stokes equations Darcy's law two-grid algorithm Beavers-Joseph interface conditions parallel finite element method
在线阅读 下载PDF
ICCG算法在SF_6罐式高压断路器三维电场有限元计算中的应用 被引量:21
7
作者 林莘 刘志刚 《中国电机工程学报》 EI CSCD 北大核心 2001年第2期21-24,共4页
分析了适用于大型稀疏矩阵求解的不完全乔列斯基分解的共轭梯度法ICCG ,对有限元代数方程ICCG指针的通用快速存取和寻址方法进行了研究 ,引入了新的数据结构 ,给出了基于剖分网格数据的通用快速存取和寻址方法 ,该方法可以快速有效地解... 分析了适用于大型稀疏矩阵求解的不完全乔列斯基分解的共轭梯度法ICCG ,对有限元代数方程ICCG指针的通用快速存取和寻址方法进行了研究 ,引入了新的数据结构 ,给出了基于剖分网格数据的通用快速存取和寻址方法 ,该方法可以快速有效地解决系数矩阵的寻址问题。采用等参元有限元法对罐式断路器断口间的三维电场进行了计算 ,在有限元方程大型稀疏矩阵的求解中采用了ICCG算法。 展开更多
关键词 六氟硫断路器 罐式高压断路器 iccg算法 三维电场 有限元 计算
在线阅读 下载PDF
方程组降阶算法及其在电工装备数值计算中的应用
8
作者 金军 阎秀恪 +2 位作者 钟立国 张艳丽 任自艳 《电工技术学报》 北大核心 2025年第7期2020-2032,共13页
大型电气设备在进行有限元分析时,会遇到大规模数值计算问题。代数方程组阶数巨大导致计算时间长,计算效率低,有时甚至无法求解。该文研究有限元代数方程组的降阶求解,推导了分块迭代算法、正交降阶分解算法(OORDA),将禁忌搜索算法引入... 大型电气设备在进行有限元分析时,会遇到大规模数值计算问题。代数方程组阶数巨大导致计算时间长,计算效率低,有时甚至无法求解。该文研究有限元代数方程组的降阶求解,推导了分块迭代算法、正交降阶分解算法(OORDA),将禁忌搜索算法引入高斯消元法形成改进的高斯消元法(IGEM),提出了分块迭代算法分别与OORDA和IGEM相结合的方程组混合降阶算法,并通过编程实现。将OORDA、IGEM和两种混合降阶算法分别应用于长直载流导体的磁场有限元计算中,计算结果与解析解的对比验证了算法的正确性。将四种算法应用到单相变压器的磁场有限元计算中,两种混合降阶算法能够快速大幅降低方程组阶数,提高计算效率。该文提出的降阶算法可应用于电工装备物理场的大规模数值计算中,能显著提高复杂模型的有限元计算效率。 展开更多
关键词 有限元分析 代数方程组 降阶算法 大规模数值计算 计算效率
在线阅读 下载PDF
大型电磁场有限元代数方程组的快速 ICCG 算法 被引量:1
9
作者 王胜辉 张瑛 岳军 《东北电力技术》 1998年第1期9-11,共3页
本文分析了ICCG算法,给出了通用的节点元标量位、矢量位和求解区域内节点编号不连续的有限元代数方程组ICCG指针的快速寻址方法。
关键词 有限元 代数方程组 快速iccg算法 电磁场
在线阅读 下载PDF
常导高速磁浮列车涡流制动力快速计算方法研究
10
作者 邓楚燕 刘帅 《微电机》 2025年第1期72-76,共5页
常导高速磁浮的紧急制动方式主要是涡流制动,涡流制动力计算是常导高速磁浮列车设计的重要一环。目前商用软件Ansys maxwell存在maxwell2D计算精度不足,而maxwell3D计算速度慢的问题。本文针对目前商业软件计算方法存在的不足,提出一种... 常导高速磁浮的紧急制动方式主要是涡流制动,涡流制动力计算是常导高速磁浮列车设计的重要一环。目前商用软件Ansys maxwell存在maxwell2D计算精度不足,而maxwell3D计算速度慢的问题。本文针对目前商业软件计算方法存在的不足,提出一种基于对流扩散方程的3D涡流制动力快速计算方法。基于Matlab采用周期性边界条件将计算模型缩短,然后利用带运动项的磁场方程进行刚度矩阵构建,再结合“迎流的”有限元法对对流项进行高斯点偏移修正,并对扩散项修正因子的选取进行了对比分析,得出了最优的修正方案,最后利用磁化曲线实现非线性计算收敛,使用稀疏矩阵实现了方程快速计算。基于常导高速磁浮涡流制动器模型进行计算验证,将本文提出的方法计算结果分别与maxwell2D和maxwell3D计算结果进行对比,可以发现本文方法计算结果精度明显高于maxwell2D的计算结果,且与maxwell3D的计算偏差最大不超过10%,而计算时长相比于maxwell3D缩短了85.11%,很好的弥补了商用软件计算的不足,非常适合用于计算常导高速磁浮涡流制动力的快速计算。 展开更多
关键词 涡流制动 磁浮列车 快速计算 对流扩散方程 有限元
在线阅读 下载PDF
二维线性薛定谔方程的一种高效数值解法
11
作者 王建云 钟子新 田智鲲 《湖南工业大学学报》 2025年第5期98-102,共5页
针对二维线性薛定谔方程,构造了一种新的半离散有限元两网格算法。将原本在细网格上求解薛定谔方程的有限元解,简化为先在粗网格上求解原方程的有限元解,然后利用在粗网格上求得的数值解,在细网格上将方程的实部和虚部进行解耦,求解两... 针对二维线性薛定谔方程,构造了一种新的半离散有限元两网格算法。将原本在细网格上求解薛定谔方程的有限元解,简化为先在粗网格上求解原方程的有限元解,然后利用在粗网格上求得的数值解,在细网格上将方程的实部和虚部进行解耦,求解两个椭圆方程的有限元解。分析了两网格有限元解与精确解在H1范数下的误差,并进行了数值计算实验,得到的数值结果与文献[10]中的误差具有相同的误差阶,且在不同时刻的误差更小。 展开更多
关键词 两网格算法 薛定谔方程 有限元方法
在线阅读 下载PDF
A Parallel Finite Element Algorithm for the Unsteady Oseen Equations
12
作者 Qi Ding Yueqiang Shang 《Advances in Applied Mathematics and Mechanics》 SCIE 2021年第6期1501-1519,共19页
