Nickel oxide(NiO)based gas sensors have at-tracted intense attention due to its high re-sponse to hydrogen sulfide(H_(2)S)gas.It has been demonstrated that the NiO sensors with exposed(111)facet exhibit excellent perf...Nickel oxide(NiO)based gas sensors have at-tracted intense attention due to its high re-sponse to hydrogen sulfide(H_(2)S)gas.It has been demonstrated that the NiO sensors with exposed(111)facet exhibit excellent perfor-mance,but the single-orientation NiO sensors with exposed(111)facet have rarely been studied.In this work,high quality(111)-ori-ented NiO epitaxial films were fabricated by pulsed laser deposition.Detailed crystalline structural information was revealed by using synchrotron based X-ray diffraction(XRD)technology.These NiO thin films show good se-lectivity for H_(2)S gas detection.Without further modification,the highest response to 100 ppm H_(2)S was measured to be 13.07 at 300℃,and limit of detection(LOD)could be as low as 186 ppb.Fitting of the electrical response curves during adsorption and desorption of H_(2)S gas indicates the two-site Langmuir kinetic processes.Combining with XPS and XAS measure-ments,the mechanism was discussed.Density functional theory(DFT)calculations show that NiO with exposed(111)facets has the most negative adsorption energy,indicating more sen-sitive to H_(2)S.These results could inspire more studies of metal oxide semiconductor-based gas sensors with specific surface.展开更多
Intermetallic Pt-based nanoparticles have displayed excellent activity for the oxygen reduction reaction(ORR)in fuel cells.However,it remains a great challenge to synthesize highly atomically ordered Pt-based nanopart...Intermetallic Pt-based nanoparticles have displayed excellent activity for the oxygen reduction reaction(ORR)in fuel cells.However,it remains a great challenge to synthesize highly atomically ordered Pt-based nanoparticle catalysts because the formation of an atomically ordered structure usually requires high-temperature annealing accompanied by grain sintering.Here we report the direct epitaxial growth of well-aligned,highly atomically ordered Pt3 Fe and PtFe nanoparticles(<5 nm)on single-walled carbon nanotube(SWCNT)bundles films.The long-range periodically symmetric van der Waals(vdW)interac-tions between SWCNT bundles and Pt-Fe nanoparticles play an important role in promoting not only the alignment ordering of inter-nanoparticles but also the atomic ordering of intra-nanoparticles.The ordered Pt_(3)Fe/SWCNT catalyst showed enhanced ORR catalytic performance of 2.3-fold higher mass activity and 3.1-fold higher specific activity than commercial Pt/C.Moreover,the formation of an interlocked inter-face and strong vdW interaction endow the Pt-Fe/SWCNT catalysts with extreme long-term stability in potential cycling and excellent anti-thermal sintering ability.展开更多
Among the synthesis techniques for graphene,chemical vapor deposition(CVD)enables the direct growth of graphene films on insulating substrates.Its advantages include uniform coverage,high quality,scalability,and compa...Among the synthesis techniques for graphene,chemical vapor deposition(CVD)enables the direct growth of graphene films on insulating substrates.Its advantages include uniform coverage,high quality,scalability,and compatibility with industrial processes.Graphene is chemically inert and has a zero-bandgap which poses a problem for its use as a functional layer,and nitrogen doping has become an important way to overcome this.Post-plasma treatment has been explored for the synthesis of nitrogen-doped graphene,but the procedures are intricate and not suitable for large-scale production.We report the direct synthesis of nitrogen-doped graphene on a 4-inch sapphire wafer by ethanol-assisted CVD employing pyridine as the carbon feedstock,where the nitrogen comes from the pyridine and the hydroxyl group in ethanol improves the quality of the graphene produced.Additionally,the types of nitrogen dopant produced and their effects on III-nitride epitaxy were also investigated,resulting in the successful illumination of LED devices.This work presents an effective synthesis strategy for the preparation of nitrogen-doped graphene,and provides a foundation for designing graphene functional layers in optoelectronic devices.展开更多
Two-dimensional materials have been widely used to tune the growth and energy-level alignment of perovskites.However,their incomplete passivation and chaotic usage amounts are not conducive to the preparation of highq...Two-dimensional materials have been widely used to tune the growth and energy-level alignment of perovskites.However,their incomplete passivation and chaotic usage amounts are not conducive to the preparation of highquality perovskite films.Herein,we succeeded in obtaining higher-quality CsPbBr_(3)films by introducing large-area monolayer graphene as a stable physical overlay on top of TiO_(2)substrates.Benefiting from the inert and atomic smooth graphene surface,the CsPbBr_(3)film grown on top by the van der Waal epitaxy has higher crystallinity,improved(100)orientation,and an average domain size of up to 1.22μm.Meanwhile,a strong downward band bending is observed at the graphene/perovskite interface,improving the electron extraction to the electron transport layers(ETL).As a result,perovskite film grown on graphene has lower photoluminescence(PL)intensity,shorter carrier lifetime,and fewer defects.Finally,a photovoltaic device based on epitaxy CsPbBr_(3)film is fabricated,exhibiting power conversion efficiency(PCE)of up to 10.64%and stability over 2000 h in the air.展开更多
