Microwave-induced substitutional combustion reaction was utilized to fabricate porous ceramic composite from Fe_3O_4/Al powder mixtures.The porous composite body was obtained by controlling the combustion reaction pro...Microwave-induced substitutional combustion reaction was utilized to fabricate porous ceramic composite from Fe_3O_4/Al powder mixtures.The porous composite body was obtained by controlling the combustion reaction progress in a 2.45 GHz single mode applicator.Prior to the fabrication of the porous body,heating behavior of the powder mixtures were studied in the separated electric(E)and magnetic(H)fields.In addition,heating ability of the microwave fabricated porous product was also investigated.Fe_3O_4 powder can be heated up easily in both maximum H and E field, but a better heating was observed in the maximum H field.Regardless of the mixtures ratio(mixing compositions), maximum H field shows better heating characteristics.In E-field heating,temperature of the Fe_3O_4 samples decreased sharply when Al powder was added.However,the same phenomenon was not observed in the maximum H field heating. Thus,fabrication of the porous composite body was carrying out in maximum H field.Through an adequate control of the reaction progress,products with a porous structure consisting of well-distributed metal particles in the alumina and/or hercynite matrix were obtained.Consequently,heating of the fabricated porous composite body was also been successfully carried out in the maximum H field.Product phases and microstructure were the main factors influencing the heating ability of the porous composite body.展开更多
In response to the limitations of conventional chemical synthesis methods for the structural modulation of nanomaterials,an innovative high magnetic field-assisted wet chemical synthesis method was proposed to prepare...In response to the limitations of conventional chemical synthesis methods for the structural modulation of nanomaterials,an innovative high magnetic field-assisted wet chemical synthesis method was proposed to prepare NiFe_(2)O_(4)/Fe_(2)O_(3) heterostructures.It is found that the high-energy physical field could induce a more homogeneous morphology of NiFe_(2)O_(4)/Fe_(2)O_(3),accompanied by phase transformation from Fe_(2)O_(3) to NiFe_(2)O_(4).As a result,the optimized structure obtained under the magnetic field endows NiFe_(2)O_(4)/Fe_(2)O_(3) with enhanced performance for the lithium-ion battery anode,as evidenced by an increase of 16%(1200 mA·h/g)in discharge capacity and 24% in ultra-stable cycling performance(capacity retention of 97.1%).These results highlight the feasibility of high magnetic fields in modulating material structure and enhancing lithium storage performance.展开更多
Propylene,a readily accessible and economically viable light olefin,has garnered substantial interest for its potential conversion into valuable higher olefins through oligomerization processes.The distribution of pro...Propylene,a readily accessible and economically viable light olefin,has garnered substantial interest for its potential conversion into valuable higher olefins through oligomerization processes.The distribution of products is profoundly influenced by the catalyst structure.In this study,Fe_(2)O_(3)-doped NiSO_(4)/Al_(2)O_(3) catalysts have been meticulously developed to facilitate the selective trimerization of propylene under mild conditions.Significantly,the 0.25Fe_(2)O_(3)-NiSO_(4)/Al_(2)O_(3) catalyst demonstrates an enhanced reaction rate(48.5 mmol_(C3)/(g_(cat).·h)),alongside a high yield of C9(~32.2%),significantly surpassing the performance of the NiSO_(4)/Al_(2)O_(3) catalyst(C9:~24.1%).The incorporation of Fe_(2)O_(3) modifies the migration process of sulfate ions,altering the Lewis acidity of the electron-deficient Ni and Fe sites on the catalyst and resulting a shift in product distribution from a Schulz-Flory distribution to a Poisson distribution.This shift is primarily ascribed to the heightened energy barrier for theβ-H elimination reaction in the C6 alkyl intermediates on the doped catalyst,further promoting polymerization to yield a greater quantity of Type II C9.Furthermore,the validation of the Cossee-Arlman mechanism within the reaction pathway has been confirmed.It is noteworthy that the 0.25Fe_(2)O_(3)-NiSO_(4)/Al_(2)O_(3) catalyst exhibits remarkable stability exceeding 80 h in the selective trimerization of propylene.These research findings significantly enhance our understanding of the mechanisms underlying olefin oligomerization reactions and provide invaluable insights for the development of more effective catalysts.展开更多
To remove the fluoride in zinc sulfate electrolyte to an appropriate level,mitigate environmental fluoride pollution,and drive the development of the hydrometallurgy industry of zinc,a novel Fe_(3)O_(4)@SiO_(2)@Fe-MIL...To remove the fluoride in zinc sulfate electrolyte to an appropriate level,mitigate environmental fluoride pollution,and drive the development of the hydrometallurgy industry of zinc,a novel Fe_(3)O_(4)@SiO_(2)@Fe-MIL-101 magnetic composite material was successfully synthesized via the one-pot method.Preparation conditions were optimized and structural characterization of this material conducted using FTIR,SEM,EDS,XRD and Hysteresis analysis.The results show that this composite exhibits a more rapid fluoride adsorption dynamics and a higher fluoride adsorption capacity(18.34 mg/g)and its adsorption behavior fitted for the first order dynamic model and the Freundlich isotherm model.The adsorption of fluorine by this composite is mainly physical adsorption according to the mean adsorption energy(1.216 kJ/mol).The interfering ions co-existed in fluoride-containing solutions,like HCO_(3)^(-),NO^(-)and Cl^(-),have a significant effect on fluorine adsorption.This composite has also been proved with magnetism,higher adsorption selectivity and satisfactory reusability.When this composite is employed as an adsorbent for adsorption removing fluoride in zinc sulfate electrolyte,it exhibits higher pH-dependent behavior as well as high fluoride removal efficiency at pH 6.5.展开更多
Herein,a novel Janus-structured multifunctional membrane with integrated electromagnetic interference(EMI)shielding and personalized thermal management is fabricated using shear-induced in situ fibrillation and vacuum...Herein,a novel Janus-structured multifunctional membrane with integrated electromagnetic interference(EMI)shielding and personalized thermal management is fabricated using shear-induced in situ fibrillation and vacuum-assisted filtration.Interestingly,within the polytetrafluoroethylene(PTFE)-carbon nanotube(CNT)-Fe_(3)O_(4)layer(FCFe),CNT nanofibers interweave with PTFE fibers to form a stable“silk-like”structure that effectively captures Fe_(3)O_(4)particles.By incorporating a highly conductive MXene layer,the FCFe/MXene(FCFe/M)membrane exhibits excellent electrical/thermal conductivity,mechanical properties,and flame retardancy.Impressively,benefiting from the rational regulation of component proportions and the design of a Janus structure,the FCFe/M membrane with a thickness of only 84.9μm delivers outstanding EMI shielding effectiveness of 44.56 dB in the X-band,with a normalized specific SE reaching 10,421.3 dB cm^(2)g^(-1),which is attributed to the“absorption-reflection-reabsorption”mechanism.Furthermore,the membrane demonstrates low-voltage-driven Joule heating and fast-response photothermal performance.Under the stimulation of a 3 V voltage and an optical power density of 320 mW cm^(-2),the surface temperatures of the FCFe/M membranes can reach up to 140.4 and 145.7℃,respectively.In brief,the FCFe/M membrane with anti-electromagnetic radiation and temperature regulation is an attractive candidate for the next generation of wearable electronics,EMI compatibility,visual heating,thermotherapy,and military and aerospace applications.展开更多
The Fenton method is an effective technology for the removal of organic materials from wastewater.In this work,an induced catalyst Fe_(3)O_(4) was synthesized by a hydrothermal method,and the modulation of the chemica...The Fenton method is an effective technology for the removal of organic materials from wastewater.In this work,an induced catalyst Fe_(3)O_(4) was synthesized by a hydrothermal method,and the modulation of the chemical composition of Fe_(3)O_(4) crystals was achieved under the microwave shock method with the same effect as that of calcination treatment.Fe_(3)O_(4) catalyst for the removal of the dye Rhodamine B (Rh B) from polluted wastewater under microwave (MW),H_(2)O_(2) system.The results showed that Fe_(3)O_(4) nanomicrospheres prepared by microwave shock exhibited superior catalytic activity under the conditions of 500 W,0.4 mol/L H_(2)O_(2) and10 mg/L Rh B,and the removal rate of Rh B reached 98.5%after 10 min.The Fe_(3)O_(4) catalysts also exhibited good stability and degradation efficiency.Electron paramagnetic resonance experiments confirmed that·OH plays a major role in the rapid degradation of Rh B.Under microwave action,the catalyst produces electron-hole pairs,in which the holes react with OH-produced by water ionisation to form·OH,and the microwave-treated Fe_(3)O_(4) produces more active species.Fe^(3+)and Fe^(2+)serve as microwave catalytic activity centers and Fenton catalytic activity centers,respectively.This research demonstrates that optimizing the Fe^(2+)/Fe^(3+) ratio significantly enhances the degradation efficiency of Rh B.This study presents novel views regarding the mechanism of microwave synergistic catalyst-induced Fenton.展开更多
Norfloxacin is widely used owing to its strong bactericidal effect on Gram-negative bacteria.However,the residual norfloxacin in the environment can be biomagnified via food chain andmay damage the human liver and del...Norfloxacin is widely used owing to its strong bactericidal effect on Gram-negative bacteria.However,the residual norfloxacin in the environment can be biomagnified via food chain andmay damage the human liver and delay the bone development ofminors.Present work described a reliable and sensitive smartphone colorimetric sensing system based on cobaltdoped Fe_(3)O_(4) magnetic nanoparticles(Co-Fe_(3)O_(4) MNPs)for the visual detection of norfloxacin.Compared with Fe_(3)O_(4),Co-Fe_(3)O_(4) MNPs earned more remarkably peroxidase-like activity and TMB(colorless)was rapidly oxidized to oxTMB(blue)with the presence of H_(2)O_(2).Interestingly,the addition of low concentration of norfloxacin can accelerate the color reaction process of TMB,and blue deepening of the solution can be observed with the naked eye.However,after adding high concentration of norfloxacin,the activity of nanozymewas inhibited,resulting in the gradual fading of the solution.Based on this principle,a colorimetric sensor integrated with smartphone RGB mode was established.The visual sensor exhibited good linearity for norfloxacin monitoring in the range of 0.13-2.51μmol/L and 17.5-100μmol/L.The limit of visual detectionwas 0.08μmol/L.In the actualwater sample analysis,the spiked recoveries of norfloxacin were over the range of 95.7%-104.7%.These results demonstrated that the visual sensor was a convenient and fast method for the efficient and accurate detection of norfloxacin in water,which may have broad application prospect.展开更多
Understanding the phase equilibria of the Fe_(3)O_(4)-Cr_(2)O_(3)-CaO system is essential for the efficient recycling of stainless steel pickling sludge.The isothermal section of this system at 1473 K under oxygen par...Understanding the phase equilibria of the Fe_(3)O_(4)-Cr_(2)O_(3)-CaO system is essential for the efficient recycling of stainless steel pickling sludge.The isothermal section of this system at 1473 K under oxygen partial pressure of 0.15 Pa was investigated.Key experiments on the relevant binary systems were conducted using a combination of equilibrium-quenching techniques,X-ray diffraction,high-resolution transmission electron microscope,and electron probe microanalysis.These systems were rigorously assessed using the CALPHAD(CALculation of Phase Diagram)method,incorporating the present experimental data.The liquid phase was modeled using the ionic two-sublattice model,represented as(Ca^(2+),Cr^(3+),Fe^(2+))P(O_(2)^(-),Va,FeO_(1.5))Q,where Va represents vacancy,and P and Q denote the number of sites on the cation and anion sublattices,respectively.To ensure electroneutrality,the values of P and Q adjust according to the composition of the mixture.From this,the isothermal section of the Fe_(3)O_(4)-Cr_(2)O_(3)-CaO system at 1473 K under the specified oxygen partial pressure was obtained based on the thermodynamic parameters of the binary systems.The present experimental data and calculation results hold significant implications for the comprehensive recycling of stainless steel pickling sludge.展开更多
The accumulation of heavy metals in mushrooms has presented a significant risk to human health,underscoring the importance of devising a portable and cost-effective method for detecting heavy metals.Thus,we have devel...The accumulation of heavy metals in mushrooms has presented a significant risk to human health,underscoring the importance of devising a portable and cost-effective method for detecting heavy metals.Thus,we have developed an electrochemical sensor based on 3-dimensional highly reduced graphene oxide(3D-HRGO)in conjunction with Fe_(3)O_(4)nanoparticles,enabling the simultaneous quantification of Cd^(2+),Pb^(2+),Cu^(2+),and Hg^(2+).The 3D-HRGO/Fe_(3)O_(4)nano-particles material prepared in this study was characterized and confirmed by multiple techniques,then dispersed in a simple and environmental dispersant,consist of 75%ethanol and 0.1%Nafion,and coating on a glass carbon electrode(GCE)to preparing a 3D-HRGO/Fe_(3)O_(4)/GCE sensor.The limit of detection(LOD)of 3D-HRGO/Fe_(3)O_(4)/GCE sensor for Cd^(2+),Pb^(2+),Cu^(2+),and Hg^(2+)in simultaneous detection were 0.2,0.6,0.6,and 0.9μg/L,respectively.The sensor demonstrates exceptional stability,reproducibility,anti-interference,and recovery rate.Furthermore,the electrochemical sensor was employed to detect heavy metals in actual mushrooms and validated through conventional methodologies.This study represents the pioneering utilization of 3D-HRGO/Fe_(3)O_(4)as a foundational material for an electrochemical sensor capable of simultaneous detection of multiple metals,thereby advancing the progress of on-site and expeditious detection techniques.展开更多
Octahedral Fe_(3)O_(4)-modified coke Fenton catalyst(Fe_(3)O_(4)/PCWQ)was prepared via in-situ one-pot oxidation method inspired by grapefruit peel,and characterized by SEM,EDS,XRD,XPS,FTIR,BET,VSM,and Raman,respectiv...Octahedral Fe_(3)O_(4)-modified coke Fenton catalyst(Fe_(3)O_(4)/PCWQ)was prepared via in-situ one-pot oxidation method inspired by grapefruit peel,and characterized by SEM,EDS,XRD,XPS,FTIR,BET,VSM,and Raman,respectively.Fe_(3)O_(4)crystals was predominantly in octahedral morphology with an average particle size of 60 nm.Fe_(3)O_(4)/PCWQ exhibited graphene-like structure.The synergistic effect between oxygen functional group and Fe^(2+)/Fe^(3+)cycle in Fe_(3)O_(4)/PCWQ enhances the degradation performance of p-nitrophenol(P-NP).Under the optimal conditions(1.0 g/L catalyst,30 mmol/L H_(2)O_(2),pH 3.0,25℃),Fe_(3)O_(4)/PCWQ exhibits high degradation efficiency of P-NP(91.25%in 30 min and 98.21%in 180 min)and stability(90.72%after 6 cycles)with low iron leaching(<0.528 mg/L),following the quasi-first-order degradation kinetics.Fe_(3)O_(4)/PCWQ has better catalytic performance than pure Fe_(3)O_(4)under the action of H_(2)O_(2),and is an efficient,stable and repeatable green catalyst.展开更多
Due to its high efficiency,Fe(Ⅱ)-based catalytic oxidation has been one of the most popular types of technology for treating growing organic pollutants.A lot of chemical Fe sludge alongwith various refractory polluta...Due to its high efficiency,Fe(Ⅱ)-based catalytic oxidation has been one of the most popular types of technology for treating growing organic pollutants.A lot of chemical Fe sludge alongwith various refractory pollutantswas concomitantly produced,whichmay cause secondary environmental problemswithout proper disposal.We here innovatively proposed an effective method of achieving zero Fe sludge,reusing Fe resources(Fe recovery=100%)and advancing organics removal(final TOC removal>70%)simultaneously,based on the in situ formation of magnetic Ca-Fe layered double hydroxide(Fe_(3)O_(4)@CaFe-LDH)nano-material.Cations(Ca^(2+)and Fe^(3+))concentration(≥30 mmol/L)and their molar ratio(Ca:Fe≥1.75)were crucial to the success of the method.Extrinsic nano Fe_(3)O_(4)was designed to be involved in the Fe(Ⅱ)-catalytic wastewater treatment process,and was modified by oxidation intermediates/products(especially those with COO-structure),which promoted the co-precipitation of Ca^(2+)(originated from Ca(OH)_(2)added after oxidation process)and byproduced Fe^(3+)cations on its surface to in situ generate core-shell Fe_(3)O_(4)@CaFe-LDH.The oxidation products were further removed during Fe_(3)O_(4)@CaFe-LDH material formation via intercalation and adsorption.Thismethodwas applicable to many kinds of organicwastewater,such as bisphenol A,methyl orange,humics,and biogas slurry.The prepared magnetic and hierarchical CaFe-LDH nanocomposite material showed comparable application performance to the recently reported CaFe-LDHs.This work provides a new strategy for efficiently enhancing the efficiency and economy of Fe(Ⅱ)-catalyzed oxidative wastewater treatment by producing high value-added LDHs materials.展开更多
