A general and efficient parallel approach is proposed for the first time to parallelize the hybrid finiteelement-boundary-integral-multi-level fast multipole algorithm (FE-BI-MLFMA). Among many algorithms of FE-BI-M...A general and efficient parallel approach is proposed for the first time to parallelize the hybrid finiteelement-boundary-integral-multi-level fast multipole algorithm (FE-BI-MLFMA). Among many algorithms of FE-BI-MLFMA, the decomposition algorithm (DA) is chosen as a basis for the parallelization of FE-BI-MLFMA because of its distinct numerical characteristics suitable for parallelization. On the basis of the DA, the parallelization of FE-BI-MLFMA is carried out by employing the parallelized multi-frontal method for the matrix from the finiteelement method and the parallelized MLFMA for the matrix from the boundary integral method respectively. The programming and numerical experiments of the proposed parallel approach are carried out in the high perfor- mance computing platform CEMS-Liuhui. Numerical experiments demonstrate that FE-BI-MLFMA is efficiently parallelized and its computational capacity is greatly improved without losing accuracy, efficiency, and generality.展开更多
Based on the full domain partition, a parallel finite element algorithm for the stationary Stokes equations is proposed and analyzed. In this algorithm, each subproblem is defined in the entire domain. Majority of the...Based on the full domain partition, a parallel finite element algorithm for the stationary Stokes equations is proposed and analyzed. In this algorithm, each subproblem is defined in the entire domain. Majority of the degrees of freedom are associated with the relevant subdomain. Therefore, it can be solved in parallel with other subproblems using an existing sequential solver without extensive recoding. This allows the algorithm to be implemented easily with low communication costs. Numerical results are given showing the high efficiency of the parallel algorithm.展开更多
The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent ...The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent singularities on the one-dimensional heat equation. The method is based on a Fourier decomposition of the solution and an extraction formula of the coefficients of the singularities coupled with a predictor-corrector algorithm. The method recovers the optimal convergence rate of the finite element method on a quasi-uniform mesh refinement. Numerical results are carried out to show the efficiency of the method.展开更多
Based on domain decomposition, a parallel two-level finite element method for the stationary Navier-Stokes equations is proposed and analyzed. The basic idea of the method is first to solve the Navier-Stokes equations...Based on domain decomposition, a parallel two-level finite element method for the stationary Navier-Stokes equations is proposed and analyzed. The basic idea of the method is first to solve the Navier-Stokes equations on a coarse grid, then to solve the resulted residual equations in parallel on a fine grid. This method has low communication complexity. It can be implemented easily. By local a priori error estimate for finite element discretizations, error bounds of the approximate solution are derived. Numerical results are also given to illustrate the high efficiency of the method.展开更多
This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using prec...This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using precise integration method. With the operator splitting procedure, the precise integration method is introduced to determine the material derivative in the convection-diffusion equation, consequently, the physical quantities of material points. An implicit algorithm with a combination of both the precise and the traditional numerical integration procedures in time domain in the Lagrange coordinates for the characteristic Galerkin method is formulated. The stability analysis of the algorithm shows that the unconditional stability of present implicit algorithm is enhanced as compared with that of the traditional implicit numerical integration procedure. The numerical results validate the presented method in solving convection-diffusion equations. As compared with SUPG method and explicit characteristic Galerkin method, the present method gives the results with higher accuracy and better stability.展开更多
In this paper, we consider the mixed Navier-Stokes/Darcy model with BeaversJoseph interface conditions. Based on two-grid discretizations, a local and parallel finite element algorithm for this mixed model is proposed...In this paper, we consider the mixed Navier-Stokes/Darcy model with BeaversJoseph interface conditions. Based on two-grid discretizations, a local and parallel finite element algorithm for this mixed model is proposed and analyzed. Optimal errors are obtained and numerical experiments are presented to show the efficiency and effectiveness of the local and parallel finite element algorithm.展开更多