The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition rem...The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration.Herein,we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate.The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg,establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization.Moreover,the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale.Taking inspiration from the“blockchain”concept prevalent in the realm of big data,we seamlessly integrated a conductive polypyrrole framework,acting as a connecting“chain,”to interlink the“blocks”comprising the MgMOF cavities.This innovative design significantly amplified charge‐transfer efficiency,thereby increasing overall electrochemical kinetics.The resulting architecture(MgMOF@PPy@CC)served as an exceptional host for heteroepitaxial Mg electrodeposition,showcasing remarkable electrostripping/plating kinetics and excellent cycling performance.Surprisingly,a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions(10mAcm^(–2)),maintaining operation for an extended 1200 h,surpassing previously reported benchmarks.Significantly,on coupling the MgMOF@PPy@CC anode with a Mo_(6)S_(8) cathode,the assembled battery showed an extended lifespan of 10,000 cycles at 70 C,with an outstanding capacity retention of 96.23%.This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic framework(MOF)substrates,paving the way toward the advancement of cuttingedge batteries.展开更多
In recent years,there has been a significant increase in research focused on the growth of large-area single crystals.Rajan et al.[1]recently achieved the growth of large-area monolayers of transition-metal chalcogeni...In recent years,there has been a significant increase in research focused on the growth of large-area single crystals.Rajan et al.[1]recently achieved the growth of large-area monolayers of transition-metal chalcogenides through assisted nucleation.The quality of molecular beam epitaxy(MBE)-grown two-dimensional(2D)materials can be greatly enhanced by using sacrificial species deposited simultaneously from an electron beam evaporator during the growth process.This technique notably boosts the nucleation rate of the target epitaxial layer,resulting in large,homogeneous monolayers with improved quasiparticle lifetimes and fostering the development of epitaxial van der Waals heterostructures.Additionally,micrometer-sized silver films have been formed at the air-water interface by directly depositing electrospray-generated silver ions onto an aqueous dispersion of reduced graphene oxide under ambient conditions[2].展开更多
The second-order backward differential formula(BDF2)and the scalar auxiliary variable(SAV)approach are applied to con‐struct the linearly energy stable numerical scheme with the variable time steps for the epitaxial ...The second-order backward differential formula(BDF2)and the scalar auxiliary variable(SAV)approach are applied to con‐struct the linearly energy stable numerical scheme with the variable time steps for the epitaxial thin film growth models.Under the stepratio condition 0<τ_(n)/τ_(n-1)<4.864,the modified energy dissipation law is proven at the discrete levels with regardless of time step size.Nu‐merical experiments are presented to demonstrate the accuracy and efficiency of the proposed numerical scheme.展开更多
We introduce a novel method to create mid-infrared(MIR)thermal emitters using fully epitaxial,metal-free structures.Through the strategic use of epsilon-near-zero(ENZ)thin films in InAs layers,we achieve a narrow-band...We introduce a novel method to create mid-infrared(MIR)thermal emitters using fully epitaxial,metal-free structures.Through the strategic use of epsilon-near-zero(ENZ)thin films in InAs layers,we achieve a narrow-band,wide-angle,and p-polarized thermal emission spectra.This approach,employing molecular beam epitaxy,circumvents the complexities associated with current layered structures and yields temperature-resistant emission wavelengths.Our findings contribute a promising route towards simpler,more efficient MIR optoelectronic devices.展开更多
We report molecular beam epitaxial growth and electrical and ultraviolet light emitting properties of(AlN)m/(GaN)n superlattices(SLs),where m and n represent the numbers of monolayers.Clear satellite peaks observed in...We report molecular beam epitaxial growth and electrical and ultraviolet light emitting properties of(AlN)m/(GaN)n superlattices(SLs),where m and n represent the numbers of monolayers.Clear satellite peaks observed in XRD 2θ-ωscans and TEM images evidence the formation of clear periodicity and atomically sharp interfaces.For(AlN)m/(GaN)n SLs with an average Al composition of 50%,we have obtained an electron density up to 4.48×10^(19)cm^(-3)and a resistivity of 0.002Ω·cm,and a hole density of 1.83×10^(18)cm^(-3)with a resistivity of 3.722Ω·cm,both at room temperature.Furthermore,the(AlN)m/(GaN)n SLs exhibit a blue shift for their photoluminescence peaks,from 403 nm to 318 nm as GaN is reduced from n=11 to n=4 MLs,reaching the challenging UVB wavelength range.The results demonstrate that the(AlN)m/(GaN)n SLs have the potential to enhance the conductivity and avoid the usual random alloy scattering of the high-Al-composition ternary AlGaN,making them promising functional components in both UVB emitter and AlGaN channel high electron mobility transistor applications.展开更多
With the device feature's size miniaturization in very large scale integrated circuit and ultralarge scale integrated circuit towards the sub\|micron and beyond level, the next generation of IC device requires s...With the device feature's size miniaturization in very large scale integrated circuit and ultralarge scale integrated circuit towards the sub\|micron and beyond level, the next generation of IC device requires silicon wafers with more improved electrical characteristics and reliability as well as a high perfection of the wafer surface. Compared with the polished wafer with a relatively high density of crystal originated defects (e. g. COPs), silicon epi\|wafers can meet such high requirements. The current development of researches on the 150mm silicon epi\|wafers for advanced IC applications is described. The P/P\++ CMOS silicon epi\|wafers were fabricated on a PE2061 Epitaxial Reactor (made by Italian LPE Company). The material parameters of epi\|wafers, such as epi\|defects, uniformity of thickness and resistivity, transition width, and minority carrier generation lifetime for epi\|layer were characterized in detail. It is demonstrated that the 150mm silicon epi\|wafers on PE2061 can meet the stringent requirements for the advanced IC applications.展开更多
