Phenology shifts influence regional climate by altering energy,and water fluxes through biophysical processes.However,a quantitative understanding of the phenological control on vegetation’s biophysical feedbacks to ...Phenology shifts influence regional climate by altering energy,and water fluxes through biophysical processes.However,a quantitative understanding of the phenological control on vegetation’s biophysical feedbacks to re gional climate remains elusive.Using long-term remote sensing observations and Weather Research and Fore casting(WRF)model simulations,we investigated vegetation phenology changes from 2003 to 2020 and quan tified their biophysical controls on the regional climate in Northeast China.Our findings elucidated that earlier green-up contributed to a prolonged growing season in forests,while advanced green-up and delayed dormancy extended the growing season in croplands.This prolonged presence and increased maximum green cover in tensified climate-vegetation interactions,resulting in more significant surface cooling in croplands compared to forests.Surface cooling from forest phenology changes was prominent during May’s green-up(-0.53±0.07°C),while crop phenology changes induced cooling throughout the growing season,particularly in June(-0.47±0.15°C),July(-0.48±0.11°C),and September(-0.28±0.09°C).Furthermore,we unraveled the contributions of different biophysical pathways to temperature feedback using a two-resistance attribution model,with aero dynamic resistance emerging as the dominant factor.Crucially,our findings underscored that the land surface temperature(LST)sensitivity,exhibited substantially higher values in croplands rather than temperate forests.These strong sensitivities,coupled with the projected continuation of phenology shifts,portend further growing season cooling in croplands.These findings contribute to a more comprehensive understanding of the intricate feedback mechanisms between vegetation phenology and surface temperature,emphasizing the significance of vegetation phenology dynamics in shaping regional climate pattern and seasonality.展开更多
Background:Large-scale afforestation can significantly change the ground cover and soil physicochemical properties,especially the soil fertility maintenance and water conservation functions of artificial forests,which...Background:Large-scale afforestation can significantly change the ground cover and soil physicochemical properties,especially the soil fertility maintenance and water conservation functions of artificial forests,which are very important in semi-arid mountain ecosystems.However,how different tree species affect soil nutrients and soil physicochemical properties after afforestation,and which is the best plantation species for improving soil fertility and water conservation functions remain largely unknown.Methods:This study investigated the soil nutrient contents of three different plantations(Larix principis-rupprechtii,Picea crassifolia,Pinus tabuliformis),soils and plant-soil feedbacks,as well as the interactions between soil physicochemical properties.Results:The results revealed that the leaves and litter layers strongly influenced soil nutrient availability through biogeochemical processes:P.tabuliformis had higher organic carbon,ratio of organic carbon to total nitrogen(C:N)and organic carbon to total phosphorus(C:P)in the leaves and litter layers than L.principis-rupprechtii or P.crassifolia,suggesting that higher C:N and C:P hindered litter decomposition.As a result,the L.principis-rupprechtii and P.crassifolia plantation forests significantly improved soil nutrients and clay components,compared with the P.tabuliformis plantation forest.Furthermore,the L.principis-rupprechtii and P.crassifolia plantation forests significantly improved the soil capacity,soil total porosity,and capillary porosity,decreased soil bulk density,and enhanced water storage capacity,compared with the P.tabuliformis plantation forest.The results of this study showed that,the strong link between plants and soil was tightly coupled to C:N and C:P,and there was a close correlation between soil particle size distribution and soil physicochemical properties.Conclusions:Therefore,our results recommend planting the L.principis-rupprechtii and P.crassifolia as the preferred tree species to enhance the soil fertility and water conservation functions,especially in semi-arid regions mountain forest ecosystems.展开更多
Thermal processes on the Tibetan Plateau(TP)influence atmospheric conditions on regional and global scales.Given this,previous work has shown that soil moisture−driven surface flux variations feed back onto the atmosp...Thermal processes on the Tibetan Plateau(TP)influence atmospheric conditions on regional and global scales.Given this,previous work has shown that soil moisture−driven surface flux variations feed back onto the atmosphere.Whilst soil moisture is a source of atmospheric predictability,no study has evaluated soil moisture−atmosphere coupling on the TP in general circulation models(GCMs).In this study,we use several analysis techniques to assess soil moisture−atmosphere coupling in CMIP6 simulations including:instantaneous coupling indices;analysis of flux and atmospheric behaviour during dry spells;and a quantification of the preference for convection over drier soils.Through these metrics we partition feedbacks into their atmospheric and terrestrial components.Consistent with previous global studies,we conclude substantial inter-model differences in the representation of soil moisture−atmosphere coupling,and that most models underestimate such feedbacks.Focusing on dry spell analysis,most models underestimate increased sensible heat during periods of rainfall deficiency.For example,the model-mean bias in anomalous sensible heat flux is 10 W m−2(≈25%)smaller compared to observations.Deficient dry-spell sensible heat fluxes lead to a weaker atmospheric response.We also find that most GCMs fail to capture the negative feedback between soil moisture and deep convection.The poor simulation of feedbacks in CMIP6 experiments suggests that forecast models also struggle to exploit soil moisture−driven predictability.To improve the representation of land−atmosphere feedbacks requires developments in not only atmospheric modelling,but also surface processes,as we find weak relationships between rainfall biases and coupling indexes.展开更多
Dear Readers, Thank you very much for your interest in and support for China's Foreign Trade.From the first day the Magazine was launched,we have been so happy to see suggestions,comments,encouragement and even co...Dear Readers, Thank you very much for your interest in and support for China's Foreign Trade.From the first day the Magazine was launched,we have been so happy to see suggestions,comments,encouragement and even complaints from you,dear readers.Over this more than half century,we have been thriving for changes and improvements to be the best.Every word from you is important to us and any feedback will be regarded by us as a chance to improve the Magazine.展开更多