Based on fully overlapping domain decomposition,a parallel finite element algorithm for the unsteady Oseen equations is proposed and analyzed.In this algorithm,each processor independently computes a finite element ap...Based on fully overlapping domain decomposition,a parallel finite element algorithm for the unsteady Oseen equations is proposed and analyzed.In this algorithm,each processor independently computes a finite element approximate solution in its own subdomain by using a locally refined multiscale mesh at each time step,where conforming finite element pairs are used for the spatial discretizations and backward Euler scheme is used for the temporal discretizations,respectively.Each subproblem is defined in the entire domain with vast majority of the degrees of freedom associated with the particular subdomain that it is responsible for and hence can be solved in parallel with other subproblems using an existing sequential solver without extensive recoding.The algorithm is easy to implement and has low communication cost.Error bounds of the parallel finite element approximate solutions are estimated.Numerical experiments are also given to demonstrate the effectiveness of the algorithm.展开更多
A new finite element method, which is the characteristic-based operator-splitting (CBOS) algorithm, is developed to solve Navier-Stokes (N-S) equations. In each time step, the equations are split into the diffusive pa...A new finite element method, which is the characteristic-based operator-splitting (CBOS) algorithm, is developed to solve Navier-Stokes (N-S) equations. In each time step, the equations are split into the diffusive part and the convective part by adopting the operator-splitting algorithm. For the diffusive part, the temporal discretization is performed by the backward difference method which yields an implicit scheme and the spatial discretization is performed by the standard Galerkin method. The convective part can be discretized using the characteristic Galerkin method and solved explicitly. The driven square flow and backward-facing step flow are conducted to validate the model. It is shown that the numerical results agree well with the standard solutions or existing experimental data, and the present model has high accuracy and good stability. It provides a prospective research method for solving N-S equations.展开更多
针对二维介质目标的电磁成像问题,将正余弦算法(Sine Cosine Algorithm,SCA)与有限元方法(Finite Element Method,FEM)和不变性测试方程(Measured Equation of Invariance,MEI)进行结合提出一种新的成像方法。将FEM与MEI进行结合求解二...针对二维介质目标的电磁成像问题,将正余弦算法(Sine Cosine Algorithm,SCA)与有限元方法(Finite Element Method,FEM)和不变性测试方程(Measured Equation of Invariance,MEI)进行结合提出一种新的成像方法。将FEM与MEI进行结合求解二维介质目标的电磁散射正问题,即求解Helmholtz方程。其中,MEI保证边界截断的精度,FEM适用于复杂介质目标的准确模拟。对于电磁散射逆问题,引入SCA并加以改进提出一种新的重构方法。该方法采用等效原理与格林函数的渐近式求得远区散射场,以测量的散射场和计算的散射场最大偏差为目标函数,采用改进的SCA优化介质参数,使目标函数达到最小值,以此重构散射体。为提高计算效率,采用MPI算法进行并行计算。文中采用基准函数展示了改进的SCA算法的快速收敛性,并采用非规则的均匀介质柱目标验证了成像方法的正确性。展开更多
Due to the successful applications in engineering,physics,biology,finance,etc.,there has been substantial interest in fractional diffusion equations over the past few decades,and literatures on developing and analyzin...Due to the successful applications in engineering,physics,biology,finance,etc.,there has been substantial interest in fractional diffusion equations over the past few decades,and literatures on developing and analyzing efficient and accurate numerical methods for reliably simulating such equations are vast and fast growing.This paper gives a concise overview on finite element methods for these equations,which are divided into time fractional,space fractional and time-space fractional diffusion equations.Besides,we also involve some relevant topics on the regularity theory,the well-posedness,and the fast algorithm.展开更多
In this work,we develop a finite difference/finite element method for the two-dimensional distributed-order time-space fractional reaction-diffusion equation(2D-DOTSFRDE)with low regularity solution at the initial tim...In this work,we develop a finite difference/finite element method for the two-dimensional distributed-order time-space fractional reaction-diffusion equation(2D-DOTSFRDE)with low regularity solution at the initial time.A fast evaluation of the distributedorder time fractional derivative based on graded time mesh is obtained by substituting the weak singular kernel for the sum-of-exponentials.The stability and convergence of the developed semi-discrete scheme to 2D-DOTSFRDE are discussed.For the spatial approximation,the finite element method is employed.The convergence of the corresponding fully discrete scheme is investigated.Finally,some numerical tests are given to verify the obtained theoretical results and to demonstrate the effectiveness of the method.展开更多
文摘A general and efficient parallel approach is proposed for the first time to parallelize the hybrid finiteelement-boundary-integral-multi-level fast multipole algorithm (FE-BI-MLFMA). Among many algorithms of FE-BI-MLFMA, the decomposition algorithm (DA) is chosen as a basis for the parallelization of FE-BI-MLFMA because of its distinct numerical characteristics suitable for parallelization. On the basis of the DA, the parallelization of FE-BI-MLFMA is carried out by employing the parallelized multi-frontal method for the matrix from the finiteelement method and the parallelized MLFMA for the matrix from the boundary integral method respectively. The programming and numerical experiments of the proposed parallel approach are carried out in the high perfor- mance computing platform CEMS-Liuhui. Numerical experiments demonstrate that FE-BI-MLFMA is efficiently parallelized and its computational capacity is greatly improved without losing accuracy, efficiency, and generality.
