The fractal structure shown by the poligonal created by unions of middle points of vertices, nodes or peaks of dendograms terminal classes is presented. Its generating fractal, the details of its construction, and the...The fractal structure shown by the poligonal created by unions of middle points of vertices, nodes or peaks of dendograms terminal classes is presented. Its generating fractal, the details of its construction, and the way to measure its segments are defined; its property of inverted scale, the type of meshing, its property of axial symmetry and a theorem on transformation of linear affinity are considered. This is exemplified by means of one application with real data.展开更多
Negotiation is both an important topic in multi-agent systems research and an important aspect of daily life. Many real-world negotiations are complex and involve multiple interdependent issues, therefore, there has b...Negotiation is both an important topic in multi-agent systems research and an important aspect of daily life. Many real-world negotiations are complex and involve multiple interdependent issues, therefore, there has been increasing interest in such negotiations. Existing nonlinear automated negotiation protocols have difficulty in finding solutions when the number of issues and agents is large. In automated negotiations covering multiple independent issues, it is useful to separate out the issues and reach separate agreements on each in turn. In this paper, we propose an effective approach to automated negotiations based on recursive partitioning using an issue dendrogram. A mediator first finds partial agreements in each sub-space based on bids from the agents, then combines them to produce the final agreement. When it cannot find a solution, our proposed method recursively decomposes the negotiation sub-problems using an issue dendrogram. In addition, it can improve the quality of agreements by considering previously-found partial consensuses. We also demonstrate experimentally that our protocol generates higher-optimality outcomes with greater scalability than previous methods.展开更多
Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse...Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons.展开更多
文摘The fractal structure shown by the poligonal created by unions of middle points of vertices, nodes or peaks of dendograms terminal classes is presented. Its generating fractal, the details of its construction, and the way to measure its segments are defined; its property of inverted scale, the type of meshing, its property of axial symmetry and a theorem on transformation of linear affinity are considered. This is exemplified by means of one application with real data.
文摘Negotiation is both an important topic in multi-agent systems research and an important aspect of daily life. Many real-world negotiations are complex and involve multiple interdependent issues, therefore, there has been increasing interest in such negotiations. Existing nonlinear automated negotiation protocols have difficulty in finding solutions when the number of issues and agents is large. In automated negotiations covering multiple independent issues, it is useful to separate out the issues and reach separate agreements on each in turn. In this paper, we propose an effective approach to automated negotiations based on recursive partitioning using an issue dendrogram. A mediator first finds partial agreements in each sub-space based on bids from the agents, then combines them to produce the final agreement. When it cannot find a solution, our proposed method recursively decomposes the negotiation sub-problems using an issue dendrogram. In addition, it can improve the quality of agreements by considering previously-found partial consensuses. We also demonstrate experimentally that our protocol generates higher-optimality outcomes with greater scalability than previous methods.
基金supported in part by NIH grants R01NS39600,U01MH114829RF1MH128693(to GAA)。
文摘Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons.