Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and ...Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and flammability,causing a spectrum of hazards to human health and environmental safety.Neoteric solvents have been recognized as potential alternatives to these harmful organic solvents.In the past two decades,several neoteric solvents have been proposed,including ionic liquids(ILs)and deep eutectic solvents(DESs).DESs have gradually become the focus of green solvents owing to several advantages,namely,low toxicity,degradability,and low cost.In this critical review,their classification,formation mechanisms,preparation methods,characterization technologies,and special physicochemical properties based on the most recent advancements in research have been systematically described.Subsequently,the major separation and purification applications of DESs in critical metal metallurgy were comprehensively summarized.Finally,future opportunities and challenges of DESs were explored in the current research area.In conclusion,this review provides valuable insights for improving our overall understanding of DESs,and it holds important potential for expanding separation and purification applications in critical metal metallurgy.展开更多
Copper nanosheets and sulfur particles were synthesized synchronously by electrolysis,after dissolving Cu_(2)S in ChCl-thiourea(TU)deep eutectic solvent(DES)system.The optimized electrolysis conditions of 0.9 V,80℃,a...Copper nanosheets and sulfur particles were synthesized synchronously by electrolysis,after dissolving Cu_(2)S in ChCl-thiourea(TU)deep eutectic solvent(DES)system.The optimized electrolysis conditions of 0.9 V,80℃,and 2 h resulted in the deposition of pure nano-sized copper sheets with a length of approximately 500 nm and a thickness of approximately 30 nm,and the production of sulfur particles with an average size of approximately 10μm.The morphology of the cathodic products was significantly influenced by the electrolysis voltage.When Cu_(2)S was introduced into ChCl-TU,it dissolved[CuCl_(2)]^(-)without disrupting the structure of the choline ion(Ch^(+)).As the electrolysis time increased,the copper deposition changed from wire to sheet growth,with the growth direction from radial to epitaxial along the substrate and back to radial.展开更多
The efficient separation and collection of ammonia(NH_(3))during NH_(3) synthesis process is essential to improve the economic efficiency and protect the environment.In this work,ethanolammonium hydrochloride(EtOHACl)...The efficient separation and collection of ammonia(NH_(3))during NH_(3) synthesis process is essential to improve the economic efficiency and protect the environment.In this work,ethanolammonium hydrochloride(EtOHACl)and phenol(PhOH)were used to prepare a novel class of deep eutectic solvents(DESs)with multiple active sites and low viscosities.The NH_(3) separation performance of EtOHACl+PhOH DESs was analyzed completely.It is figured out that the NH_(3) absorption rates in EtOHACl+PhOH DESs are very fast.The NH_(3) absorption capacities are very high and reach up to 5.52 and 10.74 mol·kg1 at 11.2 and 100.4 kPa under 298.2 K,respectively.In addition,the EtOHACl+PhOH DESs present highly selective absorption of NH_(3) over N_(2) and H_(2) and good regenerative properties after seven cycles of absorption/desorption.The intrinsic separation mechanism of NH_(3) by EtOHACl+PhOH DESs was further revealed by spectroscopic analysis and quantum chemistry calculations.展开更多
Pyromellitic acid(PMA)and trimellitic acid(TMA)are significant chemical raw materials and intermediates.They simultaneously exist in the industry processes of synthesis and are difficult to be separated.In this work,s...Pyromellitic acid(PMA)and trimellitic acid(TMA)are significant chemical raw materials and intermediates.They simultaneously exist in the industry processes of synthesis and are difficult to be separated.In this work,several kinds of biodegradable compounds were chosen as hydrogen bond acceptors(HBAs)to separate PMA and TMA mixtures from acetone solutions via forming deep eutectic solvent(DES).It has been found that all these compounds can separate PMA and TMA mixtures to obtain pure PMA or TMA.However,the interaction between HBAs and PMA or TMA is quite different.Choline chloride cannot extract TMA but can form a DES with PMA in acetone.Hexamethylenetetramine(HA)and L-carnitine(L-car)can form DESs with both PMA and TMA in acetone solution.But when L-car or HA is added,the extraction rate of PMA is larger than that of TMA until the extraction rate of PMA reach 100%,and pure TMA is left in the acetone solution.The selective separation mechanism was explored by infrared spectroscopy combined with quantum chemistry calculation,and the strength and site of the interaction between extractants with PMA and TMA were calculated.展开更多