In this work,for the first time,it is demonstrated that during the insertion/extraction of Na ions,the structural evolution at the Na_(4)site at a voltage range of 3-4 V is a key factor for the capacity decay of Na_(4...In this work,for the first time,it is demonstrated that during the insertion/extraction of Na ions,the structural evolution at the Na_(4)site at a voltage range of 3-4 V is a key factor for the capacity decay of Na_(4)Fe_(3)(PO_(4))_(2)P_(2)O_(7)(NFPP).Herein,a strategy of introducing columnar potassium ions at the Na_(4)site is proposed to address the aforementioned challenge.As a cathode material for sodium-ion batteries,the K_(0.12)Na_(3.88)Fe_(3)(PO_(4))_(2)P_(2)O_(7)/C(K-NFPP)composite enhances the reversibility of Na_(4)extraction.Specifically,the K-NFPP exhibits an initial discharge capacity of 107.8 mAh g^(-1)at a high current density of 5 C,with a capacity retention of 91.4% after 2000 cycles,outperforming the pristine NFPP material(81.1 m Ah g^(-1)and 67.1%).At 5 C,the K-NFPP also retains 81.5% of the reversible capacity at 0.1 C,whereas the NFPP only retains 68.3%.Moreover,the K-NFPP-based full-cell delivers an initial capacity of 110.1 m Ah g^(-1)at 1 C,with a capacity retention of 90% after 100 cycles.It is found that in comparison to K-doping of the Na1,Na2,and Na3 sites,K-doping at the Na4 site effectively optimizes the band gap and stabilizes the crystal structure,thereby reducing lattice changes of FeO_(6)evolution during Na^(+)insertion/extraction.As a result,the introduction of columnar potassium ions significantly enhances the capacity contribution of the Na_(4)site,optimizes reaction kinetics,and effectively mitigates the capacity decay of NFPP cathodes.It is believed that this study offers a new entry point for the application of NFPP in high-voltage sodium storage.展开更多
Mixed polyanion phosphate Na_(4)Fe_(3)(PO_(4))_(2)P_(2)O_(7)(NFPP)is regarded as the most promising cathode material for sodium-ion batteries(SIBs),due to its high structural stability and low-cost environmental frien...Mixed polyanion phosphate Na_(4)Fe_(3)(PO_(4))_(2)P_(2)O_(7)(NFPP)is regarded as the most promising cathode material for sodium-ion batteries(SIBs),due to its high structural stability and low-cost environmental friendliness.However,its intrinsic low conductivity and sluggish Na^(+)diffusion restricted the fast-charge and low-temperature sodium storage.Herein,an NFPP composite encapsulated by in-situ pyrolytic carbon and coupled with expanded graphite(NFPP@C/EG)was constructed via a sol-gel method followed by a ballmill procedure.Due to the dual-carbon modified strategy,this NFPP@C/EG only enhanced the electronic conductivity,but also endowed more channels for Na^(+)diffusion.As cathode for SIBs,the optimized NFPP(M-NFPP@C/EG)delivers excellent rate capability(capacity of~80.5 mAh/g at 50 C)and outstanding cycling stability(11000 cycles at 50 C with capacity retention of 89.85%).Additionally,cyclic voltammetry(CV)confirmed that its sodium storage behavior is pseudocapacitance-controlled,with in-situ electrochemical impedance spectroscopy(EIS)further elucidating improvements in electrode reaction kinetics.At lower temperatures(0℃),M-NFPP@C/EG demonstrated exceptional cycling performance(8800 cycles at 10 C with capacity retention of 95.81%).Moreover,pouch cells also exhibited excellent stability.This research demonstrates the feasibility of a dual carbon modification strategy in enhancing NFPP and proposes a low-cost,high-rate,and ultra-stable cathode material for SIBs.展开更多
文摘Microwave-induced substitutional combustion reaction was utilized to fabricate porous ceramic composite from Fe_3O_4/Al powder mixtures.The porous composite body was obtained by controlling the combustion reaction progress in a 2.45 GHz single mode applicator.Prior to the fabrication of the porous body,heating behavior of the powder mixtures were studied in the separated electric(E)and magnetic(H)fields.In addition,heating ability of the microwave fabricated porous product was also investigated.Fe_3O_4 powder can be heated up easily in both maximum H and E field, but a better heating was observed in the maximum H field.Regardless of the mixtures ratio(mixing compositions), maximum H field shows better heating characteristics.In E-field heating,temperature of the Fe_3O_4 samples decreased sharply when Al powder was added.However,the same phenomenon was not observed in the maximum H field heating. Thus,fabrication of the porous composite body was carrying out in maximum H field.Through an adequate control of the reaction progress,products with a porous structure consisting of well-distributed metal particles in the alumina and/or hercynite matrix were obtained.Consequently,heating of the fabricated porous composite body was also been successfully carried out in the maximum H field.Product phases and microstructure were the main factors influencing the heating ability of the porous composite body.