Based on fully overlapping domain decomposition,a parallel finite element algorithm for the unsteady Oseen equations is proposed and analyzed.In this algorithm,each processor independently computes a finite element ap... Based on fully overlapping domain decomposition,a parallel finite element algorithm for the unsteady Oseen equations is proposed and analyzed.In this algorithm,each processor independently computes a finite element approximate solution in its own subdomain by using a locally refined multiscale mesh at each time step,where conforming finite element pairs are used for the spatial discretizations and backward Euler scheme is used for the temporal discretizations,respectively.Each subproblem is defined in the entire domain with vast majority of the degrees of freedom associated with the particular subdomain that it is responsible for and hence can be solved in parallel with other subproblems using an existing sequential solver without extensive recoding.The algorithm is easy to implement and has low communication cost.Error bounds of the parallel finite element approximate solutions are estimated.Numerical experiments are also given to demonstrate the effectiveness of the algorithm. 展开更多
关键词 Oseen equations finite element overlapping domain decomposition backward Euler scheme parallel algorithm
在线阅读 下载PDF
Characteristic-based operator-splitting finite element method for Navier-Stokes equations 被引量:13
13
作者 WANG DaGuo WANG HaiJiao +1 位作者 XIONG JuHua THAM L G 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第8期2157-2166,共10页
A new finite element method, which is the characteristic-based operator-splitting (CBOS) algorithm, is developed to solve Navier-Stokes (N-S) equations. In each time step, the equations are split into the diffusive pa... A new finite element method, which is the characteristic-based operator-splitting (CBOS) algorithm, is developed to solve Navier-Stokes (N-S) equations. In each time step, the equations are split into the diffusive part and the convective part by adopting the operator-splitting algorithm. For the diffusive part, the temporal discretization is performed by the backward difference method which yields an implicit scheme and the spatial discretization is performed by the standard Galerkin method. The convective part can be discretized using the characteristic Galerkin method and solved explicitly. The driven square flow and backward-facing step flow are conducted to validate the model. It is shown that the numerical results agree well with the standard solutions or existing experimental data, and the present model has high accuracy and good stability. It provides a prospective research method for solving N-S equations. 展开更多