In order to solve the problem of reliability modeling and the analysis of complex systems with multiple closed-loop feedbacks,a new reliability analysis method for repairable systems with multiple closed-loop feedback...In order to solve the problem of reliability modeling and the analysis of complex systems with multiple closed-loop feedbacks,a new reliability analysis method for repairable systems with multiple closed-loop feedbacks is proposed based on the goal-oriented(GO)methodology.Firstly,the basic theories and advantages of GO method are introduced.Secondly,a type-24B multiple closed-loop feedback structure operator is proposed through GO method with its operation formula given,which expands the types of GO method operators and the application scope of their reliability analysis.Finally,taking a certain type of diesel engine fuel supply system an example,the quantitative and qualitative analysis is carried out through GO method,Monte Carlo simulation as well as FTA respectively.The availability results verify the availability of the proposed type-24B operator in the reliability analysis of multiple closed-loop feedback systems.The qualitative analysis results indicate the accuracy and usability of the GO method as a qualitative analysis method.展开更多
The study aims to uncover the differences between a Chinese writing teacher and a foreign writing teacher in evaluating Chinese college students' English compositions and find out students' attitudes towards d...The study aims to uncover the differences between a Chinese writing teacher and a foreign writing teacher in evaluating Chinese college students' English compositions and find out students' attitudes towards different kinds of feedbacks. The data collection method, sample analysis and questionnaire have been implemented to probe for the results. The results are supposed to give some suggestions to the English writing class in Chinese universities.展开更多
Why did the predicted“super El Niño”fade out in the summer 2014 and the following year develop into one of the three strongest El Niño on record?Although some hypotheses have been proposed in previous stud...Why did the predicted“super El Niño”fade out in the summer 2014 and the following year develop into one of the three strongest El Niño on record?Although some hypotheses have been proposed in previous studies,the quantitative contribution of oceanic processes to these events remains unclear.We investigated the role of various oceanic feedbacks,especially in response to intra-seasonal westerly wind busts,in the evolution of the 2014–2016 El Niño events,through a detailed heat budget analysis using high temporal resolution Estimating the Circulation and Climate of the Ocean—Phase II(ECCO2)simulation outputs and satellite-based observations.Results show that the Ekman feedback and zonal advective feedback were the two dominant oceanic processes in the developing phase of the warm event in the spring of 2014 and its decay in June.In the 2015–2016 super El Niño event,the zonal advective feedback and thermocline feedback played a signifi cant role in the eastern Pacifi c warming.Moreover,the thermocline feedback tended to weaken in the central Pacifi c where the zonal advection feedback became the dominant positive feedback.展开更多
Ensemble simulations with the Arctic coupled regional climate model HIRHAM-NAOSIM have been analyzed to investigate atmospheric feedbacks to September sea-ice anomalies in the Arctic in autumn and the following winter...Ensemble simulations with the Arctic coupled regional climate model HIRHAM-NAOSIM have been analyzed to investigate atmospheric feedbacks to September sea-ice anomalies in the Arctic in autumn and the following winter. Different "low- minus high ice" composites have been calculated using selected model runs and different periods. This approach allows us to investigate the robustness of the simulated regional atmospheric feedbacks to detected sea-ice anomalies. Since the position and strength of the September sea-ice anomaly varies between the different "low- minus high ice" composites, the related simulated atmospheric patterns in autumn differ depending on the specific surface heat flux forcing through the oceaaa-atmosphere interface. However, irrespective of those autumn differences, the regional atmospheric feedback in the following winter is rather insensitive to the applied compositing. Neither the selection of simulations nor the considered period impacts the results. The simulated consistent large-scale atmospheric circulation pattern show-s a wave-like pattern with positive pressure anomaly over the region of the Barents/Kara Seas and Scandinavia/western Russia ("Scandinavian-Ural blocking") and negative pressure anomaly over the East Siberian/Laptev Seas.展开更多
The design of H∞ reduced order controllers is known to be a non-convex optimization problem for which no generic solution exists. In this paper, the use of Particle Swarm Optimization (PSO) for the computation of H...The design of H∞ reduced order controllers is known to be a non-convex optimization problem for which no generic solution exists. In this paper, the use of Particle Swarm Optimization (PSO) for the computation of H~ static output feedbacks is investigated. Two approaches are tested. In a first part, a probabilistic-type PSO algorithm is defined for the computation of discrete sets of stabilizing static output feedback controllers. This method relies on a technique for random sample generation in a given domain. It is therefore used for computing a suboptimal Ha static output feedback solution, In a second part, the initial optimization problem is solved by PSO, the decision variables being the feedback gains. Results are compared with standard reduced order problem solvers using the COMPIeib (Constraint Matrix-optimization Problem Library) benchmark examples and appear to be much than satisfactory, proving the great potential of PSO techniques.展开更多
The stabilization of the Timoshenko equation of a nonuniform beam with locally distributed feedbacks is considered.It is proved that the system is exponentially stabilizable.The frequency domain method and the multipl...The stabilization of the Timoshenko equation of a nonuniform beam with locally distributed feedbacks is considered.It is proved that the system is exponentially stabilizable.The frequency domain method and the multiplier technique are applied.展开更多