It is found that the anomalous eutectics can be separated on macroscopic scale by flow caused by electromagnetic stirring, and the separated phase is the leading faceted phase with the solution entropy over 23 J/(mol&...It is found that the anomalous eutectics can be separated on macroscopic scale by flow caused by electromagnetic stirring, and the separated phase is the leading faceted phase with the solution entropy over 23 J/(mol·K). By using this technology, a new kind of composite pipe and gear with good abrasive properties were made without adding any reinforced particles. Emphases were paid on the researches about formation mechanism of separated eutectic and abrasive property of the composite pipe or gear. The result shows that the entropy of solution controlling the eutectic microstructure is also valid and useful as a criterion of separated eutectic, and the kind and its chemical scope of the off-eutectic used to make composite can be calculated according to this theory.展开更多
Deep eutectic solvents(DESs) were used for luminescence measurements in quantitative analysis of trivalent lanthanide ions and as solvents for light rare earth elements(LREE) in solid-liquid separation.The spectroscop...Deep eutectic solvents(DESs) were used for luminescence measurements in quantitative analysis of trivalent lanthanide ions and as solvents for light rare earth elements(LREE) in solid-liquid separation.The spectroscopic characteristics of lanthanide chlorides LnCl3(Ln=Eu,Tb),respectively their aquo complexes,are described in a comprehensive study that demonstrates the significant enhancement of the phosphorescence emission intensity in DESs as polar and weakly coordinating solvent.Several DESs stabilize the lanthanide ion luminescence against changes in temperature and moisture,which is advantageous compared with the use of ionic liquids.Small amounts of water lead in certain eutectic systems even to a further increase in phosphorescence emission intensity.By investigating the solubility of lanthanide sesquioxides Ln2 O3(Ln=La,Nd,Sm,Eu,Gd,Tb,Dy) in DESs,selectivities are identified that may be of use for the separation of LREE.展开更多
The viscosities of liquid Fe-4.30C and Fe-4.30C-Ce alloys were measured by oscillating crucible viscometer. The results show that viscosity of Fe-4.30C alloy changes from 5.50 to 8.30 MPa·s when the liquid is coo...The viscosities of liquid Fe-4.30C and Fe-4.30C-Ce alloys were measured by oscillating crucible viscometer. The results show that viscosity of Fe-4.30C alloy changes from 5.50 to 8.30 MPa·s when the liquid is cooled from 1425 ℃ to the melting point. The abnormity of viscosity of Fe-4.30C alloy near the melting point is reasonable due to the formation of graphite. The addition of cerium especially with content higher than 0.21% causes an evidently decrease in viscosity for eutectic alloy resulting from increase of free volume and size decrease of atom cluster in the liquids. It can be concended that the existence of C-Ce compound contributes to the discontinuous of viscosity at 1340~1370 ℃ for the Fe-4.30C-Ce alloy by experinments with differential scanning calorimeter.展开更多
Levulinic acid(LA)is one of the top-12 most promising biomass-based platform chemicals,which has a wide range of applications in a variety of fields.However,separation and purification of LA from aqueous solution or a...Levulinic acid(LA)is one of the top-12 most promising biomass-based platform chemicals,which has a wide range of applications in a variety of fields.However,separation and purification of LA from aqueous solution or actual hydrolysate continues to be a challenge.Among various downstream separation technologies,liquid-liquid extraction is a low-cost,effective,and simple process to separate LA.The key breakthrough lies in the development of extractants with high extraction efficiency,good hydrophobicity,and low cost.In this work,three hydrophobic deep eutectic solvents(DESs)based on tri-n-octylamine(TOA)as hydrogen bond acceptor(HBA)and alcohols(butanol,2-octanol,and menthol)as hydrogen bond donors(HBDs)were developed to extract LA from aqueous solution.The molar ratios of HBD and HBA,extraction temperature,contact time,solution pH,and initial LA concentration,DES/water volume ratios were systematically investigated.Compared with 2-octanol-TOA and menthol-TOA DES,the butanol-TOA DES exhibited the superior extraction performance for LA,with a maximum extraction efficiency of 95.79±1.4%.Moreover,the solution pH had a great impact on the LA extraction efficiency of butanol-TOA(molar ratio=3:1).It is worth noting that the extraction equilibrium time was less than 0.5 h.More importantly,the butanol-TOA(3:1)DES possesses good extraction abilities for low,medium,and high concentrations of LA.展开更多