基金Project supported by the National Natural Science Foundation of China (No.10971166)the National Basic Research Program (No.2005CB321703)the Science and Technology Foundation of Guizhou Province of China (No.[2008]2123)
文摘Based on the full domain partition, a parallel finite element algorithm for the stationary Stokes equations is proposed and analyzed. In this algorithm, each subproblem is defined in the entire domain. Majority of the degrees of freedom are associated with the relevant subdomain. Therefore, it can be solved in parallel with other subproblems using an existing sequential solver without extensive recoding. This allows the algorithm to be implemented easily with low communication costs. Numerical results are given showing the high efficiency of the parallel algorithm.
文摘The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent singularities on the one-dimensional heat equation. The method is based on a Fourier decomposition of the solution and an extraction formula of the coefficients of the singularities coupled with a predictor-corrector algorithm. The method recovers the optimal convergence rate of the finite element method on a quasi-uniform mesh refinement. Numerical results are carried out to show the efficiency of the method.
基金Project supported by the National Natural Science Foundation of China(No.11001061)the Science and Technology Foundation of Guizhou Province of China(No.[2008]2123)
文摘Based on domain decomposition, a parallel two-level finite element method for the stationary Navier-Stokes equations is proposed and analyzed. The basic idea of the method is first to solve the Navier-Stokes equations on a coarse grid, then to solve the resulted residual equations in parallel on a fine grid. This method has low communication complexity. It can be implemented easily. By local a priori error estimate for finite element discretizations, error bounds of the approximate solution are derived. Numerical results are also given to illustrate the high efficiency of the method.
文摘This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using precise integration method. With the operator splitting procedure, the precise integration method is introduced to determine the material derivative in the convection-diffusion equation, consequently, the physical quantities of material points. An implicit algorithm with a combination of both the precise and the traditional numerical integration procedures in time domain in the Lagrange coordinates for the characteristic Galerkin method is formulated. The stability analysis of the algorithm shows that the unconditional stability of present implicit algorithm is enhanced as compared with that of the traditional implicit numerical integration procedure. The numerical results validate the presented method in solving convection-diffusion equations. As compared with SUPG method and explicit characteristic Galerkin method, the present method gives the results with higher accuracy and better stability.
文摘In this paper, we consider the mixed Navier-Stokes/Darcy model with BeaversJoseph interface conditions. Based on two-grid discretizations, a local and parallel finite element algorithm for this mixed model is proposed and analyzed. Optimal errors are obtained and numerical experiments are presented to show the efficiency and effectiveness of the local and parallel finite element algorithm.
基金supported by the Natural Science Foundation of China(No.11361016)the Basic and Frontier Explore Program of Chongqing Municipality,China(No.cstc2018jcyjAX0305)Funds for the Central Universities(No.XDJK2018B032).