基金supported by the National Natural Science Foundation of China(No.52274294)the Fundamental Research Funds for the Central Universities,China(No.N2124007-1)the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China(No.SKLSP202101)。
文摘In response to the limitations of conventional chemical synthesis methods for the structural modulation of nanomaterials,an innovative high magnetic field-assisted wet chemical synthesis method was proposed to prepare NiFe_(2)O_(4)/Fe_(2)O_(3) heterostructures.It is found that the high-energy physical field could induce a more homogeneous morphology of NiFe_(2)O_(4)/Fe_(2)O_(3),accompanied by phase transformation from Fe_(2)O_(3) to NiFe_(2)O_(4).As a result,the optimized structure obtained under the magnetic field endows NiFe_(2)O_(4)/Fe_(2)O_(3) with enhanced performance for the lithium-ion battery anode,as evidenced by an increase of 16%(1200 mA·h/g)in discharge capacity and 24% in ultra-stable cycling performance(capacity retention of 97.1%).These results highlight the feasibility of high magnetic fields in modulating material structure and enhancing lithium storage performance.
文摘Propylene,a readily accessible and economically viable light olefin,has garnered substantial interest for its potential conversion into valuable higher olefins through oligomerization processes.The distribution of products is profoundly influenced by the catalyst structure.In this study,Fe_(2)O_(3)-doped NiSO_(4)/Al_(2)O_(3) catalysts have been meticulously developed to facilitate the selective trimerization of propylene under mild conditions.Significantly,the 0.25Fe_(2)O_(3)-NiSO_(4)/Al_(2)O_(3) catalyst demonstrates an enhanced reaction rate(48.5 mmol_(C3)/(g_(cat).·h)),alongside a high yield of C9(~32.2%),significantly surpassing the performance of the NiSO_(4)/Al_(2)O_(3) catalyst(C9:~24.1%).The incorporation of Fe_(2)O_(3) modifies the migration process of sulfate ions,altering the Lewis acidity of the electron-deficient Ni and Fe sites on the catalyst and resulting a shift in product distribution from a Schulz-Flory distribution to a Poisson distribution.This shift is primarily ascribed to the heightened energy barrier for theβ-H elimination reaction in the C6 alkyl intermediates on the doped catalyst,further promoting polymerization to yield a greater quantity of Type II C9.Furthermore,the validation of the Cossee-Arlman mechanism within the reaction pathway has been confirmed.It is noteworthy that the 0.25Fe_(2)O_(3)-NiSO_(4)/Al_(2)O_(3) catalyst exhibits remarkable stability exceeding 80 h in the selective trimerization of propylene.These research findings significantly enhance our understanding of the mechanisms underlying olefin oligomerization reactions and provide invaluable insights for the development of more effective catalysts.
基金National Natural Science Foundation of China(21865011)2024 Innovation and Entrepreneurship Project of College Student in Jishou University(JDCX20241122)。
文摘To remove the fluoride in zinc sulfate electrolyte to an appropriate level,mitigate environmental fluoride pollution,and drive the development of the hydrometallurgy industry of zinc,a novel Fe_(3)O_(4)@SiO_(2)@Fe-MIL-101 magnetic composite material was successfully synthesized via the one-pot method.Preparation conditions were optimized and structural characterization of this material conducted using FTIR,SEM,EDS,XRD and Hysteresis analysis.The results show that this composite exhibits a more rapid fluoride adsorption dynamics and a higher fluoride adsorption capacity(18.34 mg/g)and its adsorption behavior fitted for the first order dynamic model and the Freundlich isotherm model.The adsorption of fluorine by this composite is mainly physical adsorption according to the mean adsorption energy(1.216 kJ/mol).The interfering ions co-existed in fluoride-containing solutions,like HCO_(3)^(-),NO^(-)and Cl^(-),have a significant effect on fluorine adsorption.This composite has also been proved with magnetism,higher adsorption selectivity and satisfactory reusability.When this composite is employed as an adsorbent for adsorption removing fluoride in zinc sulfate electrolyte,it exhibits higher pH-dependent behavior as well as high fluoride removal efficiency at pH 6.5.