Focusing on the use of imidazolium ionic liquids and quaternary ammonium salts-based deep eutectic solvents for the separation of phenols and nitrogen-containing heteroaromatics,the role of heteroaromatics as specific...Focusing on the use of imidazolium ionic liquids and quaternary ammonium salts-based deep eutectic solvents for the separation of phenols and nitrogen-containing heteroaromatics,the role of heteroaromatics as specific sites for hydrogen bond-based separation has been investigated.These environmentally friendly solvents are known for their ability to form hydrogen bonds with heteroatoms,a key aspect in separation processes.We quantified the hydrogen bond interaction energy to reach the threshold energy for efficient O-and N-heteroaromatics separation.This article provides an in-depth study of the structural nuances of different hydrogen bonding sites and their affinity properties while conducting a comparative evaluation of the separation efficiency of ionic liquids and deep eutectic solvents from a thermodynamic perspective.Results showed that phenols with dual hydrogen bonding recognition sites were easier to separate than nitrogen-containing heteroaromatics.Imidazolium ionic liquids were more suitable for the extraction of nonbasic nitrogen-containing heteroaromatics,and quaternary ammonium salts-based deep eutectic solvents are more effective for phenols and basic nitrogen-containing heteroaromatics,which was confirmed by Fourier transform infrared spectroscopy and empirical tests.Therefore,this study provides a theoretical basis for the strategy design and selection of extractants for the efficient separation of O-and N-containing aromatic compounds.展开更多
With more and more lithium-ion batteries(LIBs)being put into production and application,precious metals such as lithium and cobalt are scarce,so it is imminent to recover various strategic metal resources from spent L...With more and more lithium-ion batteries(LIBs)being put into production and application,precious metals such as lithium and cobalt are scarce,so it is imminent to recover various strategic metal resources from spent LIBs.Meanwhile,the complex and difficult problem of separating and recovering metals from leaching solutions has been an urgent question that needs to be resolved.In this work,a phosphoric acid-based deep eutectic solvent(DES)was developed for extracting metals from spent LIBs and one-step selectively separating and efficiently recovering transition metal.The prepared DES shows excellent extraction performance for Li(100%)and Co(92.8%)at 100°C.In addition,the extraction system can effectively separate and precipitate Co through its own components,avoiding the introduction of new precipitants and the destruction of the original composition structure of DES.This also contributes to the good cycle stability of the extraction system with excellent extraction performance for Li(94.3%)and Co(80.8%)after 5 cycles.This work proposes a green method for one-step selectively separating and recovering valuable metals from spent LIBs.展开更多
A hydrophobic carbon dots(Glc-OCDs)derived from octadecylamine and glucose were successfully synthesized for the first time and then grafted onto the porous silica surface by the“Nano-on-Micro”strategy,which was ser...A hydrophobic carbon dots(Glc-OCDs)derived from octadecylamine and glucose were successfully synthesized for the first time and then grafted onto the porous silica surface by the“Nano-on-Micro”strategy,which was served as a new stationary phase(Sil-Glc-OCDs)for reversed-phase liquid chromatography.The structure of this stationary phase was carefully verified by laser scanning confocal microscope,Fourier transform infrared spectrometry,elemental analysis,contact angle measurement,etc.Several analytes including seven polycyclic aromatic hydrocarbons,eight alkylbenzenes,eight phenols and seven sulfonamides can be well separated on this stationary phase.Better separation performance for certain analytes over commercial C_(18) column was obtained.Interestingly,this stationary phase exhibited excellent chromatographic selectivity in the separation of the isomers of tert‑butylbenzene,sec‑butylbenzene,isobutylbenzene and n-butylbenzene.In addition,this new Sil-Glc-OCDs column was also applied for detection of calycosin-7-glucoside,ononin,calycosin,formononetin,genistein and isorhamnetin in the extract of Radix Astragali,which were found that the concentration was 0.15 g/L,0.088 g/L,0.14 g/L,0.086 g/L,0.18 g/L and 0.29 g/L,respectively.We believe that this CDs-grafted silica materials are promising for chromatographic separation.展开更多
基金financially supported by the Original Exploration Project of the National Natural Science Foundation of China(No.52150079)the National Natural Science Foundation of China(Nos.U22A20130,U2004215,and 51974280)+1 种基金the Natural Science Foundation of Henan Province of China(No.232300421196)the Project of Zhongyuan Critical Metals Laboratory of China(Nos.GJJSGFYQ202304,GJJSGFJQ202306,GJJSGFYQ202323,GJJSGFYQ202308,and GJJSGFYQ202307)。