A high voltage BCD process using thin epitaxial technology is developed for high voltage applications. Compared to conventional thick expitaxial technology, the thickness of the n-type epitaxial layer is reduced to 9...A high voltage BCD process using thin epitaxial technology is developed for high voltage applications. Compared to conventional thick expitaxial technology, the thickness of the n-type epitaxial layer is reduced to 9μm,and the diffusion processing time needed for forming junction isolation diffusions is substantially reduced. The isolation diffusions have a smaller lateral extent and occupy less chip area. High voltage double RESURF LD- MOS with a breakdown voltage of up to 900V,as well as low voltage CMOS and BJT,are achieved using this high voltage BCD compatible process. An experimental high voltage half bridge gate drive IC using a coupled level shift structure is also successfully implemented, and the high side floating offset voltage in the half bridge drive IC is 880V. The major features of this process for high voltage applications are also clearly demonstrated.展开更多
Based on a new semi empirical analytical method, namely equivalent doping transformation, the breakdown voltage and the peak field of the epitaxial diffused punch through junction have been obtained. The basic prin...Based on a new semi empirical analytical method, namely equivalent doping transformation, the breakdown voltage and the peak field of the epitaxial diffused punch through junction have been obtained. The basic principle of this method is introduced and a set of breakdown voltage and peak field plots are provided for the optimum design of the low voltage power devices. It shows that the analytical results coincide with the previous numerical simulation well.展开更多
To handle the thermal budget in SiGe BiCMOS process, a non-selective graphic epitaxial technology using molecular beam epitaxial (MBE) has been developed. SEM, AFM, XRD, and dislocation density measurements are carr...To handle the thermal budget in SiGe BiCMOS process, a non-selective graphic epitaxial technology using molecular beam epitaxial (MBE) has been developed. SEM, AFM, XRD, and dislocation density measurements are carried out. The SiGe film's RMS roughness is 0.45nm, and dislocation density is 0.3×10^3cm^-2-1.2×10^3cm^-2. No dislocation accumulation exists on the boundary of the windows; this indicates the high quality of the SiGe film. The experiment results show that the technology presented in this paper meets the fabrication requirements of SiGe BiCMOS.展开更多
The columnar-to-equiaxed transition(CET)or the formation of stray grains in the laser melting deposition is the least desirable for the repair of single-crystal blades.In this work,the forced water-cooling was conduct...The columnar-to-equiaxed transition(CET)or the formation of stray grains in the laser melting deposition is the least desirable for the repair of single-crystal blades.In this work,the forced water-cooling was conducted on a single-crystal Rene N5 substrate during the direct energy deposition(DED).The single track remelting,one-layer,two-layer,and eight-layer depositions were investigated to explore the grain growth mechanism.The solidification conditions of the DED process,including temperature field,temperature gradient,and solidification speed,were numerically analyzed by a finite element model.The single-track remelting results showed that the fraction of columnar crystal regions increases from55.81%in the air-cooled sample to 77.14%in the water-cooled one.The single-track deposits of one-and two-layer have the same trend,where the proportion of columnar crystal height was higher under the forced water-cooled condition.The electron backscattered diffraction(EBSD)grain-structure maps of an eight-layer deposit show that the epitaxial growth height increases from 1 mm in the air-cooling sample to 1.5 mm in the water-cooling one.The numerical results showed that the tempe rature gradient in[0011 direction was significantly increased by using forced water-cooling.In conclusion,the in-situ substrate cooling can become a potential method to promote epitaxial growth during DED via the influence on CET occurrence.展开更多
In the past few decades,numerous high-performance silicon(Si)photonic devices have been demonstrated.Si,as a photonic platform,has received renewed interest in recent years.Efficient Si-basedⅢ–Ⅴquantum-dot(QDs)lase...In the past few decades,numerous high-performance silicon(Si)photonic devices have been demonstrated.Si,as a photonic platform,has received renewed interest in recent years.Efficient Si-basedⅢ–Ⅴquantum-dot(QDs)lasers have long been a goal for semiconductor scientists because of the incomparable optical properties of Ⅲ–Ⅴcompounds.Although the material dissimilarity betweenⅢ–Ⅴmaterial and Si hindered the development of monolithic integrations for over 30 years,considerable breakthroughs happened in the 2000s.In this paper,we review recent progress in the epitaxial growth of various Ⅲ–ⅤQD lasers on both offcut Si substrate and on-axis Si(001)substrate.In addition,the fundamental challenges in monolithic growth will be explained together with the superior characteristics of QDs.展开更多
An 8 mm-high NiCoCrAlYTa coating was epitaxially built-up on a directionally solidified (DS) Ni-based superalloy blade tip by electro-spark deposition.Epitaxial morphologies of the coating and its microstructural char...An 8 mm-high NiCoCrAlYTa coating was epitaxially built-up on a directionally solidified (DS) Ni-based superalloy blade tip by electro-spark deposition.Epitaxial morphologies of the coating and its microstructural characteristics were investigated by means of SEM,XRD and TEM etc.It is observed that the fine column-like dendrites originated from the γ'-particles or γ'-clusters of the DS substrate and are un-continuously coarsened.The β-phase particles precipitate and grow eutectically with the γ-phase.The orientation of fine column dendrites depends on electro-spark deposition processing parameters and the microstructure can be characterized with superfine γ and β phases.展开更多
