【目的/意义】为解决重名作者姓名识别问题,提升作者姓名消歧准确率。【方法/过程】本文着重在整合作者单位、邮箱等信息特征的基础上抓住作者在研究方向和研究内容上的承接性和演进性,提出构建综合文章题目、关键词、摘要、引文以及作...【目的/意义】为解决重名作者姓名识别问题,提升作者姓名消歧准确率。【方法/过程】本文着重在整合作者单位、邮箱等信息特征的基础上抓住作者在研究方向和研究内容上的承接性和演进性,提出构建综合文章题目、关键词、摘要、引文以及作者的合作列表、邮箱、机构等附属信息的作者语料集,利用Doc2ve进行深度本文表示学习,在特征学习的基础上利用支持向量机(SVM)根据人工标注的样本进行模型训练和学习,以Pub Med Central(PMC)全部数据为例,在得到局部较优结果的基础上,将模型用于PMC所有数据集。【结果/结论】结果显示本文提出的姓名消歧方法准确率达91.80%,有效提升了消歧的准确率,该方法不仅把握了传统作者机构、邮箱、合作列表等特征信息,而且根据作者研究内容的承接性和演进性追溯作者,整合多方面特征以解决单单依据单位、邮箱等信息消歧失效问题,面对学者流动性的增强展示出其更强的应用前景。【创新/局限】本研究将每个作者分别包装成一个个文档,以此包含作者的所有属性以及相关信息,通过无监督文本表示学习和有监督机器学习结合的模式完成消歧任务,在生命科学与医学领域数据方面具有较好的适用性。展开更多
该文针对疫苗接种的相关微博评论进行情感倾向分析,首先利用基于神经网络的Doc2vec模型训练文本向量,继而使用支持向量机(SVM)、随机森林(RF)、逻辑回归(LR)三种机器学习的算法完成情感分类任务,且分别讨论了三种算法在四种不同的Doc2ve...该文针对疫苗接种的相关微博评论进行情感倾向分析,首先利用基于神经网络的Doc2vec模型训练文本向量,继而使用支持向量机(SVM)、随机森林(RF)、逻辑回归(LR)三种机器学习的算法完成情感分类任务,且分别讨论了三种算法在四种不同的Doc2vec模型设定方案下的分类表现。其中Distributed Memory version of Paragraph Vector (PV-DM)算法训练的文本向量中,RF表现最优,在方案一与方案二上其F1分数值均为最高,分别为87.24%、87.50%。基于Distributed Bag of Words version of Paragraph Vector (PV-DBOW)算法训练的文本向量中,SVM表现最优,在方案三与方案四上其F1分数值达到最高,分别为84.11%、83.91%。展开更多
文摘【目的/意义】为解决重名作者姓名识别问题,提升作者姓名消歧准确率。【方法/过程】本文着重在整合作者单位、邮箱等信息特征的基础上抓住作者在研究方向和研究内容上的承接性和演进性,提出构建综合文章题目、关键词、摘要、引文以及作者的合作列表、邮箱、机构等附属信息的作者语料集,利用Doc2ve进行深度本文表示学习,在特征学习的基础上利用支持向量机(SVM)根据人工标注的样本进行模型训练和学习,以Pub Med Central(PMC)全部数据为例,在得到局部较优结果的基础上,将模型用于PMC所有数据集。【结果/结论】结果显示本文提出的姓名消歧方法准确率达91.80%,有效提升了消歧的准确率,该方法不仅把握了传统作者机构、邮箱、合作列表等特征信息,而且根据作者研究内容的承接性和演进性追溯作者,整合多方面特征以解决单单依据单位、邮箱等信息消歧失效问题,面对学者流动性的增强展示出其更强的应用前景。【创新/局限】本研究将每个作者分别包装成一个个文档,以此包含作者的所有属性以及相关信息,通过无监督文本表示学习和有监督机器学习结合的模式完成消歧任务,在生命科学与医学领域数据方面具有较好的适用性。
文摘该文针对疫苗接种的相关微博评论进行情感倾向分析,首先利用基于神经网络的Doc2vec模型训练文本向量,继而使用支持向量机(SVM)、随机森林(RF)、逻辑回归(LR)三种机器学习的算法完成情感分类任务,且分别讨论了三种算法在四种不同的Doc2vec模型设定方案下的分类表现。其中Distributed Memory version of Paragraph Vector (PV-DM)算法训练的文本向量中,RF表现最优,在方案一与方案二上其F1分数值均为最高,分别为87.24%、87.50%。基于Distributed Bag of Words version of Paragraph Vector (PV-DBOW)算法训练的文本向量中,SVM表现最优,在方案三与方案四上其F1分数值达到最高,分别为84.11%、83.91%。