文摘Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and flammability,causing a spectrum of hazards to human health and environmental safety.Neoteric solvents have been recognized as potential alternatives to these harmful organic solvents.In the past two decades,several neoteric solvents have been proposed,including ionic liquids(ILs)and deep eutectic solvents(DESs).DESs have gradually become the focus of green solvents owing to several advantages,namely,low toxicity,degradability,and low cost.In this critical review,their classification,formation mechanisms,preparation methods,characterization technologies,and special physicochemical properties based on the most recent advancements in research have been systematically described.Subsequently,the major separation and purification applications of DESs in critical metal metallurgy were comprehensively summarized.Finally,future opportunities and challenges of DESs were explored in the current research area.In conclusion,this review provides valuable insights for improving our overall understanding of DESs,and it holds important potential for expanding separation and purification applications in critical metal metallurgy.
基金the financial support from the National Natural Science Foundation of China(Nos.51904005,52304362)the Key Research Foundation of University in Anhui Province,China(No.2023AH051113)+1 种基金the Key Laboratory of Ionic Rare Earth Resources and Environment,Ministry of Natural Resources,China(No.2022IRERE203)the Distinguished Young Research Project of Anhui Higher Education Institution,China(No.2023AH020017)。
文摘Copper nanosheets and sulfur particles were synthesized synchronously by electrolysis,after dissolving Cu_(2)S in ChCl-thiourea(TU)deep eutectic solvent(DES)system.The optimized electrolysis conditions of 0.9 V,80℃,and 2 h resulted in the deposition of pure nano-sized copper sheets with a length of approximately 500 nm and a thickness of approximately 30 nm,and the production of sulfur particles with an average size of approximately 10μm.The morphology of the cathodic products was significantly influenced by the electrolysis voltage.When Cu_(2)S was introduced into ChCl-TU,it dissolved[CuCl_(2)]^(-)without disrupting the structure of the choline ion(Ch^(+)).As the electrolysis time increased,the copper deposition changed from wire to sheet growth,with the growth direction from radial to epitaxial along the substrate and back to radial.
基金supported by the National Natural Science Foundation of China(22221005 and 22008033).
文摘The efficient separation and collection of ammonia(NH_(3))during NH_(3) synthesis process is essential to improve the economic efficiency and protect the environment.In this work,ethanolammonium hydrochloride(EtOHACl)and phenol(PhOH)were used to prepare a novel class of deep eutectic solvents(DESs)with multiple active sites and low viscosities.The NH_(3) separation performance of EtOHACl+PhOH DESs was analyzed completely.It is figured out that the NH_(3) absorption rates in EtOHACl+PhOH DESs are very fast.The NH_(3) absorption capacities are very high and reach up to 5.52 and 10.74 mol·kg1 at 11.2 and 100.4 kPa under 298.2 K,respectively.In addition,the EtOHACl+PhOH DESs present highly selective absorption of NH_(3) over N_(2) and H_(2) and good regenerative properties after seven cycles of absorption/desorption.The intrinsic separation mechanism of NH_(3) by EtOHACl+PhOH DESs was further revealed by spectroscopic analysis and quantum chemistry calculations.
基金financially supported by the National Natural Science Foundation of China(21676019 and 21776199).
文摘Pyromellitic acid(PMA)and trimellitic acid(TMA)are significant chemical raw materials and intermediates.They simultaneously exist in the industry processes of synthesis and are difficult to be separated.In this work,several kinds of biodegradable compounds were chosen as hydrogen bond acceptors(HBAs)to separate PMA and TMA mixtures from acetone solutions via forming deep eutectic solvent(DES).It has been found that all these compounds can separate PMA and TMA mixtures to obtain pure PMA or TMA.However,the interaction between HBAs and PMA or TMA is quite different.Choline chloride cannot extract TMA but can form a DES with PMA in acetone.Hexamethylenetetramine(HA)and L-carnitine(L-car)can form DESs with both PMA and TMA in acetone solution.But when L-car or HA is added,the extraction rate of PMA is larger than that of TMA until the extraction rate of PMA reach 100%,and pure TMA is left in the acetone solution.The selective separation mechanism was explored by infrared spectroscopy combined with quantum chemistry calculation,and the strength and site of the interaction between extractants with PMA and TMA were calculated.