Drylands cover45%of Earth’s land surface,support40%of the global population,and harbor30%of endangered species.However,anthropogenic climate change increasingly dries drylands throughmultiple processes and feedback m...Drylands cover45%of Earth’s land surface,support40%of the global population,and harbor30%of endangered species.However,anthropogenic climate change increasingly dries drylands throughmultiple processes and feedback mechanisms.From a thermodynamic perspective,globalwarming elevates atmospheric vapor pressure deficit(VPD)in drylands,acceleratingmoisture loss from vegetation and bare soils,thereby exacerbating aridity in drylands.This mechanism is further amplified by local land-atmosphere feedbacks:soil desiccation and vegetation dry out typically result in a reduced evaporation fraction.This,in turn,decreases the relative humidity yet further boosts thewater demand of air.Furthermore,human-induced shifts in large-scale atmospheric circulations,reduce local precipitation and further aggravate aridity in subtropical drylands.展开更多
Direct comparison of the difference in biomass between live and sterilized soils may result in deviations in biological plant-soil feedback(B-PSF)due to changes induced by sterilization in bulk soil microorganisms,soi...Direct comparison of the difference in biomass between live and sterilized soils may result in deviations in biological plant-soil feedback(B-PSF)due to changes induced by sterilization in bulk soil microorganisms,soil structure,and nutrient availability.The sterilization-induced deviation(sterilization-effect,SS_(c))to often-used method B-PSF_(ou) was corrected by adding a parallel experiment without conditioning by any plants(B-PSF_(c)).Plant-soil feedback experiments were conducted for two plants with contrasting in root traits and rhizosphere microbial community to test the reliability of the method(Kalidium foliatum and Reaumuria songaric).The specific root length(SRL),root tissue density(RTD)and of R.songarica was higher compared to that of K.foliatum,but the root diameter(RAD)of it was significantly lower than that of K.foliatum.The plasticity of root traits of K.foliatum was stronger than that of R.songarica.The B-PSF_(ou) of K.foliatum was four times negative than B-PSF_(c),whereas there was no statistically significant difference of B-PSF_(ou) and B-PSF_(c) for R.songarica.The correlation between B-PSF_(c) and the relative abundance of pathogens and EcMF was found to be stronger compared to B-PSF_(ou).We proposed method corrects the deviation in B-PSF.The variation of deviation between species may be related to root traits.展开更多
The booming development of wearable devices has aroused increasing interests in flexible and stretchable devices.With mechanosensory functionality,these devices are highly desirable on account of their wide range of a...The booming development of wearable devices has aroused increasing interests in flexible and stretchable devices.With mechanosensory functionality,these devices are highly desirable on account of their wide range of applications in electronic skin,personal healthcare,human–machine interfaces and beyond.However,they are mostly limited by single electrical signal feedback,restricting their diverse applications in visualized mechanical sensing.Inspired by the mechanochromism of structural color materials,interactively stretchable electronics with optical and electrical dual-signal feedbacks are recently emerged as novel sensory platforms,by combining both of their sensing mechanisms and characteristics.Herein,recent studies on interactively stretchable electronics based on structural color materials are reviewed.Following a brief introduction of their basic components(i.e.,stretchable electronics and mechanochromic structural color materials),two types of interactively stretchable electronics with respect to the nanostructures of mechanochromic materials are outlined,focusing primarily on their design considerations and fabrication strategies.Finally,the main challenges and future perspectives of these emerging devices are discussed.展开更多
This study evaluated the simulated cloud radiative feedbacks(CRF)during the El Ni?o–Southern Oscillation(ENSO)cycle in the latest version of the Chinese Academy of Meteorological Sciences climate system model(CAMS-CS...This study evaluated the simulated cloud radiative feedbacks(CRF)during the El Ni?o–Southern Oscillation(ENSO)cycle in the latest version of the Chinese Academy of Meteorological Sciences climate system model(CAMS-CSM).We conducted two experimental model simulations:the Atmospheric Model Intercomparison Project(AMIP),forced by the observed sea surface temperature(SST);and the preindustrial control(PIcontrol),a coupled run without flux correction.We found that both the experiments generally reproduced the observed features of the shortwave and longwave cloud radiative forcing(SWCRF and LWCRF)feedbacks.The AMIP run exhibited better simulation performance in the magnitude and spatial distribution than the PIcontrol run.Furthermore,the simulation biases in SWCRF and LWCRF feedbacks were linked to the biases in the representation of the corresponding total cloud cover and precipitation feedbacks.It is interesting to further find that the simulation bias originating in the atmospheric component was amplified in the PIcontrol run,indicating that the coupling aggravated the simulation bias.Since the PIcontrol run exhibited an apparent mean SST cold bias over the cold tongue,the precipitation response to the SST anomaly(SSTA)changes during the ENSO cycle occurred towards the relatively warmer western equatorial Pacific.Thus,the corresponding cloud cover and CRF shifted westward and showed a weaker magnitude in the PIcontrol run versus observational data.In contrast,the AMIP run was forced by the observational SST,hence representing a more realistic CRF.Our results demonstrate the challenges of simulating CRF in coupled models.This study also underscores the necessity of realistically representing the climatological mean state when simulating CRF during the ENSO cycle.展开更多
Accurate channel state information(CSI)is crucial for 6G wireless communication systems to accommodate the growing demands of mobile broadband services.In massive multiple-input multiple-output(MIMO)systems,traditiona...Accurate channel state information(CSI)is crucial for 6G wireless communication systems to accommodate the growing demands of mobile broadband services.In massive multiple-input multiple-output(MIMO)systems,traditional CSI feedback approaches face challenges such as performance degradation due to feedback delay and channel aging caused by user mobility.To address these issues,we propose a novel spatio-temporal predictive network(STPNet)that jointly integrates CSI feedback and prediction modules.STPNet employs stacked Inception modules to learn the spatial correlation and temporal evolution of CSI,which captures both the local and the global spatiotemporal features.In addition,the signal-to-noise ratio(SNR)adaptive module is designed to adapt flexibly to diverse feedback channel conditions.Simulation results demonstrate that STPNet outperforms existing channel prediction methods under various channel conditions.展开更多
Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate...Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate this impulse game problem with the modified objective function including interaction costs among the players in a discontinuous fashion,and subsequently,to derive a verification theorem for identifying the feedback Nash equilibrium strategy.展开更多
This study constructs a reflective feedback model based on a pedagogical agent(PA)and explores its impact on students’problem-solving ability and cognitive load.A quasi-experimental design was used in the study,with ...This study constructs a reflective feedback model based on a pedagogical agent(PA)and explores its impact on students’problem-solving ability and cognitive load.A quasi-experimental design was used in the study,with 84 students from a middle school selected as the research subjects(44 in the experimental group and 40 in the control group).The experimental group used the reflective feedback model,while the control group used the factual feedback model.The results show that,compared with factual feedback,the reflective feedback model based on the pedagogical agent significantly improves students’problem-solving ability,especially at the action and thinking levels.In addition,this model effectively reduces students’cognitive load,especially in terms of internal and external load.展开更多
Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exa...Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exacerbates this challenge by rendering the process vulnerable to environmental changes and unexpected factors,resulting in defects and inconsistent product quality,particularly in unmanned long-term operations or printing in extreme environments.To address these issues,we developed a process monitoring and closed-loop feedback control strategy for the 3D printing process.Real-time printing image data were captured and analyzed using a well-trained neural network model,and a real-time control module-enabled closed-loop feedback control of the flow rate was developed.The neural network model,which was based on image processing and artificial intelligence,enabled the recognition of flow rate values with an accuracy of 94.70%.The experimental results showed significant improvements in both the surface performance and mechanical properties of printed composites,with three to six times improvement in tensile strength and elastic modulus,demonstrating the effectiveness of the strategy.This study provides a generalized process monitoring and feedback control method for the 3D printing of continuous fiber-reinforced composites,and offers a potential solution for remote online monitoring and closed-loop adjustment in unmanned or extreme space environments.展开更多
To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy...To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy storage systems based on measurement feedback is proposed.First,considering the high charge/discharge losses of hydrogen storage and the low energy density of battery storage,an operational optimization objective is established to enable adaptive energy adjustment in the Battery-hydrogen hybrid energy storage system.Next,an online optimization model minimizing the operational cost of the hybrid system is constructed to suppress grid-injected power deviations with satisfying the operational constraints of hydrogen storage and batteries.Finally,utilizing the online measurement of the energy states of hydrogen storage and batteries,an online optimization strategy based on measurement feedback is designed.Case study results show:before and after smoothing the fluctuations in wind power,the time when the power exceeded the upper and lower limits of the grid-injected power accounted for 24.1%and 1.45%of the total time,respectively,the proposed strategy can effectively keep the grid-injected power deviations of wind farms within the allowable range.Hydrogen storage and batteries respectively undertake long-term and short-term charge/discharge tasks,effectively reducing charge/discharge losses of the Battery-hydrogen hybrid energy storage systems and improving its operational efficiency.展开更多
Predicting user states in future and rendering visual feedbacks accordingly can effectively reduce the visual experienced delay in the tactile Internet(TI). However, most works omit the fact that different parts in an...Predicting user states in future and rendering visual feedbacks accordingly can effectively reduce the visual experienced delay in the tactile Internet(TI). However, most works omit the fact that different parts in an image may have distinct prediction requirements, based on which different prediction models can be used in the predicting process, and then it can further improve predicting quality especially under resources-limited environment. In this paper, a hybrid prediction scheme is proposed for the visual feedbacks in a typical TI scenario with mixed visuo-haptic interactions, in which haptic traffic needs sufficient wireless resources to meet its stringent communication requirement, leaving less radio resources for the visual feedback. First, the minimum required number of radio resources for haptic traffic is derived based on the haptic communication requirements, and wireless resources are allocated to the haptic and visual traffics afterwards. Then, a grouping strategy is designed based on the deep neural network(DNN) to allocate different parts from an image feedback into two groups to use different prediction models, which jointly considers the prediction deviation thresholds, latency and reliability requirements, and the bit sizes of different image parts. Simulations show that, the hybrid prediction scheme can further reduce the visual experienced delay under haptic traffic requirements compared with existing strategies.展开更多
基金supported by the Strategic Pri-ority Research Program(A)of the Chinese Academy of Sciences(Grant No.XDA28080503)the National Natural Science Foundation of China(Grant No.42071025)+1 种基金the Youth Innovation Promotion Associa-tion of Chinese Academy of Sciences(Grant No.2023240)the Pacific Northwest National Laboratory which is operated for DOE by Battelle Memorial Institute under Contract DE-A06-76RLO 1830.
