在对4G系统OFDM技术分析的基础上,针对5G候选波形Filtered-OFDM技术的特点,研究了2个子带情况下的系统性能。仿真结果表明,Filtered-OFDM系统的带外泄露比OFDM系统约低40 d B;当滤波器长度更长时,系统能获得较低的误码率,但滤波器设计...在对4G系统OFDM技术分析的基础上,针对5G候选波形Filtered-OFDM技术的特点,研究了2个子带情况下的系统性能。仿真结果表明,Filtered-OFDM系统的带外泄露比OFDM系统约低40 d B;当滤波器长度更长时,系统能获得较低的误码率,但滤波器设计更加复杂;保护间隔越大,两个子带数据的干扰越小,同时浪费了更多的频谱资源;调制阶数越高,误码率越高。在实际设计中,应该综合考虑这些因素的影响。展开更多
To deal with the expected diversification on traffic types, the fundamental waveform of the upcoming5 G standard must be sufficiently flexible. In the 4th generation wireless networks(e.g., cellular LTE and Wi- Fi802....To deal with the expected diversification on traffic types, the fundamental waveform of the upcoming5 G standard must be sufficiently flexible. In the 4th generation wireless networks(e.g., cellular LTE and Wi- Fi802.11ac), orthogonal frequency division multiplexing(OFDM) has been widely adopted to combat frequency selectivity and thus improve the spectrum efficiency. Holding various advantages such as backward compatibility with LTE, ease of hardware implementation, time-localized low-latency transmission and straightforward combination with multi-antenna transmission, OFDM will remain as an important waveform candidate for 5G. However,OFDM alone appears to be insufficient in terms of the requirements faced by 5G waveform, such as high flexibility to accommodate different waveform numerologies for an efficient support of diversified traffic types and channel characteristics. In this work, we present a new waveform format, named as filtered-OFDM(f-OFDM) and illustrate its potential and benefits for serving as the underlying waveform of 5G.展开更多
With the increasing demand for indoor localization,indoor location based on Wi-Fi has gained wide attention due to its convenience of access.In this paper,we propose a new multi-feature fusion convolutional neural net...With the increasing demand for indoor localization,indoor location based on Wi-Fi has gained wide attention due to its convenience of access.In this paper,we propose a new multi-feature fusion convolutional neural network(CNN)based on channel state information(CSI)images,which contains more feature information by constituting a new CSI image with amplitude and angle of arrival information of CSI information collected at known points.Moreover,the global mean filtering(GMC)algorithm with median filtering proposed in this paper is used to filter and reduce the noise of CSI images to obtain clearer images for network training.To extract more features from the CSI images,the traditional single-channel network is extended,and a two-channel design is introduced to extract feature information between adjacent subcarriers.Experimental evaluation is performed in a typical indoor environment,and the proposed method is experimentally proven to have good localization performance.展开更多
In this study,a fifth-degree cubature particle filter(5CPF)is proposed to address the limited estimation accuracy in traditional particle filter algorithms for bearings-only tracking(BOT).This algorithm calculates the...In this study,a fifth-degree cubature particle filter(5CPF)is proposed to address the limited estimation accuracy in traditional particle filter algorithms for bearings-only tracking(BOT).This algorithm calculates the recommended density function by introducing a fifth-degree cubature Kalman filter algorithm to guide particle sampling,which effectively alleviates the problem of particle degradation and significantly improves the estimation accuracy of the filter.However,the 5CPF algorithm exhibits high computational complexity,particularly in scenarios with a large number of particles.Therefore,we propose the extended Kalman filter(EKF)-5CPF algorithm,which employs an EKF to replace the time update step for each particle in the 5CPF.This enhances the algorithm’s real-time capability while maintaining the high precision advantage of the 5CPF algorithm.In addition,we construct bearing-only dual-station and single-motion station target tracking systems,and the filtering performances of 5CPF and EKF-5CPF algorithms under different conditions are analyzed.The results show that both the 5CPF algorithm and EKF-5CPF have strong robustness and can adapt to different noise environments.Furthermore,both algorithms significantly outperform traditional nonlinear filtering algorithms in terms of convergence speed,tracking accuracy,and overall stability.展开更多
Under analyzing several characteristics of frequency-selective fast fading channels, such as large Doppler spread and multi-path interference, a low-dimensional Kalman filter method based on pilot signals is presented...Under analyzing several characteristics of frequency-selective fast fading channels, such as large Doppler spread and multi-path interference, a low-dimensional Kalman filter method based on pilot signals is presented for the channel estimation of orthogonal frequency division multiplexing (OFDM) systems. For simplicity, a one-dimensional autoregressive (AR) process is used to model the time-varying channel, and the least square (LS) algorithm based on pilot signals is adopted to track the time-varying channel fading factor a. The low-dimensional Kalman filter estimator greatly reduces the complexity of the high-dimensional Kalman filter. To utilize the relationship of fading channel in frequency domain, a minimum mean-square-error (MMSE) combiner is used to refine the estimation results. The simulation results in the frequency band of 5.5 GHz show that the proposed method achieves a good symbol error rate (SER) performance close to the theoretical bound of ideal channel estimation.展开更多
This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain ...This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain controller. When the frequency-domain LMS step size is allowed to vary as a function of frequency,the frequency-domain algorithm exhibits a better vibration reduction than the time-domain algorithm for the weaker frequencies in the energy spectrum.展开更多
在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随...在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。展开更多
Visible light communications(VLC) have recently attracted a growing interest and can be a potential solution to realize indoor positioning,however,the performance of existing indoor positioning system is limited by mu...Visible light communications(VLC) have recently attracted a growing interest and can be a potential solution to realize indoor positioning,however,the performance of existing indoor positioning system is limited by multipath distortion inside a room.In order to combat the effect of multipath distortion,this paper proposes an LED-based indoor positioning algorithm combined with hybrid OFDM(HOFDM),in which asymmetrically clipped optical OFDM(ACOOFDM) is transmitted on the odd subcarriers while using pulse amplitude modulated discrete multitone(PAM-DMT) to modulate the imaginary part of each even subcarrier.In this scheme,we take a combined approach where a received-signal-strength(RSS) technique is employed to determine the location of the receiver and realize the 3-D positioning by Trust-region-based positioning.Moreover,a particle filter is used to further improve the positioning accuracy.Results confirm that this proposed positioning algorithm can achieve high accuracy even with multipath distortion,and the algorithm has better performance when combined with particle filter.展开更多
在探讨正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统的优化中,一个显著挑战在于其信号检测性能的相对不足。同时,针对基于深度神经网络的索引调制(Deep Neural Network Based Index Modulation,DNN-IM)检测算法...在探讨正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统的优化中,一个显著挑战在于其信号检测性能的相对不足。同时,针对基于深度神经网络的索引调制(Deep Neural Network Based Index Modulation,DNN-IM)检测算法,普遍存在着误码率及损失值偏高的问题。为了弥补上述难题,文中提出一种基于多层感知机(Multilayer Perceptron,MLP)的索引调制检测算法,即MLP-IM算法。该算法采用融合两个连接层与一个输出层的架构设计,通过挑选的激活函数实现对OFDM索引调制系统中数据比特的精准还原。首先将OFDM索引调制系统的基础理论巧妙应用于数据的预处理阶段,随后利用仿真数据集对MLP神经网络模型进行全面而深入的离线训练,确保模型的稳健性与准确性。在检测阶段,通过MLP-IM检测算法实现了对OFDM索引调制系统的高效检测。仿真结果表明,所提出的MLP-IM算法在误码率控制和损失值两个方面的性能表现与最大似然检测算法相媲美,甚至在某些场景下超越了现有DNN-IM算法的性能,其性能改善幅度在0.2~6 dB的区间内。展开更多
文摘在对4G系统OFDM技术分析的基础上,针对5G候选波形Filtered-OFDM技术的特点,研究了2个子带情况下的系统性能。仿真结果表明,Filtered-OFDM系统的带外泄露比OFDM系统约低40 d B;当滤波器长度更长时,系统能获得较低的误码率,但滤波器设计更加复杂;保护间隔越大,两个子带数据的干扰越小,同时浪费了更多的频谱资源;调制阶数越高,误码率越高。在实际设计中,应该综合考虑这些因素的影响。
文摘To deal with the expected diversification on traffic types, the fundamental waveform of the upcoming5 G standard must be sufficiently flexible. In the 4th generation wireless networks(e.g., cellular LTE and Wi- Fi802.11ac), orthogonal frequency division multiplexing(OFDM) has been widely adopted to combat frequency selectivity and thus improve the spectrum efficiency. Holding various advantages such as backward compatibility with LTE, ease of hardware implementation, time-localized low-latency transmission and straightforward combination with multi-antenna transmission, OFDM will remain as an important waveform candidate for 5G. However,OFDM alone appears to be insufficient in terms of the requirements faced by 5G waveform, such as high flexibility to accommodate different waveform numerologies for an efficient support of diversified traffic types and channel characteristics. In this work, we present a new waveform format, named as filtered-OFDM(f-OFDM) and illustrate its potential and benefits for serving as the underlying waveform of 5G.
基金supported by Natural Science Foundation of Hunan Province under Grant(NO:2021JJ31142).
文摘With the increasing demand for indoor localization,indoor location based on Wi-Fi has gained wide attention due to its convenience of access.In this paper,we propose a new multi-feature fusion convolutional neural network(CNN)based on channel state information(CSI)images,which contains more feature information by constituting a new CSI image with amplitude and angle of arrival information of CSI information collected at known points.Moreover,the global mean filtering(GMC)algorithm with median filtering proposed in this paper is used to filter and reduce the noise of CSI images to obtain clearer images for network training.To extract more features from the CSI images,the traditional single-channel network is extended,and a two-channel design is introduced to extract feature information between adjacent subcarriers.Experimental evaluation is performed in a typical indoor environment,and the proposed method is experimentally proven to have good localization performance.
基金Supported by the Guangxi Special Program for Technological Innovation Guidance(No.GuiKeAC25069006).
文摘In this study,a fifth-degree cubature particle filter(5CPF)is proposed to address the limited estimation accuracy in traditional particle filter algorithms for bearings-only tracking(BOT).This algorithm calculates the recommended density function by introducing a fifth-degree cubature Kalman filter algorithm to guide particle sampling,which effectively alleviates the problem of particle degradation and significantly improves the estimation accuracy of the filter.However,the 5CPF algorithm exhibits high computational complexity,particularly in scenarios with a large number of particles.Therefore,we propose the extended Kalman filter(EKF)-5CPF algorithm,which employs an EKF to replace the time update step for each particle in the 5CPF.This enhances the algorithm’s real-time capability while maintaining the high precision advantage of the 5CPF algorithm.In addition,we construct bearing-only dual-station and single-motion station target tracking systems,and the filtering performances of 5CPF and EKF-5CPF algorithms under different conditions are analyzed.The results show that both the 5CPF algorithm and EKF-5CPF have strong robustness and can adapt to different noise environments.Furthermore,both algorithms significantly outperform traditional nonlinear filtering algorithms in terms of convergence speed,tracking accuracy,and overall stability.
文摘Under analyzing several characteristics of frequency-selective fast fading channels, such as large Doppler spread and multi-path interference, a low-dimensional Kalman filter method based on pilot signals is presented for the channel estimation of orthogonal frequency division multiplexing (OFDM) systems. For simplicity, a one-dimensional autoregressive (AR) process is used to model the time-varying channel, and the least square (LS) algorithm based on pilot signals is adopted to track the time-varying channel fading factor a. The low-dimensional Kalman filter estimator greatly reduces the complexity of the high-dimensional Kalman filter. To utilize the relationship of fading channel in frequency domain, a minimum mean-square-error (MMSE) combiner is used to refine the estimation results. The simulation results in the frequency band of 5.5 GHz show that the proposed method achieves a good symbol error rate (SER) performance close to the theoretical bound of ideal channel estimation.
文摘This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain controller. When the frequency-domain LMS step size is allowed to vary as a function of frequency,the frequency-domain algorithm exhibits a better vibration reduction than the time-domain algorithm for the weaker frequencies in the energy spectrum.
文摘在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。
基金supported by the Doctoral Scientific Fund of the Ministry of Education of the People’s Republic of China(20120145120011)
文摘Visible light communications(VLC) have recently attracted a growing interest and can be a potential solution to realize indoor positioning,however,the performance of existing indoor positioning system is limited by multipath distortion inside a room.In order to combat the effect of multipath distortion,this paper proposes an LED-based indoor positioning algorithm combined with hybrid OFDM(HOFDM),in which asymmetrically clipped optical OFDM(ACOOFDM) is transmitted on the odd subcarriers while using pulse amplitude modulated discrete multitone(PAM-DMT) to modulate the imaginary part of each even subcarrier.In this scheme,we take a combined approach where a received-signal-strength(RSS) technique is employed to determine the location of the receiver and realize the 3-D positioning by Trust-region-based positioning.Moreover,a particle filter is used to further improve the positioning accuracy.Results confirm that this proposed positioning algorithm can achieve high accuracy even with multipath distortion,and the algorithm has better performance when combined with particle filter.
文摘在探讨正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统的优化中,一个显著挑战在于其信号检测性能的相对不足。同时,针对基于深度神经网络的索引调制(Deep Neural Network Based Index Modulation,DNN-IM)检测算法,普遍存在着误码率及损失值偏高的问题。为了弥补上述难题,文中提出一种基于多层感知机(Multilayer Perceptron,MLP)的索引调制检测算法,即MLP-IM算法。该算法采用融合两个连接层与一个输出层的架构设计,通过挑选的激活函数实现对OFDM索引调制系统中数据比特的精准还原。首先将OFDM索引调制系统的基础理论巧妙应用于数据的预处理阶段,随后利用仿真数据集对MLP神经网络模型进行全面而深入的离线训练,确保模型的稳健性与准确性。在检测阶段,通过MLP-IM检测算法实现了对OFDM索引调制系统的高效检测。仿真结果表明,所提出的MLP-IM算法在误码率控制和损失值两个方面的性能表现与最大似然检测算法相媲美,甚至在某些场景下超越了现有DNN-IM算法的性能,其性能改善幅度在0.2~6 dB的区间内。