期刊文献+
共找到349,014篇文章
< 1 2 250 >
每页显示 20 50 100
Data-SSI与图论聚类结合识别果树固有频率 被引量:5
1
作者 许林云 韩元顺 +2 位作者 陈青 姜东 金晶 《农业工程学报》 EI CAS CSCD 北大核心 2021年第15期136-145,共10页
果树的固有频率是林果振动采收机械设计的重要依据之一。为有效识别果树的固有频率,该研究提出了基于数据驱动随机子空间Data-SSI(Data-driven Stochastic Subspace Identification)法与图论聚类稳定图相结合、仅以果树的输出响应信号... 果树的固有频率是林果振动采收机械设计的重要依据之一。为有效识别果树的固有频率,该研究提出了基于数据驱动随机子空间Data-SSI(Data-driven Stochastic Subspace Identification)法与图论聚类稳定图相结合、仅以果树的输出响应信号对果树进行固有频率识别的方法,以尽量减少人为主观因素的影响。将该方法用于一棵室内小型银杏树和一棵室外较大银杏树固有频率的识别并与冲击力锤频谱测试结果进行对比分析。结果表明,室内小型果树在随机激励下采用本文方法识别结果与频谱试验结果最大相对误差为4.17%;室外大型果树在环境激励下所提方法识别结果与频谱试验结果平均相对误差为2.88%,最大相对误差为6.02%。本文方法对仅基于输出响应信号的果树固有频率识别具有一定可行性,可为果树智能化共振采收时快速准确确定共振频率提供参考。 展开更多
关键词 振动 收获 固有频率 data-SSI法 图论聚类
在线阅读 下载PDF
Data-Centric AI
2
作者 鄂维南 汤林鹏 张文涛 《计算》 2025年第4期6-15,共10页
本文系统阐述了人工智能正从模型为中心(Model-centric AI,MCAI)向数据为中心(Data-centric AI,DCAI)转型的趋势,并提出了面向DCAI的数据基础设施体系,包括支持多模态数据统一管理的AI数据库;DataFlow数据准备与动态训练工具。该体系突... 本文系统阐述了人工智能正从模型为中心(Model-centric AI,MCAI)向数据为中心(Data-centric AI,DCAI)转型的趋势,并提出了面向DCAI的数据基础设施体系,包括支持多模态数据统一管理的AI数据库;DataFlow数据准备与动态训练工具。该体系突破了传统数据湖和数据处理工具的局限,实现了数据与模型的高效协同。通过大模型预训练、企业知识库构建等创新应用验证,展示了DCAI基础设施在提升模型性能、降低开发门槛方面的突破性价值,为人工智能向智能化计算新范式演进提供了系统解决方案。 展开更多
关键词 数据为中心的人工智能 数据基础设施 AI数据库 多模态数据管理 数据准备 动态训练 智能计算
在线阅读 下载PDF
基于CEEMD分解和Data-SSI算法的斜拉桥模态参数识别 被引量:6
3
作者 陈永高 钟振宇 《振动与冲击》 EI CSCD 北大核心 2016年第8期166-172,200,共8页
针对集合经验模态分解算法存在的不足之处,提出了一种基于聚类分析的集合经验模态分解算法(CEEMD),以实现对响应信号的降噪与重构。首先对输入信号进行特征分析以确定加入白噪声的幅值标准差以及EEMD集成次数;其次进行EEMD分解;并对所... 针对集合经验模态分解算法存在的不足之处,提出了一种基于聚类分析的集合经验模态分解算法(CEEMD),以实现对响应信号的降噪与重构。首先对输入信号进行特征分析以确定加入白噪声的幅值标准差以及EEMD集成次数;其次进行EEMD分解;并对所得本征模态函数(IMF)利用欧式距离进行聚类分析,以检验所得本征模态函数之间是否存在模态混叠现象;然后采用模糊综合评价法计算每个IMF与实测信号之间的模糊相似系数,以便选出有效的IMF分量;再利用主成分分析和帕累托图法对保留下来的有效IMFs进行信号的重构,进而达到对实测信号的有效分解和降噪效果。为了验证该算法能运用于实际桥梁中,对某大型斜拉桥进行实例分析,首先对传感器所测响应信号进行重构,然后将其作为数据驱动随机子空间算法的输入,进行模态参数识别,同时为了进一步验证该算法所得结果比现有算法更为精确,对各算法结果进行了对比分析,结论是该算法能对响应信号进行更好的降噪与重构,且所得结果更接近真实值,能运用于实际桥梁的模态参数识别。 展开更多
关键词 桥梁工程 CEEMD 模糊综合评价法 主成分分析 帕累托图 data-SSI
在线阅读 下载PDF
Challenges to Data-Path Physical Design Inside SOC 被引量:2
4
作者 经彤 洪先龙 +5 位作者 蔡懿慈 许静宇 杨长旗 张轶谦 周强 吴为民 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2002年第8期785-793,共9页
Previously,a single data-path stack was adequate for data-path chips,and the complexity and size of the data-path was comparatively small.As current data-path chips,such as system-on-a-chip (SOC),become more complex,m... Previously,a single data-path stack was adequate for data-path chips,and the complexity and size of the data-path was comparatively small.As current data-path chips,such as system-on-a-chip (SOC),become more complex,multiple data-path stacks are required to implement the entire data-path.As more data-path stacks are integrated into SOC,data-path is becoming a critical part of the whole giga-scale integrated circuits (GSI) design.The traditional physical design methodology can not satisfy the data-path performance requirements,because it can not accommodate the data-path bit-sliced structure and the strict performance (such as timing,coupling,and crosstalk) constraints.Challenges in the data-path physical design are addressed.The fundamental problems and key technologies in data-path physical design are analysed.The corresponding researches and solutions in this research field are also discussed. 展开更多
关键词 physical design data-path bit-sliced structure SYSTEM-ON-A-CHIP giga-scale integrated circuits very-deep-submicron
在线阅读 下载PDF
浮点数字信号处理器Data-RAM的RTL模型设计
5
作者 胡正伟 仲顺安 陈禾 《北京理工大学学报》 EI CAS CSCD 北大核心 2007年第1期68-72,共5页
提出了一种双精度浮点数字信号处理器Data-RAM的RTL模型设计方法.分析了Data-RAM的结构和访问机制,采用自顶向下的方法和VHDL语言,实现了Data-RAM的RTL模型设计并验证了其功能的正确性.该模型支持3地址独立进行数据存取,支持字节、半字... 提出了一种双精度浮点数字信号处理器Data-RAM的RTL模型设计方法.分析了Data-RAM的结构和访问机制,采用自顶向下的方法和VHDL语言,实现了Data-RAM的RTL模型设计并验证了其功能的正确性.该模型支持3地址独立进行数据存取,支持字节、半字、字的读写访问和双字的读访问.在访问地址不冲突的前提下,最大可以在同一时钟周期进行2次64 bit的读操作和1次32 bit读写操作.Data-RAM的RTL模型设计为门级和物理级的性能设计提供了参考. 展开更多
关键词 数字信号处理器 data-RAM RTL模型
在线阅读 下载PDF
ADO中新增的Data-Shaping语言
6
作者 胡延平 晏凌云 刘武 《现代计算机》 2000年第9期71-75,共5页
本文介绍 了 ADO2.1最新增加的数据形状化语言,并通过实例进行了详细说明。
关键词 SQL查询 ADO data-Shaping语言 VB 数据库
在线阅读 下载PDF
Data-Path布图系统的数据管理 被引量:1
7
作者 胡昱 经彤 +2 位作者 洪先龙 周强 申明 《微电子学》 CAS CSCD 北大核心 2003年第4期301-305,共5页
 Data-Path布图系统需要有效的数据管理作为支撑。该数据管理工作主要包括数据格式转换、数据结构设计和数据接口设计等方面。针对一个实际的Data-Path布图系统,设计了Verilog文件到DEF文件的转换算法,进行了相关数据接口的实现,指出...  Data-Path布图系统需要有效的数据管理作为支撑。该数据管理工作主要包括数据格式转换、数据结构设计和数据接口设计等方面。针对一个实际的Data-Path布图系统,设计了Verilog文件到DEF文件的转换算法,进行了相关数据接口的实现,指出了数据管理的特点与实现方法。 展开更多
关键词 Data—Path 布图系统 数据管理 转换算法 系统级芯片 集成电路
在线阅读 下载PDF
基于AEEMD和改进DATA-SSI算法的桥梁结构模态参数自动化识别 被引量:7
8
作者 徐健 周志祥 +1 位作者 赵丽娜 何杰 《土木工程学报》 EI CSCD 北大核心 2017年第7期87-98,共12页
模态参数作为桥梁结构最重要的动力参数之一,在实际运用中,可通过监测其变化情况来辨识结构的使用性能,精确地参数识别对保障桥梁健康运营具有十分重要的意义。鉴于此,该文对现阶段常用的振动信号降噪处理算法和模态参数识别算法进行了... 模态参数作为桥梁结构最重要的动力参数之一,在实际运用中,可通过监测其变化情况来辨识结构的使用性能,精确地参数识别对保障桥梁健康运营具有十分重要的意义。鉴于此,该文对现阶段常用的振动信号降噪处理算法和模态参数识别算法进行了相应的改进。一方面,提出一种新的信号自适应分解与重构算法,即自适应总体平均经验模态分解算法(AEEMD),该算法相比总体平均经验模态分解算法(EEMD)而言,能够根据信号的自身特征自动化确定添加白噪声的幅值标准差和集成平均次数;能更好地处理端点效应;同时还能够保证所得本征模态函数之间不存在模态混叠现象;最终实现有效IMF分量的自动化筛选和信号重构。另一方面,将多维数据聚类分析算法引入随机子空间算法中,并以频率值、阻尼比以及振型系数为因子建立判别矩阵,以智能化区分虚假模态和真实模态,最终实现模态参数自动化识别。文章最后分别用模拟信号和实际桥梁测试信号对所提算法的有效性进行验证,结果表明,该文所提算法能运用于实际桥梁结构的模态参数自动化识别。 展开更多
关键词 桥梁结构 EEMD 信号分解 DATA—SSI 模态参数 自动化识别
原文传递
面向Data-Path布图应用的注册式GUI设计
9
作者 张凌 经彤 +2 位作者 洪先龙 杨长旗 申明 《计算机工程与应用》 CSCD 北大核心 2003年第9期127-129,141,共4页
提出了一种基于工作站、UNIX操作系统,采用C++语言、Tcl/Tk语言及Gu库实现图形用户界面(GUI)的新方法。文章重点介绍了所采用的注册机制。与其他的设计方法相比,该GUI的设计具有良好的适用性和可维护性;同时,又有易实现性,省去了设计者... 提出了一种基于工作站、UNIX操作系统,采用C++语言、Tcl/Tk语言及Gu库实现图形用户界面(GUI)的新方法。文章重点介绍了所采用的注册机制。与其他的设计方法相比,该GUI的设计具有良好的适用性和可维护性;同时,又有易实现性,省去了设计者了解底层布图算法内容的繁琐过程。测试结果表明该GUI实现了预期的功能。目前,该GUI已应用到在研的Data-Path布图项目之中。 展开更多
