摘要
With the increasing demand for indoor localization,indoor location based on Wi-Fi has gained wide attention due to its convenience of access.In this paper,we propose a new multi-feature fusion convolutional neural network(CNN)based on channel state information(CSI)images,which contains more feature information by constituting a new CSI image with amplitude and angle of arrival information of CSI information collected at known points.Moreover,the global mean filtering(GMC)algorithm with median filtering proposed in this paper is used to filter and reduce the noise of CSI images to obtain clearer images for network training.To extract more features from the CSI images,the traditional single-channel network is extended,and a two-channel design is introduced to extract feature information between adjacent subcarriers.Experimental evaluation is performed in a typical indoor environment,and the proposed method is experimentally proven to have good localization performance.
基金
supported by Natural Science Foundation of Hunan Province under Grant(NO:2021JJ31142).