文摘Phenology shifts influence regional climate by altering energy,and water fluxes through biophysical processes.However,a quantitative understanding of the phenological control on vegetation’s biophysical feedbacks to re gional climate remains elusive.Using long-term remote sensing observations and Weather Research and Fore casting(WRF)model simulations,we investigated vegetation phenology changes from 2003 to 2020 and quan tified their biophysical controls on the regional climate in Northeast China.Our findings elucidated that earlier green-up contributed to a prolonged growing season in forests,while advanced green-up and delayed dormancy extended the growing season in croplands.This prolonged presence and increased maximum green cover in tensified climate-vegetation interactions,resulting in more significant surface cooling in croplands compared to forests.Surface cooling from forest phenology changes was prominent during May’s green-up(-0.53±0.07°C),while crop phenology changes induced cooling throughout the growing season,particularly in June(-0.47±0.15°C),July(-0.48±0.11°C),and September(-0.28±0.09°C).Furthermore,we unraveled the contributions of different biophysical pathways to temperature feedback using a two-resistance attribution model,with aero dynamic resistance emerging as the dominant factor.Crucially,our findings underscored that the land surface temperature(LST)sensitivity,exhibited substantially higher values in croplands rather than temperate forests.These strong sensitivities,coupled with the projected continuation of phenology shifts,portend further growing season cooling in croplands.These findings contribute to a more comprehensive understanding of the intricate feedback mechanisms between vegetation phenology and surface temperature,emphasizing the significance of vegetation phenology dynamics in shaping regional climate pattern and seasonality.
基金This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20100101)a Major Special Science and Technology Project of Gansu Province(18ZD2FA009)the National Natural Science Foundation of China(NSFC)(31522013).
文摘Background:Large-scale afforestation can significantly change the ground cover and soil physicochemical properties,especially the soil fertility maintenance and water conservation functions of artificial forests,which are very important in semi-arid mountain ecosystems.However,how different tree species affect soil nutrients and soil physicochemical properties after afforestation,and which is the best plantation species for improving soil fertility and water conservation functions remain largely unknown.Methods:This study investigated the soil nutrient contents of three different plantations(Larix principis-rupprechtii,Picea crassifolia,Pinus tabuliformis),soils and plant-soil feedbacks,as well as the interactions between soil physicochemical properties.Results:The results revealed that the leaves and litter layers strongly influenced soil nutrient availability through biogeochemical processes:P.tabuliformis had higher organic carbon,ratio of organic carbon to total nitrogen(C:N)and organic carbon to total phosphorus(C:P)in the leaves and litter layers than L.principis-rupprechtii or P.crassifolia,suggesting that higher C:N and C:P hindered litter decomposition.As a result,the L.principis-rupprechtii and P.crassifolia plantation forests significantly improved soil nutrients and clay components,compared with the P.tabuliformis plantation forest.Furthermore,the L.principis-rupprechtii and P.crassifolia plantation forests significantly improved the soil capacity,soil total porosity,and capillary porosity,decreased soil bulk density,and enhanced water storage capacity,compared with the P.tabuliformis plantation forest.The results of this study showed that,the strong link between plants and soil was tightly coupled to C:N and C:P,and there was a close correlation between soil particle size distribution and soil physicochemical properties.Conclusions:Therefore,our results recommend planting the L.principis-rupprechtii and P.crassifolia as the preferred tree species to enhance the soil fertility and water conservation functions,especially in semi-arid regions mountain forest ecosystems.
基金supported by the UK-China Research Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fundsupported by the Natural Environment Research Council as part of the NC-International programme(NE/X006247/1)delivering National Capability
文摘Thermal processes on the Tibetan Plateau(TP)influence atmospheric conditions on regional and global scales.Given this,previous work has shown that soil moisture−driven surface flux variations feed back onto the atmosphere.Whilst soil moisture is a source of atmospheric predictability,no study has evaluated soil moisture−atmosphere coupling on the TP in general circulation models(GCMs).In this study,we use several analysis techniques to assess soil moisture−atmosphere coupling in CMIP6 simulations including:instantaneous coupling indices;analysis of flux and atmospheric behaviour during dry spells;and a quantification of the preference for convection over drier soils.Through these metrics we partition feedbacks into their atmospheric and terrestrial components.Consistent with previous global studies,we conclude substantial inter-model differences in the representation of soil moisture−atmosphere coupling,and that most models underestimate such feedbacks.Focusing on dry spell analysis,most models underestimate increased sensible heat during periods of rainfall deficiency.For example,the model-mean bias in anomalous sensible heat flux is 10 W m−2(≈25%)smaller compared to observations.Deficient dry-spell sensible heat fluxes lead to a weaker atmospheric response.We also find that most GCMs fail to capture the negative feedback between soil moisture and deep convection.The poor simulation of feedbacks in CMIP6 experiments suggests that forecast models also struggle to exploit soil moisture−driven predictability.To improve the representation of land−atmosphere feedbacks requires developments in not only atmospheric modelling,but also surface processes,as we find weak relationships between rainfall biases and coupling indexes.
文摘Dear Readers, Thank you very much for your interest in and support for China's Foreign Trade.From the first day the Magazine was launched,we have been so happy to see suggestions,comments,encouragement and even complaints from you,dear readers.Over this more than half century,we have been thriving for changes and improvements to be the best.Every word from you is important to us and any feedback will be regarded by us as a chance to improve the Magazine.
基金supported by the Special Support Project of SASTIND and Technologyof SASTIND(No.JSZL2019XXXB001)。
文摘In order to solve the problem of reliability modeling and the analysis of complex systems with multiple closed-loop feedbacks,a new reliability analysis method for repairable systems with multiple closed-loop feedbacks is proposed based on the goal-oriented(GO)methodology.Firstly,the basic theories and advantages of GO method are introduced.Secondly,a type-24B multiple closed-loop feedback structure operator is proposed through GO method with its operation formula given,which expands the types of GO method operators and the application scope of their reliability analysis.Finally,taking a certain type of diesel engine fuel supply system an example,the quantitative and qualitative analysis is carried out through GO method,Monte Carlo simulation as well as FTA respectively.The availability results verify the availability of the proposed type-24B operator in the reliability analysis of multiple closed-loop feedback systems.The qualitative analysis results indicate the accuracy and usability of the GO method as a qualitative analysis method.