关键词 图形用户界面 GUI 注册机制 布图 data-Path
在线阅读 下载PDF
Machine Learning for 5G and Beyond:From ModelBased to Data-Driven Mobile Wireless Networks 被引量:12
10
作者 Tianyu Wang Shaowei Wang Zhi-Hua Zhou 《China Communications》 SCIE CSCD 2019年第1期165-175,共11页
During the past few decades,mobile wireless communications have experienced four generations of technological revolution,namely from 1 G to 4 G,and the deployment of the latest 5 G networks is expected to take place i... During the past few decades,mobile wireless communications have experienced four generations of technological revolution,namely from 1 G to 4 G,and the deployment of the latest 5 G networks is expected to take place in 2019.One fundamental question is how we can push forward the development of mobile wireless communications while it has become an extremely complex and sophisticated system.We believe that the answer lies in the huge volumes of data produced by the network itself,and machine learning may become a key to exploit such information.In this paper,we elaborate why the conventional model-based paradigm,which has been widely proved useful in pre-5 G networks,can be less efficient or even less practical in the future 5 G and beyond mobile networks.Then,we explain how the data-driven paradigm,using state-of-the-art machine learning techniques,can become a promising solution.At last,we provide a typical use case of the data-driven paradigm,i.e.,proactive load balancing,in which online learning is utilized to adjust cell configurations in advance to avoid burst congestion caused by rapid traffic changes. 展开更多
关键词 mobile WIRELESS networks data-DRIVEN PARADIGM MACHINE learning
在线阅读 下载PDF
基于双生成器网络的Data-Free知识蒸馏 被引量:5
11
作者 张晶 鞠佳良 任永功 《计算机研究与发展》 EI CSCD 北大核心 2023年第7期1615-1627,共13页
知识蒸馏(knowledge distillation,KD)通过最大化近似输出分布使“教师网络”指导“学生网络”充分训练,成为大规模深度网络近端迁移、部署及应用的重要技术.然而,隐私保护意识增强与传输问题加剧使网络训练数据难以获取.如何在Data-Fre... 知识蒸馏(knowledge distillation,KD)通过最大化近似输出分布使“教师网络”指导“学生网络”充分训练,成为大规模深度网络近端迁移、部署及应用的重要技术.然而,隐私保护意识增强与传输问题加剧使网络训练数据难以获取.如何在Data-Free的自由环境下,保证压缩网络准确率成为重要的研究方向.Data-Free学生网络学习(data-free learning of student networks,DAFL)模型,建立“教师”端生成器获得与预训练网络分布近似的伪数据集,通过知识蒸馏训练“学生网络”.然而,该框架中生成器构建及优化仍存在2个问题:1)过度信任“教师网络”对缺失真实标签伪样本的判别结果,同时,“教师网络”与“学生网络”优化目标不同,使“学生网络”难以获得准确、一致的优化信息;2)仅依赖于“教师网络”训练损失,导致数据特征多样性缺失,降低“学生网络”泛化性.针对这2个问题,提出双生成器网络架构DG-DAFL(double generators-DAFL),分别建立“教师”与“学生”端生成器并同时优化,实现网络任务与优化目标一致,提升“学生网络”判别性能.进一步,增加双生成器样本分布差异损失,利用“教师网络”潜在分布先验信息优化生成器,保证“学生网络”识别准确率并提升泛化性.实验结果表明,该方法在Data-Free环境中获得了更为有效且更鲁棒的知识蒸馏效果.DG-DAFL方法代码及模型已开源:https://github.com/LNNU-computer-research-526/DG-DAFL.git. 展开更多
关键词 深度神经网络 知识蒸馏 无数据环境知识蒸馏 对抗生成网络 生成器
在线阅读 下载PDF
Data-Driven Based Fault Prognosis for Industrial Systems:A Concise Overview 被引量:22
12