A nickel-based superalloy was deposited onto a single crystal substrate based on epitaxial laser metal forming (E-LMF). The microstructure development in two depositions has been researched. For the first time, the ...A nickel-based superalloy was deposited onto a single crystal substrate based on epitaxial laser metal forming (E-LMF). The microstructure development in two depositions has been researched. For the first time, the crystal orientation of dendrites varying beyond 20° was found when the dendrites deflected in deposition. In addition, a new grain boundary was found between different orientation dendrites in a grain, and the detected grain boundary angle was 23°. The result shows that flowing field in laser pool is responsible for this phenomenon.展开更多
The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity,in which the modulated electronic states and tuned adsorption behaviors are conduci...The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity,in which the modulated electronic states and tuned adsorption behaviors are conducive to the enhancement of electrocatalytic activity.Herein,theoretical simulations first disclose the charge transfer trend and reinforced inherent electron conduction around the epitaxial heterointerface between Ru clusters and Ni_(3)N substrate(cRu-Ni_(3)N),thus leading to the optimized adsorption behaviors and reduced activation energy barriers.Subsequently,the defectrich nanosheets with the epitaxially grown cRu-Ni_(3)N heterointerface are successfully constructed.Impressively,by virtue of the superiority of intrinsic activity and reaction kinetics,such unique epitaxial heterostructure exhibits remarkable bifunctional catalytic activity toward electrocatalytic OER(226 mV@20 mA cm^(−2))and HER(32 mV@10 mA cm^(−2))in alkaline media.Furthermore,it also shows great application prospect in alkaline freshwater and seawater splitting,as well as solar-to-hydrogen integrated system.This work could provide beneficial enlightenment for the establishment of advanced electrocatalysts with epitaxial heterointerfaces.展开更多
Supported nickel catalysts are promising candidates for dry reforming of methane, but agglomeration of Ni^(0) and coke deposition hinder the industrial applications. Herein, we report a novel interface-directed synthe...Supported nickel catalysts are promising candidates for dry reforming of methane, but agglomeration of Ni^(0) and coke deposition hinder the industrial applications. Herein, we report a novel interface-directed synthetic approach to construct distinct metal ensembles by carefully tuning the compositions of the carriers. A Zr-Mn-Zn ternary oxide-supported Ni catalyst, together with the respective binary oxide-supported analogues, was synthesized by adopting a sequential co-precipitation and wetness impregnation method. Combined characterization techniques identify distinct catalyst models, including (i) conventional NiO nanoparticles with different sizes on Zr-Mn and Zr-Zn, and (ii) epitaxially growing NiO ensembles of a few nanometers thickness at the periphery of ZnO_(x) particles. These catalysts exhibit divergent responses in the catalytic testing, with the ternary oxide system significantly outperforming the binary analogues. The strong electronic interactions between Mn-Ni increase Ni dispersion and the activity while the stability is strengthened upon Zn addition. Both high activity, high selectivity, and remarkable stability are attained upon co-adding Mn and Zn. The interfaces between Ni and Zr-Mn-Zn rather than the physical contacts of individual oxide-supported analogues through mechanical mixing are keys for the outstanding performance.展开更多
Superconductivity (SC) is one of the most intriguing physical phenomena in nature. Nucleation of SC has long been considered highly unfavorable if not impossible near ferromagnetism, in low dimensionality and, above...Superconductivity (SC) is one of the most intriguing physical phenomena in nature. Nucleation of SC has long been considered highly unfavorable if not impossible near ferromagnetism, in low dimensionality and, above all, out of non-superconductor. Here we report observation of SC with TC near 4K in Ni/Bi bilayers that defies all known paradigms of superconductivity, where neither ferromagnetic Ni film nor rhombohedra Bi film is superconducting in isolation. This highly unusual SC is independent of the growth order (Ni/Bi or Bi/Ni), but highly sensitive to the constituent layer thicknesses. Most importantly, the SC, distinctively non-s pairing, is triggered from, but does not occur at, the Bi/Ni interface. Using point contact Andreev reflection, we show evidences that the unique SC, naturally compatible with magnetism, is triplet p-wave pairing.展开更多
基金supported by the National Key Research and Development Program of China(No.2022YFA1603902)the National Natural Science Foundation of China(No.12175235,No.62271462,and No.12004407)。
文摘Nickel oxide(NiO)based gas sensors have at-tracted intense attention due to its high re-sponse to hydrogen sulfide(H_(2)S)gas.It has been demonstrated that the NiO sensors with exposed(111)facet exhibit excellent perfor-mance,but the single-orientation NiO sensors with exposed(111)facet have rarely been studied.In this work,high quality(111)-ori-ented NiO epitaxial films were fabricated by pulsed laser deposition.Detailed crystalline structural information was revealed by using synchrotron based X-ray diffraction(XRD)technology.These NiO thin films show good se-lectivity for H_(2)S gas detection.Without further modification,the highest response to 100 ppm H_(2)S was measured to be 13.07 at 300℃,and limit of detection(LOD)could be as low as 186 ppb.Fitting of the electrical response curves during adsorption and desorption of H_(2)S gas indicates the two-site Langmuir kinetic processes.Combining with XPS and XAS measure-ments,the mechanism was discussed.Density functional theory(DFT)calculations show that NiO with exposed(111)facets has the most negative adsorption energy,indicating more sen-sitive to H_(2)S.These results could inspire more studies of metal oxide semiconductor-based gas sensors with specific surface.
