Development of high-efficiency bifunctional oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)electrocatalysts is vital for the widespread application of zinc-air batteries(ZABs).However,it still remains...Development of high-efficiency bifunctional oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)electrocatalysts is vital for the widespread application of zinc-air batteries(ZABs).However,it still remains a great challenge to avoid the inhomogeneous distribution and aggregation of metal single-atomic active centers in the construction of bifunctional electrocatalysts with atomically dispersed multimetallic sites because of the common calcination method.Herein,we report a novel catalyst with phthalocyanine-assembled Fe-Co-Ni single-atomic triple sites dispersed on sulfur-doped graphene using a simple ultrasonic procedure without calcination,and X-ray absorption fine structure(XAFS),aberration-corrected scanning transmission electron microscopy(AC-STEM),and other detailed characterizations are performed to demonstrate the successful synthesis.The novel catalyst shows extraordinary bifunctional ORR/OER activities with a fairly low potential difference(ΔE=0.621 V)between the OER overpotential(Ej10=315 mV at 10 m A cm^(-2))and the ORR half-wave potential(Ehalf-wave=0.924 V).Moreover,the above catalyst shows excellent ZAB performance,with an outstanding specific capacity(786 mAh g^(-1)),noteworthy maximum power density(139 mW cm^(-2)),and extraordinary rechargeability(discharged and charged at 5 mA cm^(-2) for more than 1000 h).Theoretical calculations reveal the vital importance of the preferable synergetic coupling effect between adjacent active sites in the Fe-Co-Ni trimetallic single-atomic sites during the ORR/OER processes.This study provides a new avenue for the investigation of bifunctional electrocatalysts with atomically dispersed trimetallic sites,which is intended for enhancing the ORR/OER performance in ZABs.展开更多
采用油包水(W/O)微乳液法,以KBH4为还原剂,在水相-Triton X 100-异丙醇-环己烷组成的W/O微乳液中还原二价铁、钴、镍盐,合成Fe-Co-Ni合金纳米微粒。考察反应气氛、温度、时间和洗涤溶液对反应的影响,并用X射线衍射仪、扫描电子显微镜...采用油包水(W/O)微乳液法,以KBH4为还原剂,在水相-Triton X 100-异丙醇-环己烷组成的W/O微乳液中还原二价铁、钴、镍盐,合成Fe-Co-Ni合金纳米微粒。考察反应气氛、温度、时间和洗涤溶液对反应的影响,并用X射线衍射仪、扫描电子显微镜对合成的纳米微粒的形貌、结构进行检测。研究结果表明:在25-30℃的N2中反应1 h,得到的产物待丙酮破乳后用无水乙醇洗涤结果最佳。合成的Fe-Co-Ni合金是粒径为1-3 nm的球状微粒。展开更多
Thermal stability,crystallization behavior,Vickers hardness and magnetic properties of the Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5) bulk metallic glasses were investigated.The Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5) ...Thermal stability,crystallization behavior,Vickers hardness and magnetic properties of the Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5) bulk metallic glasses were investigated.The Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5) metallic glasses were fabricated by copper mold casting method.The thermal stability and crystallization behavior of the metallic glass rods were investigated by differential scanning calorimetry and isothermal experiments.Hardness measurements for samples annealed at different temperatures for different time were carried out at room temperature by the Vickers hardness tester,and magnetic measurements were performed at different temperatures by the vibrating sample magnetometer.It is shown that the addition of Ni does not play a positive role for enlarging ΔTx and GFA from parameter γ(=Tx/(Tg+Tl)),and it can,however,increase the activation energy in the initial stage of crystallization by changing the initial crystallization behavior.The minor addition of Ni can refine the crystal grain obtained from the full crystallization experiment.The primary crystallization causes the decrease of hardness in these alloys,and as the crystallization continues,the hardness in all samples increases instead due to the precipitation of carbide and boride.The annealing temperature has an obvious effect on magnetic properties of these alloys,and the minor addition of Ni can effectively prevent the alloy annealed at high temperature to transform from paramagnetic to ferromagnetic state.展开更多
通过在氩气中碳化含有乙酰丙酮金属盐的电纺聚丙烯腈纳米纤维合成了镶嵌(Fe1-xCox)0.8Ni0.2(x=0.25,0.50,0.75)合金纳米粒子的碳纳米纤维,用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、振动样品磁强计(VSM)和矢量网络分析仪(VNA)...通过在氩气中碳化含有乙酰丙酮金属盐的电纺聚丙烯腈纳米纤维合成了镶嵌(Fe1-xCox)0.8Ni0.2(x=0.25,0.50,0.75)合金纳米粒子的碳纳米纤维,用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、振动样品磁强计(VSM)和矢量网络分析仪(VNA)等对其物相、形貌、微观结构、静磁及电磁特性进行表征和分析,并根据传输线理论模拟计算了2~18 GHz频率范围内的微波吸收性能。结果表明:所制备的复合纳米纤维具有典型的铁磁特征,由无定形碳、石墨和面心立方结构Fe-Co-Ni合金三相组成,原位形成的合金纳米粒子沿纤维轴向均匀分布,且被有序石墨层所包覆。磁损耗和介电损耗间的协同作用及特殊的核/壳微观结构使仅含5%(w/w)的(Fe1-xCox)0.8Ni0.2/C复合纳米纤维的硅胶基吸波涂层表现出优异的微波吸收性能。当涂层厚度为1.1~5.0 mm时,x=0.25、0.50和0.75的样品最小反射损耗分别达到-78.5、-80.2和-63.4 d B,反射损耗在-20 d B以下的吸收带宽分别为14.9、14.8和14.5 GHz,几乎覆盖整个S波段至Ku波段。通过调节合金的组成可对材料的电磁特性及微波吸收性能进行一定程度的控制。展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.22305071,52472200,52271176,and52072114)the 111 Project(Grant No.D17007)+3 种基金Henan Center for Outstanding Overseas Scientists(Grant No.GZS2022017)the China Postdoctoral Science Foundation(Grant No.2022M721049)the Henan Province Key Research and Development Project(Grant No.231111520500)the Natural Science Foundation of Henan Province(Grant No.252300421556)。