作者 Kai Zhong Min Han Bing Han 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第2期330-345,共16页
Fault prognosis is mainly referred to the estimation of the operating time before a failure occurs,which is vital for ensuring the stability,safety and long lifetime of degrading industrial systems.According to the re... Fault prognosis is mainly referred to the estimation of the operating time before a failure occurs,which is vital for ensuring the stability,safety and long lifetime of degrading industrial systems.According to the results of fault prognosis,the maintenance strategy for underlying industrial systems can realize the conversion from passive maintenance to active maintenance.With the increased complexity and the improved automation level of industrial systems,fault prognosis techniques have become more and more indispensable.Particularly,the datadriven based prognosis approaches,which tend to find the hidden fault factors and determine the specific fault occurrence time of the system by analysing historical or real-time measurement data,gain great attention from different industrial sectors.In this context,the major task of this paper is to present a systematic overview of data-driven fault prognosis for industrial systems.Firstly,the characteristics of different prognosis methods are revealed with the data-based ones being highlighted.Moreover,based on the different data characteristics that exist in industrial systems,the corresponding fault prognosis methodologies are illustrated,with emphasis on analyses and comparisons of different prognosis methods.Finally,we reveal the current research trends and look forward to the future challenges in this field.This review is expected to serve as a tutorial and source of references for fault prognosis researchers. 展开更多
关键词 data-DRIVEN fault prognosis feature extraction industrial systems
在线阅读 下载PDF
Detecting and Identifying in vivo Metabolites of Brodimoprim via LC/ESI-MS with Data-dependent Scanning 被引量:7
13
作者 LIN Yan-ping SI Duan-yun LIU Chang-xiao 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第4期430-436,共7页
The present article covers a simple approach to detect and subsequently identify in vivo metabolites of brodimoprim, using high performance liquid chromatography coupled to ion trap mass spectrometer(LC/ESI-MS), whi... The present article covers a simple approach to detect and subsequently identify in vivo metabolites of brodimoprim, using high performance liquid chromatography coupled to ion trap mass spectrometer(LC/ESI-MS), which is based on a data-dependent acquisition of isotope ions and result verified by full scan mass spectrum. The distinguished advantage of data-dependent scan is rapidness because it requires minimum sample preparation, and all the