基金supported by the National Natural Science Foundation of China(grant Nos.52073290 and 51927803)the Liaoning Province Science and Technology Plan Project(No.2022-MS-011)the Shenyang science and technology plan project(23-407-3-23).
文摘Intermetallic Pt-based nanoparticles have displayed excellent activity for the oxygen reduction reaction(ORR)in fuel cells.However,it remains a great challenge to synthesize highly atomically ordered Pt-based nanoparticle catalysts because the formation of an atomically ordered structure usually requires high-temperature annealing accompanied by grain sintering.Here we report the direct epitaxial growth of well-aligned,highly atomically ordered Pt3 Fe and PtFe nanoparticles(<5 nm)on single-walled carbon nanotube(SWCNT)bundles films.The long-range periodically symmetric van der Waals(vdW)interac-tions between SWCNT bundles and Pt-Fe nanoparticles play an important role in promoting not only the alignment ordering of inter-nanoparticles but also the atomic ordering of intra-nanoparticles.The ordered Pt_(3)Fe/SWCNT catalyst showed enhanced ORR catalytic performance of 2.3-fold higher mass activity and 3.1-fold higher specific activity than commercial Pt/C.Moreover,the formation of an interlocked inter-face and strong vdW interaction endow the Pt-Fe/SWCNT catalysts with extreme long-term stability in potential cycling and excellent anti-thermal sintering ability.
基金National Natural Science Foundation of China(T2188101)。
文摘Among the synthesis techniques for graphene,chemical vapor deposition(CVD)enables the direct growth of graphene films on insulating substrates.Its advantages include uniform coverage,high quality,scalability,and compatibility with industrial processes.Graphene is chemically inert and has a zero-bandgap which poses a problem for its use as a functional layer,and nitrogen doping has become an important way to overcome this.Post-plasma treatment has been explored for the synthesis of nitrogen-doped graphene,but the procedures are intricate and not suitable for large-scale production.We report the direct synthesis of nitrogen-doped graphene on a 4-inch sapphire wafer by ethanol-assisted CVD employing pyridine as the carbon feedstock,where the nitrogen comes from the pyridine and the hydroxyl group in ethanol improves the quality of the graphene produced.Additionally,the types of nitrogen dopant produced and their effects on III-nitride epitaxy were also investigated,resulting in the successful illumination of LED devices.This work presents an effective synthesis strategy for the preparation of nitrogen-doped graphene,and provides a foundation for designing graphene functional layers in optoelectronic devices.
基金funded by the UM’s research funds(MYRG2020-00283-IAPME,MYRG2022-00266-IAPME,and MYRG-GRG2023-00224-IAPME-UMDF)the Science and Technology Development Fund,Macao SAR(FDCT 0006/2021/AKP,FDCT 0096/2020/A2,0013/2021/AMJ,and 0082/2022/A2)City University of Hong Kong(Project No.9020002)
文摘Two-dimensional materials have been widely used to tune the growth and energy-level alignment of perovskites.However,their incomplete passivation and chaotic usage amounts are not conducive to the preparation of highquality perovskite films.Herein,we succeeded in obtaining higher-quality CsPbBr_(3)films by introducing large-area monolayer graphene as a stable physical overlay on top of TiO_(2)substrates.Benefiting from the inert and atomic smooth graphene surface,the CsPbBr_(3)film grown on top by the van der Waal epitaxy has higher crystallinity,improved(100)orientation,and an average domain size of up to 1.22μm.Meanwhile,a strong downward band bending is observed at the graphene/perovskite interface,improving the electron extraction to the electron transport layers(ETL).As a result,perovskite film grown on graphene has lower photoluminescence(PL)intensity,shorter carrier lifetime,and fewer defects.Finally,a photovoltaic device based on epitaxy CsPbBr_(3)film is fabricated,exhibiting power conversion efficiency(PCE)of up to 10.64%and stability over 2000 h in the air.