基金support from the National Natural Science Foundation of China(NSFC,Grant No.52175341)Shandong Provincial Natural Science Foundation(Grant No.ZR2022JQ24)Funding Project of Jinan City’s New Twenty Items for Colleges and Universities(Grant No.202333038).
文摘Herein,a novel Janus-structured multifunctional membrane with integrated electromagnetic interference(EMI)shielding and personalized thermal management is fabricated using shear-induced in situ fibrillation and vacuum-assisted filtration.Interestingly,within the polytetrafluoroethylene(PTFE)-carbon nanotube(CNT)-Fe_(3)O_(4)layer(FCFe),CNT nanofibers interweave with PTFE fibers to form a stable“silk-like”structure that effectively captures Fe_(3)O_(4)particles.By incorporating a highly conductive MXene layer,the FCFe/MXene(FCFe/M)membrane exhibits excellent electrical/thermal conductivity,mechanical properties,and flame retardancy.Impressively,benefiting from the rational regulation of component proportions and the design of a Janus structure,the FCFe/M membrane with a thickness of only 84.9μm delivers outstanding EMI shielding effectiveness of 44.56 dB in the X-band,with a normalized specific SE reaching 10,421.3 dB cm^(2)g^(-1),which is attributed to the“absorption-reflection-reabsorption”mechanism.Furthermore,the membrane demonstrates low-voltage-driven Joule heating and fast-response photothermal performance.Under the stimulation of a 3 V voltage and an optical power density of 320 mW cm^(-2),the surface temperatures of the FCFe/M membranes can reach up to 140.4 and 145.7℃,respectively.In brief,the FCFe/M membrane with anti-electromagnetic radiation and temperature regulation is an attractive candidate for the next generation of wearable electronics,EMI compatibility,visual heating,thermotherapy,and military and aerospace applications.
基金supported by Beijing Natural Science Foundation(No.2232062)the Fundamental Research Funds for the Central Universities (No.2652022006)。
文摘The Fenton method is an effective technology for the removal of organic materials from wastewater.In this work,an induced catalyst Fe_(3)O_(4) was synthesized by a hydrothermal method,and the modulation of the chemical composition of Fe_(3)O_(4) crystals was achieved under the microwave shock method with the same effect as that of calcination treatment.Fe_(3)O_(4) catalyst for the removal of the dye Rhodamine B (Rh B) from polluted wastewater under microwave (MW),H_(2)O_(2) system.The results showed that Fe_(3)O_(4) nanomicrospheres prepared by microwave shock exhibited superior catalytic activity under the conditions of 500 W,0.4 mol/L H_(2)O_(2) and10 mg/L Rh B,and the removal rate of Rh B reached 98.5%after 10 min.The Fe_(3)O_(4) catalysts also exhibited good stability and degradation efficiency.Electron paramagnetic resonance experiments confirmed that·OH plays a major role in the rapid degradation of Rh B.Under microwave action,the catalyst produces electron-hole pairs,in which the holes react with OH-produced by water ionisation to form·OH,and the microwave-treated Fe_(3)O_(4) produces more active species.Fe^(3+)and Fe^(2+)serve as microwave catalytic activity centers and Fenton catalytic activity centers,respectively.This research demonstrates that optimizing the Fe^(2+)/Fe^(3+) ratio significantly enhances the degradation efficiency of Rh B.This study presents novel views regarding the mechanism of microwave synergistic catalyst-induced Fenton.
基金supported by the National Natural Science Foundation of China (No.21976211).
文摘Norfloxacin is widely used owing to its strong bactericidal effect on Gram-negative bacteria.However,the residual norfloxacin in the environment can be biomagnified via food chain andmay damage the human liver and delay the bone development ofminors.Present work described a reliable and sensitive smartphone colorimetric sensing system based on cobaltdoped Fe_(3)O_(4) magnetic nanoparticles(Co-Fe_(3)O_(4) MNPs)for the visual detection of norfloxacin.Compared with Fe_(3)O_(4),Co-Fe_(3)O_(4) MNPs earned more remarkably peroxidase-like activity and TMB(colorless)was rapidly oxidized to oxTMB(blue)with the presence of H_(2)O_(2).Interestingly,the addition of low concentration of norfloxacin can accelerate the color reaction process of TMB,and blue deepening of the solution can be observed with the naked eye.However,after adding high concentration of norfloxacin,the activity of nanozymewas inhibited,resulting in the gradual fading of the solution.Based on this principle,a colorimetric sensor integrated with smartphone RGB mode was established.The visual sensor exhibited good linearity for norfloxacin monitoring in the range of 0.13-2.51μmol/L and 17.5-100μmol/L.The limit of visual detectionwas 0.08μmol/L.In the actualwater sample analysis,the spiked recoveries of norfloxacin were over the range of 95.7%-104.7%.These results demonstrated that the visual sensor was a convenient and fast method for the efficient and accurate detection of norfloxacin in water,which may have broad application prospect.
基金supports on the Project 52274306 from the National Natural Science Foundation of China are gratefully acknowledged.