关键词 N-S equations CBOS algorithm finite element method
原文传递
基于FEM-MEI和正余弦算法的二维电磁成像方法
14
作者 贾瀚钦 高红伟 +1 位作者 郝凯子 贾祖朋 《南京邮电大学学报(自然科学版)》 北大核心 2024年第4期68-76,共9页
针对二维介质目标的电磁成像问题,将正余弦算法(Sine Cosine Algorithm,SCA)与有限元方法(Finite Element Method,FEM)和不变性测试方程(Measured Equation of Invariance,MEI)进行结合提出一种新的成像方法。将FEM与MEI进行结合求解二... 针对二维介质目标的电磁成像问题,将正余弦算法(Sine Cosine Algorithm,SCA)与有限元方法(Finite Element Method,FEM)和不变性测试方程(Measured Equation of Invariance,MEI)进行结合提出一种新的成像方法。将FEM与MEI进行结合求解二维介质目标的电磁散射正问题,即求解Helmholtz方程。其中,MEI保证边界截断的精度,FEM适用于复杂介质目标的准确模拟。对于电磁散射逆问题,引入SCA并加以改进提出一种新的重构方法。该方法采用等效原理与格林函数的渐近式求得远区散射场,以测量的散射场和计算的散射场最大偏差为目标函数,采用改进的SCA优化介质参数,使目标函数达到最小值,以此重构散射体。为提高计算效率,采用MPI算法进行并行计算。文中采用基准函数展示了改进的SCA算法的快速收敛性,并采用非规则的均匀介质柱目标验证了成像方法的正确性。 展开更多
关键词 正余弦算法 有限元方法 MEI方法 电磁散射 二维成像
在线阅读 下载PDF
基于顶点中心有限元算法的重力场矢量和重力梯度张量高精度模拟
15
作者 童孝忠 孙娅 +1 位作者 黄基文 柳建新 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第5期1659-1670,共12页
密度非均质性引起的重力异常由三维泊松方程控制,而目前大多数正演模拟方法都依赖于其积分解和以单元为中心的数值方法。当利用重力位计算重力场时,这些数值策略将不可避免地失去准确性。为了缓解这一问题,本文提出了一种高效、准确的... 密度非均质性引起的重力异常由三维泊松方程控制,而目前大多数正演模拟方法都依赖于其积分解和以单元为中心的数值方法。当利用重力位计算重力场时,这些数值策略将不可避免地失去准确性。为了缓解这一问题,本文提出了一种高效、准确的高阶顶点中心有限元方法来模拟三维重力异常。首先,通过具有六面体网格的顶点中心有限元来建立正演算法,并选用ILU-BICGSTAB迭代方法求解大型对称稀疏线性方程组。其次,为了获得重力位的一阶导数和二阶导数,采用了高阶拉格朗日插值技术。最后,采用三维立方体密度模型测试了顶点中心有限元算法的准确性,并利用薄垂直矩形棱镜模型和实测模型测试了算法的灵活性。数值结果表明,高阶顶点中心有限元算法能获得高精度的重力场矢量和重力梯度张量。与精确积分解和顶点中心算法相比,高阶顶点中心有限元格式在模拟三维重力异常方面表现出更高的效率和准确性。同时,相较于单元中心数值解,高阶顶点中心有限元算法在模拟三维重力异常表现出更高的效率和准确性。 展开更多
关键词 重力异常 三维泊松方程 顶点中心有限元算法 数值模拟 ILU-BICGSTAB迭代法
在线阅读 下载PDF
Finite element methods for fractional diffusion equations
16
作者 Yue Zhao Chen Shen +2 位作者 Min Qu Weiping Bu Yifa Tang 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2020年第4期32-52,共21页
Due to the successful applications in engineering,physics,biology,finance,etc.,there has been substantial interest in fractional diffusion equations over the past few decades,and literatures on developing and analyzin... Due to the successful applications in engineering,physics,biology,finance,etc.,there has been substantial interest in fractional diffusion equations over the past few decades,and literatures on developing and analyzing efficient and accurate numerical methods for reliably simulating such equations are vast and fast growing.This paper gives a concise overview on finite element methods for these equations,which are divided into time fractional,space fractional and time-space fractional diffusion equations.Besides,we also involve some relevant topics on the regularity theory,the well-posedness,and the fast algorithm. 展开更多
关键词 Fractional diffusion equation finite element method regularity theory WELL-POSEDNESS fast algorithm.