基金National Natural Science Foundation of China,Grant/Award Number:31770608Postgraduate Research&Practice Innovation Program of Jiangsu Province,Grant/Award Number:KYCX22_1081Jiangsu Specially‐appointed Professorship Program,Grant/Award Number:Sujiaoshi[2016]20。
文摘The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration.Herein,we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate.The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg,establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization.Moreover,the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale.Taking inspiration from the“blockchain”concept prevalent in the realm of big data,we seamlessly integrated a conductive polypyrrole framework,acting as a connecting“chain,”to interlink the“blocks”comprising the MgMOF cavities.This innovative design significantly amplified charge‐transfer efficiency,thereby increasing overall electrochemical kinetics.The resulting architecture(MgMOF@PPy@CC)served as an exceptional host for heteroepitaxial Mg electrodeposition,showcasing remarkable electrostripping/plating kinetics and excellent cycling performance.Surprisingly,a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions(10mAcm^(–2)),maintaining operation for an extended 1200 h,surpassing previously reported benchmarks.Significantly,on coupling the MgMOF@PPy@CC anode with a Mo_(6)S_(8) cathode,the assembled battery showed an extended lifespan of 10,000 cycles at 70 C,with an outstanding capacity retention of 96.23%.This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic framework(MOF)substrates,paving the way toward the advancement of cuttingedge batteries.
文摘In recent years,there has been a significant increase in research focused on the growth of large-area single crystals.Rajan et al.[1]recently achieved the growth of large-area monolayers of transition-metal chalcogenides through assisted nucleation.The quality of molecular beam epitaxy(MBE)-grown two-dimensional(2D)materials can be greatly enhanced by using sacrificial species deposited simultaneously from an electron beam evaporator during the growth process.This technique notably boosts the nucleation rate of the target epitaxial layer,resulting in large,homogeneous monolayers with improved quasiparticle lifetimes and fostering the development of epitaxial van der Waals heterostructures.Additionally,micrometer-sized silver films have been formed at the air-water interface by directly depositing electrospray-generated silver ions onto an aqueous dispersion of reduced graphene oxide under ambient conditions[2].
文摘The second-order backward differential formula(BDF2)and the scalar auxiliary variable(SAV)approach are applied to con‐struct the linearly energy stable numerical scheme with the variable time steps for the epitaxial thin film growth models.Under the stepratio condition 0<τ_(n)/τ_(n-1)<4.864,the modified energy dissipation law is proven at the discrete levels with regardless of time step size.Nu‐merical experiments are presented to demonstrate the accuracy and efficiency of the proposed numerical scheme.
文摘We introduce a novel method to create mid-infrared(MIR)thermal emitters using fully epitaxial,metal-free structures.Through the strategic use of epsilon-near-zero(ENZ)thin films in InAs layers,we achieve a narrow-band,wide-angle,and p-polarized thermal emission spectra.This approach,employing molecular beam epitaxy,circumvents the complexities associated with current layered structures and yields temperature-resistant emission wavelengths.Our findings contribute a promising route towards simpler,more efficient MIR optoelectronic devices.
基金Project supported by the National Key R&D Program of China(Grant No.2022YFB3605600)the National Natural Science Foundation of China(Grant No.61974065)+3 种基金the Key R&D Project of Jiangsu Province,China(Grant Nos.BE2020004-3 and BE2021026)Postdoctoral Fellowship Program of CPSF(Grant No.GZC20231098)the Jiangsu Special ProfessorshipCollaborative Innovation Center of Solid State Lighting and Energy-saving Electronics。
文摘We report molecular beam epitaxial growth and electrical and ultraviolet light emitting properties of(AlN)m/(GaN)n superlattices(SLs),where m and n represent the numbers of monolayers.Clear satellite peaks observed in XRD 2θ-ωscans and TEM images evidence the formation of clear periodicity and atomically sharp interfaces.For(AlN)m/(GaN)n SLs with an average Al composition of 50%,we have obtained an electron density up to 4.48×10^(19)cm^(-3)and a resistivity of 0.002Ω·cm,and a hole density of 1.83×10^(18)cm^(-3)with a resistivity of 3.722Ω·cm,both at room temperature.Furthermore,the(AlN)m/(GaN)n SLs exhibit a blue shift for their photoluminescence peaks,from 403 nm to 318 nm as GaN is reduced from n=11 to n=4 MLs,reaching the challenging UVB wavelength range.The results demonstrate that the(AlN)m/(GaN)n SLs have the potential to enhance the conductivity and avoid the usual random alloy scattering of the high-Al-composition ternary AlGaN,making them promising functional components in both UVB emitter and AlGaN channel high electron mobility transistor applications.
基金Project Supported by National Ninth5-year Plan of China.