文摘The study aims to uncover the differences between a Chinese writing teacher and a foreign writing teacher in evaluating Chinese college students' English compositions and find out students' attitudes towards different kinds of feedbacks. The data collection method, sample analysis and questionnaire have been implemented to probe for the results. The results are supposed to give some suggestions to the English writing class in Chinese universities.
基金Supported by the National Natural Science Foundation of China(No.41806016)the China Postdoctoral Science Foundation(No.2017M622289)to GUAN Cong+4 种基金the National Natural Science Foundation of China(Nos.41776018,91858101)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB01000000)HU Shijianthe State Key Program of National Natural Science of China(No.41730534)the NSFC Innovative Group Grant(No.41421005)to WANG Fan。
文摘Why did the predicted“super El Niño”fade out in the summer 2014 and the following year develop into one of the three strongest El Niño on record?Although some hypotheses have been proposed in previous studies,the quantitative contribution of oceanic processes to these events remains unclear.We investigated the role of various oceanic feedbacks,especially in response to intra-seasonal westerly wind busts,in the evolution of the 2014–2016 El Niño events,through a detailed heat budget analysis using high temporal resolution Estimating the Circulation and Climate of the Ocean—Phase II(ECCO2)simulation outputs and satellite-based observations.Results show that the Ekman feedback and zonal advective feedback were the two dominant oceanic processes in the developing phase of the warm event in the spring of 2014 and its decay in June.In the 2015–2016 super El Niño event,the zonal advective feedback and thermocline feedback played a signifi cant role in the eastern Pacifi c warming.Moreover,the thermocline feedback tended to weaken in the central Pacifi c where the zonal advection feedback became the dominant positive feedback.
基金supported by the SFB/TR172 “Arctic Amplification:Climate Relevant Atmospheric and Surface Processes,and Feedback Mechanisms (AC)” funded by the Deutsche Forschungsgemeinschaft (DFG)supported by the project QUARCCS “Quantifying Rapid Climate Change in the Arctic:Regional feedbacks and large-scale impacts” funded by the German Federal Ministry for Education and Research (BMBF)
文摘Ensemble simulations with the Arctic coupled regional climate model HIRHAM-NAOSIM have been analyzed to investigate atmospheric feedbacks to September sea-ice anomalies in the Arctic in autumn and the following winter. Different "low- minus high ice" composites have been calculated using selected model runs and different periods. This approach allows us to investigate the robustness of the simulated regional atmospheric feedbacks to detected sea-ice anomalies. Since the position and strength of the September sea-ice anomaly varies between the different "low- minus high ice" composites, the related simulated atmospheric patterns in autumn differ depending on the specific surface heat flux forcing through the oceaaa-atmosphere interface. However, irrespective of those autumn differences, the regional atmospheric feedback in the following winter is rather insensitive to the applied compositing. Neither the selection of simulations nor the considered period impacts the results. The simulated consistent large-scale atmospheric circulation pattern show-s a wave-like pattern with positive pressure anomaly over the region of the Barents/Kara Seas and Scandinavia/western Russia ("Scandinavian-Ural blocking") and negative pressure anomaly over the East Siberian/Laptev Seas.
文摘The design of H∞ reduced order controllers is known to be a non-convex optimization problem for which no generic solution exists. In this paper, the use of Particle Swarm Optimization (PSO) for the computation of H~ static output feedbacks is investigated. Two approaches are tested. In a first part, a probabilistic-type PSO algorithm is defined for the computation of discrete sets of stabilizing static output feedback controllers. This method relies on a technique for random sample generation in a given domain. It is therefore used for computing a suboptimal Ha static output feedback solution, In a second part, the initial optimization problem is solved by PSO, the decision variables being the feedback gains. Results are compared with standard reduced order problem solvers using the COMPIeib (Constraint Matrix-optimization Problem Library) benchmark examples and appear to be much than satisfactory, proving the great potential of PSO techniques.
基金Supported partially by the NSFC and the Science Foundation of China State Education Commission.
文摘The stabilization of the Timoshenko equation of a nonuniform beam with locally distributed feedbacks is considered.It is proved that the system is exponentially stabilizable.The frequency domain method and the multiplier technique are applied.
基金supported by the National Natural Science Foundation of China(grant no.52209020)the Swiss Data Science Center COPE project(grant no.C22-02)the National Natural Science Foundation of China(grant nos.52441902 and W2421111).
文摘Drylands cover45%of Earth’s land surface,support40%of the global population,and harbor30%of endangered species.However,anthropogenic climate change increasingly dries drylands throughmultiple processes and feedback mechanisms.From a thermodynamic perspective,globalwarming elevates atmospheric vapor pressure deficit(VPD)in drylands,acceleratingmoisture loss from vegetation and bare soils,thereby exacerbating aridity in drylands.This mechanism is further amplified by local land-atmosphere feedbacks:soil desiccation and vegetation dry out typically result in a reduced evaporation fraction.This,in turn,decreases the relative humidity yet further boosts thewater demand of air.Furthermore,human-induced shifts in large-scale atmospheric circulations,reduce local precipitation and further aggravate aridity in subtropical drylands.
基金supported by Gansu Province Science and Technology Project(Grant No.21JR7RA070)the Natural Science Foundation of Gansu Province,China(Grant No.22JR5RA051)the Central Government Guides Local Funds Project for Science and Technology Development(Grant No.23ZYQHO_(2)98).
文摘Direct comparison of the difference in biomass between live and sterilized soils may result in deviations in biological plant-soil feedback(B-PSF)due to changes induced by sterilization in bulk soil microorganisms,soil structure,and nutrient availability.The sterilization-induced deviation(sterilization-effect,SS_(c))to often-used method B-PSF_(ou) was corrected by adding a parallel experiment without conditioning by any plants(B-PSF_(c)).Plant-soil feedback experiments were conducted for two plants with contrasting in root traits and rhizosphere microbial community to test the reliability of the method(Kalidium foliatum and Reaumuria songaric).The specific root length(SRL),root tissue density(RTD)and of R.songarica was higher compared to that of K.foliatum,but the root diameter(RAD)of it was significantly lower than that of K.foliatum.The plasticity of root traits of K.foliatum was stronger than that of R.songarica.The B-PSF_(ou) of K.foliatum was four times negative than B-PSF_(c),whereas there was no statistically significant difference of B-PSF_(ou) and B-PSF_(c) for R.songarica.The correlation between B-PSF_(c) and the relative abundance of pathogens and EcMF was found to be stronger compared to B-PSF_(ou).We proposed method corrects the deviation in B-PSF.The variation of deviation between species may be related to root traits.
基金funded by the National Natural Science Foundation of China(No.51873145)the Excellent Youth Foundation of Jiangsu Scientific Committee(No.BK20170065)+1 种基金the Qing Lan Project,the 5th 333 High-level Talents Training Project of Jiangsu Province(No.BRA2018340)the Six Talent Peaks Project in Jiangsu Province(No.XCL-79).
文摘The booming development of wearable devices has aroused increasing interests in flexible and stretchable devices.With mechanosensory functionality,these devices are highly desirable on account of their wide range of applications in electronic skin,personal healthcare,human–machine interfaces and beyond.However,they are mostly limited by single electrical signal feedback,restricting their diverse applications in visualized mechanical sensing.Inspired by the mechanochromism of structural color materials,interactively stretchable electronics with optical and electrical dual-signal feedbacks are recently emerged as novel sensory platforms,by combining both of their sensing mechanisms and characteristics.Herein,recent studies on interactively stretchable electronics based on structural color materials are reviewed.Following a brief introduction of their basic components(i.e.,stretchable electronics and mechanochromic structural color materials),two types of interactively stretchable electronics with respect to the nanostructures of mechanochromic materials are outlined,focusing primarily on their design considerations and fabrication strategies.Finally,the main challenges and future perspectives of these emerging devices are discussed.
基金Supported by the National Key Research and Development Program(2018YFC1506002)National Natural Science Foundation of China(41606011,41705059,41630423,and 41420104002)+6 种基金Basic Scientific Research and Operation Foundation of Chinese Academy of Meteorological Sciences(2017Y007)National Science Foundation AGS-1565653National(Key)Basic Research and Development(973)Program of China(2015CB453200)Startup Foundation for Introducing Talent of NUIST,LASG Open Projectopen fund of State Key Laboratory of Loess and Quartary Geology(SKLLQG1802)NUIST Excellent Bachelor Dissertation Funding(1241591901003)the Earth System Modeling Center(ESMC)contribution(No.247)
文摘This study evaluated the simulated cloud radiative feedbacks(CRF)during the El Ni?o–Southern Oscillation(ENSO)cycle in the latest version of the Chinese Academy of Meteorological Sciences climate system model(CAMS-CSM).We conducted two experimental model simulations:the Atmospheric Model Intercomparison Project(AMIP),forced by the observed sea surface temperature(SST);and the preindustrial control(PIcontrol),a coupled run without flux correction.We found that both the experiments generally reproduced the observed features of the shortwave and longwave cloud radiative forcing(SWCRF and LWCRF)feedbacks.The AMIP run exhibited better simulation performance in the magnitude and spatial distribution than the PIcontrol run.Furthermore,the simulation biases in SWCRF and LWCRF feedbacks were linked to the biases in the representation of the corresponding total cloud cover and precipitation feedbacks.It is interesting to further find that the simulation bias originating in the atmospheric component was amplified in the PIcontrol run,indicating that the coupling aggravated the simulation bias.Since the PIcontrol run exhibited an apparent mean SST cold bias over the cold tongue,the precipitation response to the SST anomaly(SSTA)changes during the ENSO cycle occurred towards the relatively warmer western equatorial Pacific.Thus,the corresponding cloud cover and CRF shifted westward and showed a weaker magnitude in the PIcontrol run versus observational data.In contrast,the AMIP run was forced by the observational SST,hence representing a more realistic CRF.Our results demonstrate the challenges of simulating CRF in coupled models.This study also underscores the necessity of realistically representing the climatological mean state when simulating CRF during the ENSO cycle.
基金supported in part by the Natural Science Foundation of China under Grant Nos.U2468201 and 62221001ZTE Industry-University-Institute Cooperation Funds under Grant No.IA20240420002。
文摘Accurate channel state information(CSI)is crucial for 6G wireless communication systems to accommodate the growing demands of mobile broadband services.In massive multiple-input multiple-output(MIMO)systems,traditional CSI feedback approaches face challenges such as performance degradation due to feedback delay and channel aging caused by user mobility.To address these issues,we propose a novel spatio-temporal predictive network(STPNet)that jointly integrates CSI feedback and prediction modules.STPNet employs stacked Inception modules to learn the spatial correlation and temporal evolution of CSI,which captures both the local and the global spatiotemporal features.In addition,the signal-to-noise ratio(SNR)adaptive module is designed to adapt flexibly to diverse feedback channel conditions.Simulation results demonstrate that STPNet outperforms existing channel prediction methods under various channel conditions.
