Metal halide perovskites,owing to their remarkable optoelectronic properties and broad application prospects,have emerged as a research hotspot in materials science and photovoltaics.In addressing challenges related t...Metal halide perovskites,owing to their remarkable optoelectronic properties and broad application prospects,have emerged as a research hotspot in materials science and photovoltaics.In addressing challenges related to energy loss,photoelectric conversion efficiency,and operational stability in perovskite solar cells(PSCs),various strategies have been proposed,such as improving perovskite crystallization,developing tandem architectures,and advancing interfacial engineering.However,the specific impact of these approaches on internal energy transfer and conversion mechanisms within PSCs remains insufficiently understood.This review systematically examines the relationship between energy and perovskite materials throughout the photon absorption to charge carrier transport process,with particular focus on key strategies for minimizing energy losses and their underlying influence on energy-level alignment-especially in the electron transport layer and hole transport layer.It summarizes optimal absorption conditions and contributing factors during energy transfer,alongside representative case studies of high-performing systems.By elucidating these mechanisms,this work offers valuable theoretical insights for optimizing energy-level alignment,reducing energy dissipation,and guiding experimental design in PSCs research.展开更多
Microwave-assisted rock-breaking technology,as a novel hybrid approach,is anticipated to facilitate the efficient excavation of complex rock formations.It is therefore crucial to understand the damage and failure mech...Microwave-assisted rock-breaking technology,as a novel hybrid approach,is anticipated to facilitate the efficient excavation of complex rock formations.It is therefore crucial to understand the damage and failure mechanisms of rocks that have been subjected to irradiation.In this study,uniaxial compression experiments were conducted on granite specimens after 1.4 kW microwave irradiation for varying durations.Furthermore,a numerical method was proposed to solve electromagnetic-thermal-mechanical coupling problems by integrating finite and discrete elements.The results demonstrated a differential temperature distribution(high temperature in the middle and low-temperature areas at the ends)in the granite specimens under microwave irradiation,which resulted in a notable reduction in their physical and mechanical properties.As the duration of irradiation increased,the rate of heating and the extent of strength reduction both diminished,while the morphology and distribution of cracks at ultimate failure became increasingly complex.The numerical method effectively addresses the simulation challenges associated with the electromagnetic selective heating of granite containing multiple polar minerals under microwave irradiation.This approach accounted for the non-uniform thermal expansion of the minerals and provided a comprehensive model of damage progression under compression.展开更多
基金supported by the National Natural Science Foundation of China(22202102,62474194,22425903,U24A20568)the National Key R&D Program of China(2023YFB4204500)the Jiangsu Provincial Departments of Science and Technology(BE2022023,BK20220010,and BZ2023060)。
文摘Metal halide perovskites,owing to their remarkable optoelectronic properties and broad application prospects,have emerged as a research hotspot in materials science and photovoltaics.In addressing challenges related to energy loss,photoelectric conversion efficiency,and operational stability in perovskite solar cells(PSCs),various strategies have been proposed,such as improving perovskite crystallization,developing tandem architectures,and advancing interfacial engineering.However,the specific impact of these approaches on internal energy transfer and conversion mechanisms within PSCs remains insufficiently understood.This review systematically examines the relationship between energy and perovskite materials throughout the photon absorption to charge carrier transport process,with particular focus on key strategies for minimizing energy losses and their underlying influence on energy-level alignment-especially in the electron transport layer and hole transport layer.It summarizes optimal absorption conditions and contributing factors during energy transfer,alongside representative case studies of high-performing systems.By elucidating these mechanisms,this work offers valuable theoretical insights for optimizing energy-level alignment,reducing energy dissipation,and guiding experimental design in PSCs research.
基金funded by the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYCX23_2744)the Fundamental Research Funds for the Central Universities(Grant No.2023XSCX051)the Graduate Innovation Program of China University of Mining and Technology(Grant No.2023WLKXJ182).
文摘Microwave-assisted rock-breaking technology,as a novel hybrid approach,is anticipated to facilitate the efficient excavation of complex rock formations.It is therefore crucial to understand the damage and failure mechanisms of rocks that have been subjected to irradiation.In this study,uniaxial compression experiments were conducted on granite specimens after 1.4 kW microwave irradiation for varying durations.Furthermore,a numerical method was proposed to solve electromagnetic-thermal-mechanical coupling problems by integrating finite and discrete elements.The results demonstrated a differential temperature distribution(high temperature in the middle and low-temperature areas at the ends)in the granite specimens under microwave irradiation,which resulted in a notable reduction in their physical and mechanical properties.As the duration of irradiation increased,the rate of heating and the extent of strength reduction both diminished,while the morphology and distribution of cracks at ultimate failure became increasingly complex.The numerical method effectively addresses the simulation challenges associated with the electromagnetic selective heating of granite containing multiple polar minerals under microwave irradiation.This approach accounted for the non-uniform thermal expansion of the minerals and provided a comprehensive model of damage progression under compression.