文摘With the device feature's size miniaturization in very large scale integrated circuit and ultralarge scale integrated circuit towards the sub\|micron and beyond level, the next generation of IC device requires silicon wafers with more improved electrical characteristics and reliability as well as a high perfection of the wafer surface. Compared with the polished wafer with a relatively high density of crystal originated defects (e. g. COPs), silicon epi\|wafers can meet such high requirements. The current development of researches on the 150mm silicon epi\|wafers for advanced IC applications is described. The P/P\++ CMOS silicon epi\|wafers were fabricated on a PE2061 Epitaxial Reactor (made by Italian LPE Company). The material parameters of epi\|wafers, such as epi\|defects, uniformity of thickness and resistivity, transition width, and minority carrier generation lifetime for epi\|layer were characterized in detail. It is demonstrated that the 150mm silicon epi\|wafers on PE2061 can meet the stringent requirements for the advanced IC applications.
文摘A high voltage BCD process using thin epitaxial technology is developed for high voltage applications. Compared to conventional thick expitaxial technology, the thickness of the n-type epitaxial layer is reduced to 9μm,and the diffusion processing time needed for forming junction isolation diffusions is substantially reduced. The isolation diffusions have a smaller lateral extent and occupy less chip area. High voltage double RESURF LD- MOS with a breakdown voltage of up to 900V,as well as low voltage CMOS and BJT,are achieved using this high voltage BCD compatible process. An experimental high voltage half bridge gate drive IC using a coupled level shift structure is also successfully implemented, and the high side floating offset voltage in the half bridge drive IC is 880V. The major features of this process for high voltage applications are also clearly demonstrated.
文摘Based on a new semi empirical analytical method, namely equivalent doping transformation, the breakdown voltage and the peak field of the epitaxial diffused punch through junction have been obtained. The basic principle of this method is introduced and a set of breakdown voltage and peak field plots are provided for the optimum design of the low voltage power devices. It shows that the analytical results coincide with the previous numerical simulation well.
基金This work was supported by the National Key Laboratory Foundation of China under Grant No. 51439010204DZ0219.
文摘To handle the thermal budget in SiGe BiCMOS process, a non-selective graphic epitaxial technology using molecular beam epitaxial (MBE) has been developed. SEM, AFM, XRD, and dislocation density measurements are carried out. The SiGe film's RMS roughness is 0.45nm, and dislocation density is 0.3×10^3cm^-2-1.2×10^3cm^-2. No dislocation accumulation exists on the boundary of the windows; this indicates the high quality of the SiGe film. The experiment results show that the technology presented in this paper meets the fabrication requirements of SiGe BiCMOS.
基金supported financially by the Chinese National Science and Technology Major Project“Aeroengine and Gas Turbine”(No.2017-VII-0008-0102)the National Key Research and Development Program of China(No.2019YFA0705300)+1 种基金the Shanghai Science and Technology Committee(No.19DZ1100704)Shanghai Sailing Program(No.19YF1415900)。
文摘The columnar-to-equiaxed transition(CET)or the formation of stray grains in the laser melting deposition is the least desirable for the repair of single-crystal blades.In this work,the forced water-cooling was conducted on a single-crystal Rene N5 substrate during the direct energy deposition(DED).The single track remelting,one-layer,two-layer,and eight-layer depositions were investigated to explore the grain growth mechanism.The solidification conditions of the DED process,including temperature field,temperature gradient,and solidification speed,were numerically analyzed by a finite element model.The single-track remelting results showed that the fraction of columnar crystal regions increases from55.81%in the air-cooled sample to 77.14%in the water-cooled one.The single-track deposits of one-and two-layer have the same trend,where the proportion of columnar crystal height was higher under the forced water-cooled condition.The electron backscattered diffraction(EBSD)grain-structure maps of an eight-layer deposit show that the epitaxial growth height increases from 1 mm in the air-cooling sample to 1.5 mm in the water-cooling one.The numerical results showed that the tempe rature gradient in[0011 direction was significantly increased by using forced water-cooling.In conclusion,the in-situ substrate cooling can become a potential method to promote epitaxial growth during DED via the influence on CET occurrence.
基金financial support from the UK EPSRC under grant No. EP/P006973/1the EPSRC National Epitaxy Facility European project H2020-ICT-PICTURE (780930)+2 种基金the Royal Academy of Engineering (RF201617/16/28)Investissments d’avenir (IRT Nanoelec: ANR-10-IRT-05 and Need for IoT: ANR-15-IDEX-02)the Chinese Scholarship Council for funding
文摘In the past few decades,numerous high-performance silicon(Si)photonic devices have been demonstrated.Si,as a photonic platform,has received renewed interest in recent years.Efficient Si-basedⅢ–Ⅴquantum-dot(QDs)lasers have long been a goal for semiconductor scientists because of the incomparable optical properties of Ⅲ–Ⅴcompounds.Although the material dissimilarity betweenⅢ–Ⅴmaterial and Si hindered the development of monolithic integrations for over 30 years,considerable breakthroughs happened in the 2000s.In this paper,we review recent progress in the epitaxial growth of various Ⅲ–ⅤQD lasers on both offcut Si substrate and on-axis Si(001)substrate.In addition,the fundamental challenges in monolithic growth will be explained together with the superior characteristics of QDs.