文摘Based on fully overlapping domain decomposition,a parallel finite element algorithm for the unsteady Oseen equations is proposed and analyzed.In this algorithm,each processor independently computes a finite element approximate solution in its own subdomain by using a locally refined multiscale mesh at each time step,where conforming finite element pairs are used for the spatial discretizations and backward Euler scheme is used for the temporal discretizations,respectively.Each subproblem is defined in the entire domain with vast majority of the degrees of freedom associated with the particular subdomain that it is responsible for and hence can be solved in parallel with other subproblems using an existing sequential solver without extensive recoding.The algorithm is easy to implement and has low communication cost.Error bounds of the parallel finite element approximate solutions are estimated.Numerical experiments are also given to demonstrate the effectiveness of the algorithm.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41072235, 50809008)the Hong Kong Research Grants Council (Grant No. HKU 7171/06E)+1 种基金the National Basic Research Program of China ("973" Project) (Grant No. 2007CB209400)the Natural Science Foundation of LiaoNing Province of China (Grant No. 20102006)
文摘A new finite element method, which is the characteristic-based operator-splitting (CBOS) algorithm, is developed to solve Navier-Stokes (N-S) equations. In each time step, the equations are split into the diffusive part and the convective part by adopting the operator-splitting algorithm. For the diffusive part, the temporal discretization is performed by the backward difference method which yields an implicit scheme and the spatial discretization is performed by the standard Galerkin method. The convective part can be discretized using the characteristic Galerkin method and solved explicitly. The driven square flow and backward-facing step flow are conducted to validate the model. It is shown that the numerical results agree well with the standard solutions or existing experimental data, and the present model has high accuracy and good stability. It provides a prospective research method for solving N-S equations.
文摘针对二维介质目标的电磁成像问题,将正余弦算法(Sine Cosine Algorithm,SCA)与有限元方法(Finite Element Method,FEM)和不变性测试方程(Measured Equation of Invariance,MEI)进行结合提出一种新的成像方法。将FEM与MEI进行结合求解二维介质目标的电磁散射正问题,即求解Helmholtz方程。其中,MEI保证边界截断的精度,FEM适用于复杂介质目标的准确模拟。对于电磁散射逆问题,引入SCA并加以改进提出一种新的重构方法。该方法采用等效原理与格林函数的渐近式求得远区散射场,以测量的散射场和计算的散射场最大偏差为目标函数,采用改进的SCA优化介质参数,使目标函数达到最小值,以此重构散射体。为提高计算效率,采用MPI算法进行并行计算。文中采用基准函数展示了改进的SCA算法的快速收敛性,并采用非规则的均匀介质柱目标验证了成像方法的正确性。
基金Project(42274083) supported by the National Natural Science Foundation of ChinaProject(2023JJ30659) supported by Hunan Provincial Natural Science Foundation of China。
基金supported by the Major Project on New Generation of Artificial Intelligence from MOST of China(Grant No.2018AAA0101002)the National Natural Science Foundation of China(Grant Nos.11771438 and 11601460)+1 种基金the Natural Science Foundation of Hunan Province of China(Grant No.2018JJ3491)the Research Foundation of Education Commission of Hunan Province of China(Grant No.19B565).
文摘Due to the successful applications in engineering,physics,biology,finance,etc.,there has been substantial interest in fractional diffusion equations over the past few decades,and literatures on developing and analyzing efficient and accurate numerical methods for reliably simulating such equations are vast and fast growing.This paper gives a concise overview on finite element methods for these equations,which are divided into time fractional,space fractional and time-space fractional diffusion equations.Besides,we also involve some relevant topics on the regularity theory,the well-posedness,and the fast algorithm.
基金supported by the National Natural Science Foundation of China(Nos.11671343,11601460)the Natural Science Foundation of Hunan Province of China(No.2018JJ3491)the Project of Scientific Research Fund of Hunan Provincial Science and Technology Department,China(No.2018WK4006).
文摘In this work,we develop a finite difference/finite element method for the two-dimensional distributed-order time-space fractional reaction-diffusion equation(2D-DOTSFRDE)with low regularity solution at the initial time.A fast evaluation of the distributedorder time fractional derivative based on graded time mesh is obtained by substituting the weak singular kernel for the sum-of-exponentials.The stability and convergence of the developed semi-discrete scheme to 2D-DOTSFRDE are discussed.For the spatial approximation,the finite element method is employed.The convergence of the corresponding fully discrete scheme is investigated.Finally,some numerical tests are given to verify the obtained theoretical results and to demonstrate the effectiveness of the method.