文摘Understanding the phase equilibria of the Fe_(3)O_(4)-Cr_(2)O_(3)-CaO system is essential for the efficient recycling of stainless steel pickling sludge.The isothermal section of this system at 1473 K under oxygen partial pressure of 0.15 Pa was investigated.Key experiments on the relevant binary systems were conducted using a combination of equilibrium-quenching techniques,X-ray diffraction,high-resolution transmission electron microscope,and electron probe microanalysis.These systems were rigorously assessed using the CALPHAD(CALculation of Phase Diagram)method,incorporating the present experimental data.The liquid phase was modeled using the ionic two-sublattice model,represented as(Ca^(2+),Cr^(3+),Fe^(2+))P(O_(2)^(-),Va,FeO_(1.5))Q,where Va represents vacancy,and P and Q denote the number of sites on the cation and anion sublattices,respectively.To ensure electroneutrality,the values of P and Q adjust according to the composition of the mixture.From this,the isothermal section of the Fe_(3)O_(4)-Cr_(2)O_(3)-CaO system at 1473 K under the specified oxygen partial pressure was obtained based on the thermodynamic parameters of the binary systems.The present experimental data and calculation results hold significant implications for the comprehensive recycling of stainless steel pickling sludge.
基金the National Natural Science Foundation of China(31972173)the Program for Science&Technology Innovation Talents of Hunan Province(2022SK2100,2021RC4032,and 2019TP1029)the Ministry of Agriculture of the People’s Republic of China(GJFP2021)。
文摘The accumulation of heavy metals in mushrooms has presented a significant risk to human health,underscoring the importance of devising a portable and cost-effective method for detecting heavy metals.Thus,we have developed an electrochemical sensor based on 3-dimensional highly reduced graphene oxide(3D-HRGO)in conjunction with Fe_(3)O_(4)nanoparticles,enabling the simultaneous quantification of Cd^(2+),Pb^(2+),Cu^(2+),and Hg^(2+).The 3D-HRGO/Fe_(3)O_(4)nano-particles material prepared in this study was characterized and confirmed by multiple techniques,then dispersed in a simple and environmental dispersant,consist of 75%ethanol and 0.1%Nafion,and coating on a glass carbon electrode(GCE)to preparing a 3D-HRGO/Fe_(3)O_(4)/GCE sensor.The limit of detection(LOD)of 3D-HRGO/Fe_(3)O_(4)/GCE sensor for Cd^(2+),Pb^(2+),Cu^(2+),and Hg^(2+)in simultaneous detection were 0.2,0.6,0.6,and 0.9μg/L,respectively.The sensor demonstrates exceptional stability,reproducibility,anti-interference,and recovery rate.Furthermore,the electrochemical sensor was employed to detect heavy metals in actual mushrooms and validated through conventional methodologies.This study represents the pioneering utilization of 3D-HRGO/Fe_(3)O_(4)as a foundational material for an electrochemical sensor capable of simultaneous detection of multiple metals,thereby advancing the progress of on-site and expeditious detection techniques.
基金Funded by the Nation Natural Science Foundation of China(No.52304410)the Science Fund for Creative Research Groups of the National Natural Science Foundation of Hubei Province(No.2020CFA038)+2 种基金the Major Project of Hubei Province(Functional coating and materials,No.2023BAA003)the State Key Laboratory of Coking Coal Resources Green Exploitation(No.41040220201308)the Research Project of Yingcheng Xinjincheng Environmental Protection Technology Co.,Ltd(No.2023420612000754)。
文摘Octahedral Fe_(3)O_(4)-modified coke Fenton catalyst(Fe_(3)O_(4)/PCWQ)was prepared via in-situ one-pot oxidation method inspired by grapefruit peel,and characterized by SEM,EDS,XRD,XPS,FTIR,BET,VSM,and Raman,respectively.Fe_(3)O_(4)crystals was predominantly in octahedral morphology with an average particle size of 60 nm.Fe_(3)O_(4)/PCWQ exhibited graphene-like structure.The synergistic effect between oxygen functional group and Fe^(2+)/Fe^(3+)cycle in Fe_(3)O_(4)/PCWQ enhances the degradation performance of p-nitrophenol(P-NP).Under the optimal conditions(1.0 g/L catalyst,30 mmol/L H_(2)O_(2),pH 3.0,25℃),Fe_(3)O_(4)/PCWQ exhibits high degradation efficiency of P-NP(91.25%in 30 min and 98.21%in 180 min)and stability(90.72%after 6 cycles)with low iron leaching(<0.528 mg/L),following the quasi-first-order degradation kinetics.Fe_(3)O_(4)/PCWQ has better catalytic performance than pure Fe_(3)O_(4)under the action of H_(2)O_(2),and is an efficient,stable and repeatable green catalyst.
基金supported by the Chinese Agriculture Research System(No.CARS-35-06B)111 Project(No.B17030)the Sichuan Science and Technology Program(No.2021ZDZX0012).