基金Projects(50671116,50901081) supported by the National Natural Science Foundation of China
文摘An 8 mm-high NiCoCrAlYTa coating was epitaxially built-up on a directionally solidified (DS) Ni-based superalloy blade tip by electro-spark deposition.Epitaxial morphologies of the coating and its microstructural characteristics were investigated by means of SEM,XRD and TEM etc.It is observed that the fine column-like dendrites originated from the γ'-particles or γ'-clusters of the DS substrate and are un-continuously coarsened.The β-phase particles precipitate and grow eutectically with the γ-phase.The orientation of fine column dendrites depends on electro-spark deposition processing parameters and the microstructure can be characterized with superfine γ and β phases.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51401210 and 51271186),the National High Technology Research and Development Program of China(“863 Program”,Grant No.2014AA041701)
文摘A nickel-based superalloy was deposited onto a single crystal substrate based on epitaxial laser metal forming (E-LMF). The microstructure development in two depositions has been researched. For the first time, the crystal orientation of dendrites varying beyond 20° was found when the dendrites deflected in deposition. In addition, a new grain boundary was found between different orientation dendrites in a grain, and the detected grain boundary angle was 23°. The result shows that flowing field in laser pool is responsible for this phenomenon.
基金financially sponsored by the National Natural Science Foundation of China(Grant No.22075223,22179104)the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)(2021-ZD-4)the Fundamental Research Funds for the Central Universities(No.2020-YB-012)。
文摘The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity,in which the modulated electronic states and tuned adsorption behaviors are conducive to the enhancement of electrocatalytic activity.Herein,theoretical simulations first disclose the charge transfer trend and reinforced inherent electron conduction around the epitaxial heterointerface between Ru clusters and Ni_(3)N substrate(cRu-Ni_(3)N),thus leading to the optimized adsorption behaviors and reduced activation energy barriers.Subsequently,the defectrich nanosheets with the epitaxially grown cRu-Ni_(3)N heterointerface are successfully constructed.Impressively,by virtue of the superiority of intrinsic activity and reaction kinetics,such unique epitaxial heterostructure exhibits remarkable bifunctional catalytic activity toward electrocatalytic OER(226 mV@20 mA cm^(−2))and HER(32 mV@10 mA cm^(−2))in alkaline media.Furthermore,it also shows great application prospect in alkaline freshwater and seawater splitting,as well as solar-to-hydrogen integrated system.This work could provide beneficial enlightenment for the establishment of advanced electrocatalysts with epitaxial heterointerfaces.
基金financial supports from the Zhejiang Normal University(YS304320035)the Natural Science Foundation of China(21603039)。
文摘Supported nickel catalysts are promising candidates for dry reforming of methane, but agglomeration of Ni^(0) and coke deposition hinder the industrial applications. Herein, we report a novel interface-directed synthetic approach to construct distinct metal ensembles by carefully tuning the compositions of the carriers. A Zr-Mn-Zn ternary oxide-supported Ni catalyst, together with the respective binary oxide-supported analogues, was synthesized by adopting a sequential co-precipitation and wetness impregnation method. Combined characterization techniques identify distinct catalyst models, including (i) conventional NiO nanoparticles with different sizes on Zr-Mn and Zr-Zn, and (ii) epitaxially growing NiO ensembles of a few nanometers thickness at the periphery of ZnO_(x) particles. These catalysts exhibit divergent responses in the catalytic testing, with the ternary oxide system significantly outperforming the binary analogues. The strong electronic interactions between Mn-Ni increase Ni dispersion and the activity while the stability is strengthened upon Zn addition. Both high activity, high selectivity, and remarkable stability are attained upon co-adding Mn and Zn. The interfaces between Ni and Zr-Mn-Zn rather than the physical contacts of individual oxide-supported analogues through mechanical mixing are keys for the outstanding performance.
基金Supported by the National Basic Research Program of China under Grant Nos 2015CB921400 and 2011CB921802the National Natural Science Foundation of China under Grant Nos 11374057,11434003 and 11421404the research of Andreev reflection was supported as part of the SHINES,an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science under Award SC0012670
文摘Superconductivity (SC) is one of the most intriguing physical phenomena in nature. Nucleation of SC has long been considered highly unfavorable if not impossible near ferromagnetism, in low dimensionality and, above all, out of non-superconductor. Here we report observation of SC with TC near 4K in Ni/Bi bilayers that defies all known paradigms of superconductivity, where neither ferromagnetic Ni film nor rhombohedra Bi film is superconducting in isolation. This highly unusual SC is independent of the growth order (Ni/Bi or Bi/Ni), but highly sensitive to the constituent layer thicknesses. Most importantly, the SC, distinctively non-s pairing, is triggered from, but does not occur at, the Bi/Ni interface. Using point contact Andreev reflection, we show evidences that the unique SC, naturally compatible with magnetism, is triplet p-wave pairing.