期刊文献+

A Parallel Finite Element Algorithm for the Unsteady Oseen Equations

在线阅读 下载PDF
导出
摘要 Based on fully overlapping domain decomposition,a parallel finite element algorithm for the unsteady Oseen equations is proposed and analyzed.In this algorithm,each processor independently computes a finite element approximate solution in its own subdomain by using a locally refined multiscale mesh at each time step,where conforming finite element pairs are used for the spatial discretizations and backward Euler scheme is used for the temporal discretizations,respectively.Each subproblem is defined in the entire domain with vast majority of the degrees of freedom associated with the particular subdomain that it is responsible for and hence can be solved in parallel with other subproblems using an existing sequential solver without extensive recoding.The algorithm is easy to implement and has low communication cost.Error bounds of the parallel finite element approximate solutions are estimated.Numerical experiments are also given to demonstrate the effectiveness of the algorithm.
出处 《Advances in Applied Mathematics and Mechanics》 SCIE 2021年第6期1501-1519,共19页 应用数学与力学进展(英文)
基金 supported by the Natural Science Foundation of China(No.11361016) the Basic and Frontier Explore Program of Chongqing Municipality,China(No.cstc2018jcyjAX0305) Funds for the Central Universities(No.XDJK2018B032).
  • 相关文献

参考文献4

二级参考文献31

  • 1R. Adams, Sobole Spaces, Academic Press Inc., 1975.
  • 2D.N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the Stokes equations, Calcolo,21 (1984), 337-344.
  • 3D.N. Arnold and X. Liu, Local error estimates for finite element discretizations of the Stokes equations, RAIRO M^2AN, 29 (1995), 367-389.
  • 4P.G. Ciarlet and J.L. Lions, Handbook of Numerical Analysis, Vol.II, Finite Element Methods(Part I), Elsevier Science Publisher, 1991.
  • 5V. Girault and P. A. Raviart, Finite Element Approximation of the Navier-stokes equations,Springer-Verlag, Berlin, Heidelberg New York, 1981.
  • 6Y. He, Two-level method based on finite element and Crank-Nicolson extrapolation for the timedependent Navier-Stokes equations, SIAM J. Numer. Anal., 41 (2003), 1263-1285.
  • 7Y. He, J. Xu and A. Zhou, Local and parallel finite element algorithms for the Stokes problem,submitted.
  • 8O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flows, Gordon and Breach, New York,1969.
  • 9W. Layton, A two level discretization method for the Navier-Stokes equations, Comput. Math.Appl., 26 (1993), 33-38.
  • 10W. Layton and W. Lenferink, Two-level Picard, defect correction for the Navier-Stokes equations,Appl. Math. Comput., 80 (1995), 1-12.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部