Double sequences have some unexpected properties which derive from the possibility of commuting limit operations. For example, may be defined so that the iterated limits and exist and are equal for all x, and ye...Double sequences have some unexpected properties which derive from the possibility of commuting limit operations. For example, may be defined so that the iterated limits and exist and are equal for all x, and yet the Pringsheim limit does not exist. The sequence is a classic example used to show that the iterated limit of a double sequence of continuous functions may exist, but result in an everywhere discontinuous limit. We explore whether the limit of this sequence in the Pringsheim sense equals the iterated result and derive an interesting property of cosines as a byproduct.展开更多
The concept of quasi-periodic property of a function has been introduced by Harald Bohr in 1921 and it roughly means that the function comes (quasi)-periodically as close as we want on every vertical line to the value...The concept of quasi-periodic property of a function has been introduced by Harald Bohr in 1921 and it roughly means that the function comes (quasi)-periodically as close as we want on every vertical line to the value taken by it at any point belonging to that line and a bounded domain Ω. He proved that the functions defined by ordinary Dirichlet series are quasi-periodic in their half plane of uniform convergence. We realized that the existence of the domain Ω is not necessary and that the quasi-periodicity is related to the denseness property of those functions which we have studied in a previous paper. Hence, the purpose of our research was to prove these two facts. We succeeded to fulfill this task and more. Namely, we dealt with the quasi-periodicity of general Dirichlet series by using geometric tools perfected by us in a series of previous projects. The concept has been applied to the whole complex plane (not only to the half plane of uniform convergence) for series which can be continued to meromorphic functions in that plane. The question arise: in what conditions such a continuation is possible? There are known examples of Dirichlet series which cannot be continued across the convergence line, yet there are no simple conditions under which such a continuation is possible. We succeeded to find a very natural one.展开更多
The purpose of this research is to extend to the functions obtained by meromorphic continuation of general Dirichlet series some properties of the functions in the Selberg class, which are all generated by ordinary Di...The purpose of this research is to extend to the functions obtained by meromorphic continuation of general Dirichlet series some properties of the functions in the Selberg class, which are all generated by ordinary Dirichlet series. We wanted to put to work the powerful tool of the geometry of conformal mappings of these functions, which we built in previous research, in order to study the location of their non-trivial zeros. A new approach of the concept of multiplier in Riemann type of functional equation was necessary and we have shown that with this approach the non-trivial zeros of the Dirichlet function satisfying a Reimann type of functional equation are either on the critical line, or they are two by two symmetric with respect to the critical line. The Euler product general Dirichlet series are defined, a wide class of such series is presented, and finally by using geometric and analytic arguments it is proved that for Euler product functions the symmetric zeros with respect to the critical line must coincide.展开更多
In this paper, we calculate the absolute tensor square of the Dirichlet L-functions and show that it is expressed as an Euler product over pairs of primes. The method is to construct an equation to link primes to a se...In this paper, we calculate the absolute tensor square of the Dirichlet L-functions and show that it is expressed as an Euler product over pairs of primes. The method is to construct an equation to link primes to a series which has the factors of the absolute tensor product of the Dirichlet L-functions. This study is a generalization of Akatsuka’s theorem on the Riemann zeta function, and gives a proof of Kurokawa’s prediction proposed in 1992.展开更多
We consider the space X of all analytic functionsof two complex variables s1 and s2, equipping it with the natural locally convex topology and using the growth parameter, the order of f as defined recently by the auth...We consider the space X of all analytic functionsof two complex variables s1 and s2, equipping it with the natural locally convex topology and using the growth parameter, the order of f as defined recently by the authors. Under this topology X becomes a Frechet space Apart from finding the characterization of continuous linear functionals, linear transformation on X, we have obtained the necessary and sufficient conditions for a double sequence in X to be a proper bases.展开更多
文摘Double sequences have some unexpected properties which derive from the possibility of commuting limit operations. For example, may be defined so that the iterated limits and exist and are equal for all x, and yet the Pringsheim limit does not exist. The sequence is a classic example used to show that the iterated limit of a double sequence of continuous functions may exist, but result in an everywhere discontinuous limit. We explore whether the limit of this sequence in the Pringsheim sense equals the iterated result and derive an interesting property of cosines as a byproduct.
文摘The concept of quasi-periodic property of a function has been introduced by Harald Bohr in 1921 and it roughly means that the function comes (quasi)-periodically as close as we want on every vertical line to the value taken by it at any point belonging to that line and a bounded domain Ω. He proved that the functions defined by ordinary Dirichlet series are quasi-periodic in their half plane of uniform convergence. We realized that the existence of the domain Ω is not necessary and that the quasi-periodicity is related to the denseness property of those functions which we have studied in a previous paper. Hence, the purpose of our research was to prove these two facts. We succeeded to fulfill this task and more. Namely, we dealt with the quasi-periodicity of general Dirichlet series by using geometric tools perfected by us in a series of previous projects. The concept has been applied to the whole complex plane (not only to the half plane of uniform convergence) for series which can be continued to meromorphic functions in that plane. The question arise: in what conditions such a continuation is possible? There are known examples of Dirichlet series which cannot be continued across the convergence line, yet there are no simple conditions under which such a continuation is possible. We succeeded to find a very natural one.
文摘The purpose of this research is to extend to the functions obtained by meromorphic continuation of general Dirichlet series some properties of the functions in the Selberg class, which are all generated by ordinary Dirichlet series. We wanted to put to work the powerful tool of the geometry of conformal mappings of these functions, which we built in previous research, in order to study the location of their non-trivial zeros. A new approach of the concept of multiplier in Riemann type of functional equation was necessary and we have shown that with this approach the non-trivial zeros of the Dirichlet function satisfying a Reimann type of functional equation are either on the critical line, or they are two by two symmetric with respect to the critical line. The Euler product general Dirichlet series are defined, a wide class of such series is presented, and finally by using geometric and analytic arguments it is proved that for Euler product functions the symmetric zeros with respect to the critical line must coincide.
文摘In this paper, we calculate the absolute tensor square of the Dirichlet L-functions and show that it is expressed as an Euler product over pairs of primes. The method is to construct an equation to link primes to a series which has the factors of the absolute tensor product of the Dirichlet L-functions. This study is a generalization of Akatsuka’s theorem on the Riemann zeta function, and gives a proof of Kurokawa’s prediction proposed in 1992.
文摘We consider the space X of all analytic functionsof two complex variables s1 and s2, equipping it with the natural locally convex topology and using the growth parameter, the order of f as defined recently by the authors. Under this topology X becomes a Frechet space Apart from finding the characterization of continuous linear functionals, linear transformation on X, we have obtained the necessary and sufficient conditions for a double sequence in X to be a proper bases.