文摘Due to its high efficiency,Fe(Ⅱ)-based catalytic oxidation has been one of the most popular types of technology for treating growing organic pollutants.A lot of chemical Fe sludge alongwith various refractory pollutantswas concomitantly produced,whichmay cause secondary environmental problemswithout proper disposal.We here innovatively proposed an effective method of achieving zero Fe sludge,reusing Fe resources(Fe recovery=100%)and advancing organics removal(final TOC removal>70%)simultaneously,based on the in situ formation of magnetic Ca-Fe layered double hydroxide(Fe_(3)O_(4)@CaFe-LDH)nano-material.Cations(Ca^(2+)and Fe^(3+))concentration(≥30 mmol/L)and their molar ratio(Ca:Fe≥1.75)were crucial to the success of the method.Extrinsic nano Fe_(3)O_(4)was designed to be involved in the Fe(Ⅱ)-catalytic wastewater treatment process,and was modified by oxidation intermediates/products(especially those with COO-structure),which promoted the co-precipitation of Ca^(2+)(originated from Ca(OH)_(2)added after oxidation process)and byproduced Fe^(3+)cations on its surface to in situ generate core-shell Fe_(3)O_(4)@CaFe-LDH.The oxidation products were further removed during Fe_(3)O_(4)@CaFe-LDH material formation via intercalation and adsorption.Thismethodwas applicable to many kinds of organicwastewater,such as bisphenol A,methyl orange,humics,and biogas slurry.The prepared magnetic and hierarchical CaFe-LDH nanocomposite material showed comparable application performance to the recently reported CaFe-LDHs.This work provides a new strategy for efficiently enhancing the efficiency and economy of Fe(Ⅱ)-catalyzed oxidative wastewater treatment by producing high value-added LDHs materials.
基金financial support from the National Natural Science Foundation of China(52272237,22279101 and 22172117)the Natural Science Foundation of Shaanxi(2020JC-41 and 2024JC-YBQN-0141)+2 种基金the Scientific Research Program Funded by the Education Department of Shaanxi Provincial Government(22JP056)the S&T Program of Energy Shaanxi Laboratory(ESLB202402)the Foshan Science and Technology Innovation Team Project(1920001004098)。
文摘In this work,for the first time,it is demonstrated that during the insertion/extraction of Na ions,the structural evolution at the Na_(4)site at a voltage range of 3-4 V is a key factor for the capacity decay of Na_(4)Fe_(3)(PO_(4))_(2)P_(2)O_(7)(NFPP).Herein,a strategy of introducing columnar potassium ions at the Na_(4)site is proposed to address the aforementioned challenge.As a cathode material for sodium-ion batteries,the K_(0.12)Na_(3.88)Fe_(3)(PO_(4))_(2)P_(2)O_(7)/C(K-NFPP)composite enhances the reversibility of Na_(4)extraction.Specifically,the K-NFPP exhibits an initial discharge capacity of 107.8 mAh g^(-1)at a high current density of 5 C,with a capacity retention of 91.4% after 2000 cycles,outperforming the pristine NFPP material(81.1 m Ah g^(-1)and 67.1%).At 5 C,the K-NFPP also retains 81.5% of the reversible capacity at 0.1 C,whereas the NFPP only retains 68.3%.Moreover,the K-NFPP-based full-cell delivers an initial capacity of 110.1 m Ah g^(-1)at 1 C,with a capacity retention of 90% after 100 cycles.It is found that in comparison to K-doping of the Na1,Na2,and Na3 sites,K-doping at the Na4 site effectively optimizes the band gap and stabilizes the crystal structure,thereby reducing lattice changes of FeO_(6)evolution during Na^(+)insertion/extraction.As a result,the introduction of columnar potassium ions significantly enhances the capacity contribution of the Na_(4)site,optimizes reaction kinetics,and effectively mitigates the capacity decay of NFPP cathodes.It is believed that this study offers a new entry point for the application of NFPP in high-voltage sodium storage.
基金supported by the National Key Research and Development Program of China(No.2022YFB2502000)the National Natural Science Foundation of China(Nos.U21A20332,51771076,U21A200970,52301266)the Science and Technology Planning Project of Guangzhou(No.2024A04J3332)。
文摘Mixed polyanion phosphate Na_(4)Fe_(3)(PO_(4))_(2)P_(2)O_(7)(NFPP)is regarded as the most promising cathode material for sodium-ion batteries(SIBs),due to its high structural stability and low-cost environmental friendliness.However,its intrinsic low conductivity and sluggish Na^(+)diffusion restricted the fast-charge and low-temperature sodium storage.Herein,an NFPP composite encapsulated by in-situ pyrolytic carbon and coupled with expanded graphite(NFPP@C/EG)was constructed via a sol-gel method followed by a ballmill procedure.Due to the dual-carbon modified strategy,this NFPP@C/EG only enhanced the electronic conductivity,but also endowed more channels for Na^(+)diffusion.As cathode for SIBs,the optimized NFPP(M-NFPP@C/EG)delivers excellent rate capability(capacity of~80.5 mAh/g at 50 C)and outstanding cycling stability(11000 cycles at 50 C with capacity retention of 89.85%).Additionally,cyclic voltammetry(CV)confirmed that its sodium storage behavior is pseudocapacitance-controlled,with in-situ electrochemical impedance spectroscopy(EIS)further elucidating improvements in electrode reaction kinetics.At lower temperatures(0℃),M-NFPP@C/EG demonstrated exceptional cycling performance(8800 cycles at 10 C with capacity retention of 95.81%).Moreover,pouch cells also exhibited excellent stability.This research demonstrates the feasibility of a dual carbon modification strategy in enhancing NFPP and proposes a low-cost,high-rate,and ultra-stable cathode material for SIBs.