文摘It is found that the anomalous eutectics can be separated on macroscopic scale by flow caused by electromagnetic stirring, and the separated phase is the leading faceted phase with the solution entropy over 23 J/(mol·K). By using this technology, a new kind of composite pipe and gear with good abrasive properties were made without adding any reinforced particles. Emphases were paid on the researches about formation mechanism of separated eutectic and abrasive property of the composite pipe or gear. The result shows that the entropy of solution controlling the eutectic microstructure is also valid and useful as a criterion of separated eutectic, and the kind and its chemical scope of the off-eutectic used to make composite can be calculated according to this theory.
基金Project supported by the ForCYCLE program of the Bavarian State Ministry of the Environment and Consumer Protection (BAF01SoFo-65211)。
文摘Deep eutectic solvents(DESs) were used for luminescence measurements in quantitative analysis of trivalent lanthanide ions and as solvents for light rare earth elements(LREE) in solid-liquid separation.The spectroscopic characteristics of lanthanide chlorides LnCl3(Ln=Eu,Tb),respectively their aquo complexes,are described in a comprehensive study that demonstrates the significant enhancement of the phosphorescence emission intensity in DESs as polar and weakly coordinating solvent.Several DESs stabilize the lanthanide ion luminescence against changes in temperature and moisture,which is advantageous compared with the use of ionic liquids.Small amounts of water lead in certain eutectic systems even to a further increase in phosphorescence emission intensity.By investigating the solubility of lanthanide sesquioxides Ln2 O3(Ln=La,Nd,Sm,Eu,Gd,Tb,Dy) in DESs,selectivities are identified that may be of use for the separation of LREE.
文摘The viscosities of liquid Fe-4.30C and Fe-4.30C-Ce alloys were measured by oscillating crucible viscometer. The results show that viscosity of Fe-4.30C alloy changes from 5.50 to 8.30 MPa·s when the liquid is cooled from 1425 ℃ to the melting point. The abnormity of viscosity of Fe-4.30C alloy near the melting point is reasonable due to the formation of graphite. The addition of cerium especially with content higher than 0.21% causes an evidently decrease in viscosity for eutectic alloy resulting from increase of free volume and size decrease of atom cluster in the liquids. It can be concended that the existence of C-Ce compound contributes to the discontinuous of viscosity at 1340~1370 ℃ for the Fe-4.30C-Ce alloy by experinments with differential scanning calorimeter.
基金supported by the Key Area Research&Development Program of Guangdong Province(2020B0101070001)the National Natural Science Foundation of China(21978053,51508547)。
文摘Levulinic acid(LA)is one of the top-12 most promising biomass-based platform chemicals,which has a wide range of applications in a variety of fields.However,separation and purification of LA from aqueous solution or actual hydrolysate continues to be a challenge.Among various downstream separation technologies,liquid-liquid extraction is a low-cost,effective,and simple process to separate LA.The key breakthrough lies in the development of extractants with high extraction efficiency,good hydrophobicity,and low cost.In this work,three hydrophobic deep eutectic solvents(DESs)based on tri-n-octylamine(TOA)as hydrogen bond acceptor(HBA)and alcohols(butanol,2-octanol,and menthol)as hydrogen bond donors(HBDs)were developed to extract LA from aqueous solution.The molar ratios of HBD and HBA,extraction temperature,contact time,solution pH,and initial LA concentration,DES/water volume ratios were systematically investigated.Compared with 2-octanol-TOA and menthol-TOA DES,the butanol-TOA DES exhibited the superior extraction performance for LA,with a maximum extraction efficiency of 95.79±1.4%.Moreover,the solution pH had a great impact on the LA extraction efficiency of butanol-TOA(molar ratio=3:1).It is worth noting that the extraction equilibrium time was less than 0.5 h.More importantly,the butanol-TOA(3:1)DES possesses good extraction abilities for low,medium,and high concentrations of LA.