原文传递
A fast finite difference/finite element method for the two-dimensional distributed-order time-space fractional reaction-diffusion equation
17
作者 Yaping Zhang Jiliang Cao +1 位作者 Weiping Bu Aiguo Xiao 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2020年第2期115-132,共18页
In this work,we develop a finite difference/finite element method for the two-dimensional distributed-order time-space fractional reaction-diffusion equation(2D-DOTSFRDE)with low regularity solution at the initial tim... In this work,we develop a finite difference/finite element method for the two-dimensional distributed-order time-space fractional reaction-diffusion equation(2D-DOTSFRDE)with low regularity solution at the initial time.A fast evaluation of the distributedorder time fractional derivative based on graded time mesh is obtained by substituting the weak singular kernel for the sum-of-exponentials.The stability and convergence of the developed semi-discrete scheme to 2D-DOTSFRDE are discussed.For the spatial approximation,the finite element method is employed.The convergence of the corresponding fully discrete scheme is investigated.Finally,some numerical tests are given to verify the obtained theoretical results and to demonstrate the effectiveness of the method. 展开更多
关键词 Distributed-order fractional derivative fractional reaction-diffusion equation fast evaluation graded mesh finite element method error estimate
原文传递
瞬变电磁法正演计算进展 被引量:58
18
作者 李建慧 朱自强 +1 位作者 曾思红 刘树才 《地球物理学进展》 CSCD 北大核心 2012年第4期1393-1400,共8页
详细介绍了瞬变电磁法正演计算的方法、现状和发展趋势.瞬变电磁法一维正演计算需要将电磁场从频率域转换至时间域,转换方法有三种,分别是Gaver-Stehfest算法、余弦变换和Guptasarma算法.在这三种方法中,使用较多的是Gaver-Stehfest算... 详细介绍了瞬变电磁法正演计算的方法、现状和发展趋势.瞬变电磁法一维正演计算需要将电磁场从频率域转换至时间域,转换方法有三种,分别是Gaver-Stehfest算法、余弦变换和Guptasarma算法.在这三种方法中,使用较多的是Gaver-Stehfest算法和余弦变换,Gaver-Stehfest算法速度较快,但精度不及余弦变换.瞬变电磁法的数值模拟主要集中于2.5维和三维,使用的数值计算方法有积分方程法、有限差分法、有限单元法和SLDM法.积分方程法主要在三维数值模拟中使用,现已很少使用;有限差分法和有限单元法是目前瞬变电磁法2.5维和三维数值模拟的主要方法;SLDM法主要应用于三维数值模拟.我国瞬变电磁法正演计算成果主要集中在回线源激发的瞬变电磁场一维数值计算和利用有限单元法进行2.5维和三维数值模拟.瞬变电磁法正演计算的发展趋势有:数值算法的改进、提高计算效率和研究地形对瞬变电磁场的影响规律. 展开更多
关键词 瞬变电磁法 有限单元法 有限差分法 积分方程法 SLDM Gaver-Stehfest算法 余弦变换
在线阅读 下载PDF
规则区域上Helmholtz方程的一种快速算法 被引量:10
19
作者 龙毅 徐军 朱汉清 《电子科技大学学报》 EI CAS CSCD 北大核心 1999年第4期383-387,共5页
采用有限差分法对Helmholtz 方程进行五点差分离散,在规则区域上引入快速傅里叶变换(FFT) , 将差分方程变换成一组三对角方程, 使求解规则子区域上 Helmholtz 方程的计算量降为O( Plg P) 。
关键词 HELMHOLTZ方程 快速算法 波导 不连续问题
在线阅读 下载PDF
二维柱几何中子输运方程的并行区域分解方法 被引量:6
20
作者 魏军侠 阳述林 傅连祥 《计算物理》 EI CSCD 北大核心 2010年第1期1-7,共7页
分析不同的区域分解方法及优先级插入算法对二维柱几何下中子输运方程Sn间断有限元方程并行效率的影响,给出基于最小面体比的正方形区域分解方法及沿径向的优先级插入算法,并通过将正方形区域分解方法与径向优先级插入算法进行组合,形... 分析不同的区域分解方法及优先级插入算法对二维柱几何下中子输运方程Sn间断有限元方程并行效率的影响,给出基于最小面体比的正方形区域分解方法及沿径向的优先级插入算法,并通过将正方形区域分解方法与径向优先级插入算法进行组合,形成新的算法.新算法更适应于二维柱几何下输运方程Sn间断有限元方法的并行计算.数值试验表明,在通信延迟较高的大型国产并行机上,新算法用数百个CPU还可以取得较好的并行效果,比已有方法具有更良好的可扩展性. 展开更多
关键词 输运方程 离散纵标法 间断有限元 区域分解 并行扫描算法
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部