Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may de...Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may depend on the pathological process and cell types involved.Voltage-gated sodium channels(VGSCs)are essential ion channels for the generation of action potentials in neurons,and are involved in various neuroexcitation-related diseases.However,the effects of TGF-β1 on the functional properties of VGSCs and firing properties in cortical neurons remain unclear.In this study,we investigated the effects of TGF-β1 on VGSC function and firing properties in primary cortical neurons from mice.We found that TGF-β1 increased VGSC current density in a dose-and time-dependent manner,which was attributable to the upregulation of Nav1.3 expression.Increased VGSC current density and Nav1.3 expression were significantly abolished by preincubation with inhibitors of mitogen-activated protein kinase kinase(PD98059),p38 mitogen-activated protein kinase(SB203580),and Jun NH2-terminal kinase 1/2 inhibitor(SP600125).Interestingly,TGF-β1 significantly increased the firing threshold of action potentials but did not change their firing rate in cortical neurons.These findings suggest that TGF-β1 can increase Nav1.3 expression through activation of the ERK1/2-JNK-MAPK pathway,which leads to a decrease in the firing threshold of action potentials in cortical neurons under pathological conditions.Thus,this contributes to the occurrence and progression of neuroexcitatory-related diseases of the central nervous system.展开更多
Solid-state electrolytes(SSEs)have attracted much attention due to their high safety and cycling stability for lithium-ion batteries.However,the high interface impedance between the electrode and the solid-state elect...Solid-state electrolytes(SSEs)have attracted much attention due to their high safety and cycling stability for lithium-ion batteries.However,the high interface impedance between the electrode and the solid-state electrolyte hinders their practical application.In this work,the solid-liquid hybrid electrolyte S-Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)-LE05(S-LATP-LE05)(LATP:Li_(1.5)Al_(0.5)Ti_(1.5)(PO_(4))_(3))sheet is prepared by dropping liquid electrolyte(LE)with appropriate FeF_(2) into spark plasma sintering S-LATP(solid-liquid hybrid electrolyte),which shows high-density and high-ionic-conductivity(5.78×10^(-4) S/cm).When the amount of FeF_(2) is 0.5 wt%,the interfacial properties between the anode and electrolyte are improved,and the S-LATP is well protected by LiF-rich(solid electrolyte interface)(SEI)interface in cycling process.The Li|S-LATP-LE05|Li symmetric battery and full battery show better electrochemical performance and stability relatively.The overpotential of the Li|S-LATP-LE05|Li symmetric battery is smaller and shows more stable electrochemical performance after cycling for 350 h,revealing good compatibility with a lithium metal anode and can inhibit the growth of lithium dendrites effectively.The Li|S-LATP-LE05|LiFePO_(4) full battery delivers a specific discharge capacity of 160 mA·h/g at 0.2C for 50 cycles.The corresponding coulombic efficiency is about 99.9%and displays better rate performance compared with the battery without FeF_(2) LE.展开更多
基金supported by the Natural Science Foundation of Guangdong Province,Nos.2019A1515010649(to WC),2022A1515012044(to JS)the China Postdoctoral Science Foundation,No.2018M633091(to JS).
文摘Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may depend on the pathological process and cell types involved.Voltage-gated sodium channels(VGSCs)are essential ion channels for the generation of action potentials in neurons,and are involved in various neuroexcitation-related diseases.However,the effects of TGF-β1 on the functional properties of VGSCs and firing properties in cortical neurons remain unclear.In this study,we investigated the effects of TGF-β1 on VGSC function and firing properties in primary cortical neurons from mice.We found that TGF-β1 increased VGSC current density in a dose-and time-dependent manner,which was attributable to the upregulation of Nav1.3 expression.Increased VGSC current density and Nav1.3 expression were significantly abolished by preincubation with inhibitors of mitogen-activated protein kinase kinase(PD98059),p38 mitogen-activated protein kinase(SB203580),and Jun NH2-terminal kinase 1/2 inhibitor(SP600125).Interestingly,TGF-β1 significantly increased the firing threshold of action potentials but did not change their firing rate in cortical neurons.These findings suggest that TGF-β1 can increase Nav1.3 expression through activation of the ERK1/2-JNK-MAPK pathway,which leads to a decrease in the firing threshold of action potentials in cortical neurons under pathological conditions.Thus,this contributes to the occurrence and progression of neuroexcitatory-related diseases of the central nervous system.
基金Project(22XJ01007)supported by Xiangjiang Laboratory of Hunan Province,ChinaProject(52202308)supported by the National Natural Science Foundation of ChinaProject(2021RC2092)supported by Science and Technology Innovation Program of Hunan Province,China。
文摘Solid-state electrolytes(SSEs)have attracted much attention due to their high safety and cycling stability for lithium-ion batteries.However,the high interface impedance between the electrode and the solid-state electrolyte hinders their practical application.In this work,the solid-liquid hybrid electrolyte S-Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)-LE05(S-LATP-LE05)(LATP:Li_(1.5)Al_(0.5)Ti_(1.5)(PO_(4))_(3))sheet is prepared by dropping liquid electrolyte(LE)with appropriate FeF_(2) into spark plasma sintering S-LATP(solid-liquid hybrid electrolyte),which shows high-density and high-ionic-conductivity(5.78×10^(-4) S/cm).When the amount of FeF_(2) is 0.5 wt%,the interfacial properties between the anode and electrolyte are improved,and the S-LATP is well protected by LiF-rich(solid electrolyte interface)(SEI)interface in cycling process.The Li|S-LATP-LE05|Li symmetric battery and full battery show better electrochemical performance and stability relatively.The overpotential of the Li|S-LATP-LE05|Li symmetric battery is smaller and shows more stable electrochemical performance after cycling for 350 h,revealing good compatibility with a lithium metal anode and can inhibit the growth of lithium dendrites effectively.The Li|S-LATP-LE05|LiFePO_(4) full battery delivers a specific discharge capacity of 160 mA·h/g at 0.2C for 50 cycles.The corresponding coulombic efficiency is about 99.9%and displays better rate performance compared with the battery without FeF_(2) LE.