基金support from the National Natural Science Foundation of China(22038008)the science and technology innovation project of China Shenhua Coal to Liquid and Chemical Company Limited(MZYHG-2021-01).
文摘Focusing on the use of imidazolium ionic liquids and quaternary ammonium salts-based deep eutectic solvents for the separation of phenols and nitrogen-containing heteroaromatics,the role of heteroaromatics as specific sites for hydrogen bond-based separation has been investigated.These environmentally friendly solvents are known for their ability to form hydrogen bonds with heteroatoms,a key aspect in separation processes.We quantified the hydrogen bond interaction energy to reach the threshold energy for efficient O-and N-heteroaromatics separation.This article provides an in-depth study of the structural nuances of different hydrogen bonding sites and their affinity properties while conducting a comparative evaluation of the separation efficiency of ionic liquids and deep eutectic solvents from a thermodynamic perspective.Results showed that phenols with dual hydrogen bonding recognition sites were easier to separate than nitrogen-containing heteroaromatics.Imidazolium ionic liquids were more suitable for the extraction of nonbasic nitrogen-containing heteroaromatics,and quaternary ammonium salts-based deep eutectic solvents are more effective for phenols and basic nitrogen-containing heteroaromatics,which was confirmed by Fourier transform infrared spectroscopy and empirical tests.Therefore,this study provides a theoretical basis for the strategy design and selection of extractants for the efficient separation of O-and N-containing aromatic compounds.
基金the financial support for the financial supports from the National Natural Science Foundation of China(grant Nos.21908082,22278426,21878133,and 22178154)the Natural Science Foundation of Jiangsu Province(BK20190854)+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB629)the China Postdoctoral Science Foundation(2021M701472)
文摘With more and more lithium-ion batteries(LIBs)being put into production and application,precious metals such as lithium and cobalt are scarce,so it is imminent to recover various strategic metal resources from spent LIBs.Meanwhile,the complex and difficult problem of separating and recovering metals from leaching solutions has been an urgent question that needs to be resolved.In this work,a phosphoric acid-based deep eutectic solvent(DES)was developed for extracting metals from spent LIBs and one-step selectively separating and efficiently recovering transition metal.The prepared DES shows excellent extraction performance for Li(100%)and Co(92.8%)at 100°C.In addition,the extraction system can effectively separate and precipitate Co through its own components,avoiding the introduction of new precipitants and the destruction of the original composition structure of DES.This also contributes to the good cycle stability of the extraction system with excellent extraction performance for Li(94.3%)and Co(80.8%)after 5 cycles.This work proposes a green method for one-step selectively separating and recovering valuable metals from spent LIBs.
基金financial support from Science and Technology Project of Science and Technology Bureau of Chengguan District in Lanzhou City(No.2020JSCX0033)National Natural Science Foundation of China(No.21822407)+1 种基金Youth Innovation Pro-motion Association CASthe National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT:Ministry of Science and ICT)(No.NRF-2019R1A2C1010032).
文摘A hydrophobic carbon dots(Glc-OCDs)derived from octadecylamine and glucose were successfully synthesized for the first time and then grafted onto the porous silica surface by the“Nano-on-Micro”strategy,which was served as a new stationary phase(Sil-Glc-OCDs)for reversed-phase liquid chromatography.The structure of this stationary phase was carefully verified by laser scanning confocal microscope,Fourier transform infrared spectrometry,elemental analysis,contact angle measurement,etc.Several analytes including seven polycyclic aromatic hydrocarbons,eight alkylbenzenes,eight phenols and seven sulfonamides can be well separated on this stationary phase.Better separation performance for certain analytes over commercial C_(18) column was obtained.Interestingly,this stationary phase exhibited excellent chromatographic selectivity in the separation of the isomers of tert‑butylbenzene,sec‑butylbenzene,isobutylbenzene and n-butylbenzene.In addition,this new Sil-Glc-OCDs column was also applied for detection of calycosin-7-glucoside,ononin,calycosin,formononetin,genistein and isorhamnetin in the extract of Radix Astragali,which were found that the concentration was 0.15 g/L,0.088 g/L,0.14 g/L,0.086 g/L,0.18 g/L and 0.29 g/L,respectively.We believe that this CDs-grafted silica materials are promising for chromatographic separation.