基金supported in part by the National Natural Science Foundation of China(62173051)the Fundamental Research Funds for the Central Universities(2024CDJCGJ012,2023CDJXY-010)+1 种基金the Chongqing Technology Innovation and Application Development Special Key Project(CSTB2022TIADCUX0015,CSTB2022TIAD-KPX0162)the China Postdoctoral Science Foundation(2024M763865)
文摘Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate this impulse game problem with the modified objective function including interaction costs among the players in a discontinuous fashion,and subsequently,to derive a verification theorem for identifying the feedback Nash equilibrium strategy.
基金023 Zhejiang Provincial Department of Education General Project:Research on an interdisciplinary teaching model to promote the development of computational thinking in the context of the new curriculum standards[Grant NO:Y202351596]Key Project of Zhejiang Provincial Education Science Planning:Research on an interdisciplinary teaching model to promote students’computational thinking from multiple analytical perspectives[Grant NO:2025SB103].
文摘This study constructs a reflective feedback model based on a pedagogical agent(PA)and explores its impact on students’problem-solving ability and cognitive load.A quasi-experimental design was used in the study,with 84 students from a middle school selected as the research subjects(44 in the experimental group and 40 in the control group).The experimental group used the reflective feedback model,while the control group used the factual feedback model.The results show that,compared with factual feedback,the reflective feedback model based on the pedagogical agent significantly improves students’problem-solving ability,especially at the action and thinking levels.In addition,this model effectively reduces students’cognitive load,especially in terms of internal and external load.
基金supported by National Key Research and Development Program of China(Grant No.2023YFB4604100)National Key Research and Development Program of China(Grant No.2022YFB3806104)+4 种基金Key Research and Development Program in Shaanxi Province(Grant No.2021LLRH-08-17)Young Elite Scientists Sponsorship Program by CAST(No.2023QNRC001)K C Wong Education Foundation of ChinaYouth Innovation Team of Shaanxi Universities of ChinaKey Research and Development Program of Shaanxi Province(Grant 2021LLRH-08-3.1).
文摘Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exacerbates this challenge by rendering the process vulnerable to environmental changes and unexpected factors,resulting in defects and inconsistent product quality,particularly in unmanned long-term operations or printing in extreme environments.To address these issues,we developed a process monitoring and closed-loop feedback control strategy for the 3D printing process.Real-time printing image data were captured and analyzed using a well-trained neural network model,and a real-time control module-enabled closed-loop feedback control of the flow rate was developed.The neural network model,which was based on image processing and artificial intelligence,enabled the recognition of flow rate values with an accuracy of 94.70%.The experimental results showed significant improvements in both the surface performance and mechanical properties of printed composites,with three to six times improvement in tensile strength and elastic modulus,demonstrating the effectiveness of the strategy.This study provides a generalized process monitoring and feedback control method for the 3D printing of continuous fiber-reinforced composites,and offers a potential solution for remote online monitoring and closed-loop adjustment in unmanned or extreme space environments.
基金Supported by State Grid Zhejiang Electric Power Co.,Ltd.Science and Technology Project Funding(No.B311DS230005).
文摘To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy storage systems based on measurement feedback is proposed.First,considering the high charge/discharge losses of hydrogen storage and the low energy density of battery storage,an operational optimization objective is established to enable adaptive energy adjustment in the Battery-hydrogen hybrid energy storage system.Next,an online optimization model minimizing the operational cost of the hybrid system is constructed to suppress grid-injected power deviations with satisfying the operational constraints of hydrogen storage and batteries.Finally,utilizing the online measurement of the energy states of hydrogen storage and batteries,an online optimization strategy based on measurement feedback is designed.Case study results show:before and after smoothing the fluctuations in wind power,the time when the power exceeded the upper and lower limits of the grid-injected power accounted for 24.1%and 1.45%of the total time,respectively,the proposed strategy can effectively keep the grid-injected power deviations of wind farms within the allowable range.Hydrogen storage and batteries respectively undertake long-term and short-term charge/discharge tasks,effectively reducing charge/discharge losses of the Battery-hydrogen hybrid energy storage systems and improving its operational efficiency.
基金supported by the National Natural Science Foundation of China (61771070)。
文摘Predicting user states in future and rendering visual feedbacks accordingly can effectively reduce the visual experienced delay in the tactile Internet(TI). However, most works omit the fact that different parts in an image may have distinct prediction requirements, based on which different prediction models can be used in the predicting process, and then it can further improve predicting quality especially under resources-limited environment. In this paper, a hybrid prediction scheme is proposed for the visual feedbacks in a typical TI scenario with mixed visuo-haptic interactions, in which haptic traffic needs sufficient wireless resources to meet its stringent communication requirement, leaving less radio resources for the visual feedback. First, the minimum required number of radio resources for haptic traffic is derived based on the haptic communication requirements, and wireless resources are allocated to the haptic and visual traffics afterwards. Then, a grouping strategy is designed based on the deep neural network(DNN) to allocate different parts from an image feedback into two groups to use different prediction models, which jointly considers the prediction deviation thresholds, latency and reliability requirements, and the bit sizes of different image parts. Simulations show that, the hybrid prediction scheme can further reduce the visual experienced delay under haptic traffic requirements compared with existing strategies.