文摘Development of high-efficiency bifunctional oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)electrocatalysts is vital for the widespread application of zinc-air batteries(ZABs).However,it still remains a great challenge to avoid the inhomogeneous distribution and aggregation of metal single-atomic active centers in the construction of bifunctional electrocatalysts with atomically dispersed multimetallic sites because of the common calcination method.Herein,we report a novel catalyst with phthalocyanine-assembled Fe-Co-Ni single-atomic triple sites dispersed on sulfur-doped graphene using a simple ultrasonic procedure without calcination,and X-ray absorption fine structure(XAFS),aberration-corrected scanning transmission electron microscopy(AC-STEM),and other detailed characterizations are performed to demonstrate the successful synthesis.The novel catalyst shows extraordinary bifunctional ORR/OER activities with a fairly low potential difference(ΔE=0.621 V)between the OER overpotential(Ej10=315 mV at 10 m A cm^(-2))and the ORR half-wave potential(Ehalf-wave=0.924 V).Moreover,the above catalyst shows excellent ZAB performance,with an outstanding specific capacity(786 mAh g^(-1)),noteworthy maximum power density(139 mW cm^(-2)),and extraordinary rechargeability(discharged and charged at 5 mA cm^(-2) for more than 1000 h).Theoretical calculations reveal the vital importance of the preferable synergetic coupling effect between adjacent active sites in the Fe-Co-Ni trimetallic single-atomic sites during the ORR/OER processes.This study provides a new avenue for the investigation of bifunctional electrocatalysts with atomically dispersed trimetallic sites,which is intended for enhancing the ORR/OER performance in ZABs.
文摘采用油包水(W/O)微乳液法,以KBH4为还原剂,在水相-Triton X 100-异丙醇-环己烷组成的W/O微乳液中还原二价铁、钴、镍盐,合成Fe-Co-Ni合金纳米微粒。考察反应气氛、温度、时间和洗涤溶液对反应的影响,并用X射线衍射仪、扫描电子显微镜对合成的纳米微粒的形貌、结构进行检测。研究结果表明:在25-30℃的N2中反应1 h,得到的产物待丙酮破乳后用无水乙醇洗涤结果最佳。合成的Fe-Co-Ni合金是粒径为1-3 nm的球状微粒。
基金Project(2012CB825700) supported by the National Basic Research Program of China
文摘Thermal stability,crystallization behavior,Vickers hardness and magnetic properties of the Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5) bulk metallic glasses were investigated.The Fe41Co7-xNixCr15Mo14C15B6Y2(x=0,1,3,5) metallic glasses were fabricated by copper mold casting method.The thermal stability and crystallization behavior of the metallic glass rods were investigated by differential scanning calorimetry and isothermal experiments.Hardness measurements for samples annealed at different temperatures for different time were carried out at room temperature by the Vickers hardness tester,and magnetic measurements were performed at different temperatures by the vibrating sample magnetometer.It is shown that the addition of Ni does not play a positive role for enlarging ΔTx and GFA from parameter γ(=Tx/(Tg+Tl)),and it can,however,increase the activation energy in the initial stage of crystallization by changing the initial crystallization behavior.The minor addition of Ni can refine the crystal grain obtained from the full crystallization experiment.The primary crystallization causes the decrease of hardness in these alloys,and as the crystallization continues,the hardness in all samples increases instead due to the precipitation of carbide and boride.The annealing temperature has an obvious effect on magnetic properties of these alloys,and the minor addition of Ni can effectively prevent the alloy annealed at high temperature to transform from paramagnetic to ferromagnetic state.
文摘通过在氩气中碳化含有乙酰丙酮金属盐的电纺聚丙烯腈纳米纤维合成了镶嵌(Fe1-xCox)0.8Ni0.2(x=0.25,0.50,0.75)合金纳米粒子的碳纳米纤维,用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、振动样品磁强计(VSM)和矢量网络分析仪(VNA)等对其物相、形貌、微观结构、静磁及电磁特性进行表征和分析,并根据传输线理论模拟计算了2~18 GHz频率范围内的微波吸收性能。结果表明:所制备的复合纳米纤维具有典型的铁磁特征,由无定形碳、石墨和面心立方结构Fe-Co-Ni合金三相组成,原位形成的合金纳米粒子沿纤维轴向均匀分布,且被有序石墨层所包覆。磁损耗和介电损耗间的协同作用及特殊的核/壳微观结构使仅含5%(w/w)的(Fe1-xCox)0.8Ni0.2/C复合纳米纤维的硅胶基吸波涂层表现出优异的微波吸收性能。当涂层厚度为1.1~5.0 mm时,x=0.25、0.50和0.75的样品最小反射损耗分别达到-78.5、-80.2和-63.4 d B,反射损耗在-20 d B以下的吸收带宽分别为14.9、14.8和14.5 GHz,几乎覆盖整个S波段至Ku波段。通过调节合金的组成可对材料的电磁特性及微波吸收性能进行一定程度的控制。