necessary data can be obtained in one chromatographic run. In addition, it is highly sensitive and selective, allowing detection of trace metabolites even in the presence of complex biomatrix. As a result, four phase-Ⅰ(M1--M4) and four Phase-Ⅱ(M5--M8) metabolites of brodimoprim were identified in urine after the oral administration of hrodimoprim to Wistar rats. Their chemical structures were proposed based on the interpretation of their CID fragmentation characterizations and the metabolic pathway was exhibited in this article. 展开更多
关键词 LC/ESI-MS data-dependant scan Metabolite identification BRODIMOPRIM
暂未订购
Application of a Bayesian method to data-poor stock assessment by using Indian Ocean albacore (Thunnus alalunga) stock assessment as an example 被引量:15
14
作者 GUAN Wenjiang TANG Lin +2 位作者 ZHU Jiangfeng TIAN Siquan XU Liuxiong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第2期117-125,共9页
It is widely recognized that assessments of the status of data-poor fish stocks are challenging and that Bayesian analysis is one of the methods which can be used to improve the reliability of stock assessments in dat... It is widely recognized that assessments of the status of data-poor fish stocks are challenging and that Bayesian analysis is one of the methods which can be used to improve the reliability of stock assessments in data-poor situations through borrowing strength from prior information deduced from species with good-quality data or other known information. Because there is considerable uncertainty remaining in the stock assessment of albacore tuna(Thunnus alalunga) in the Indian Ocean due to the limited and low-quality data, we investigate the advantages of a Bayesian method in data-poor stock assessment by using Indian Ocean albacore stock assessment as an example. Eight Bayesian biomass dynamics models with different prior assumptions and catch data series were developed to assess the stock. The results show(1) the rationality of choice of catch data series and assumption of parameters could be enhanced by analyzing the posterior distribution of the parameters;(2) the reliability of the stock assessment could be improved by using demographic methods to construct a prior for the intrinsic rate of increase(r). Because we can make use of more information to improve the rationality of parameter estimation and the reliability of the stock assessment compared with traditional statistical methods by incorporating any available knowledge into the informative priors and analyzing the posterior distribution based on Bayesian framework in data-poor situations, we suggest that the Bayesian method should be an alternative method to be applied in data-poor species stock assessment, such as Indian Ocean albacore. 展开更多
关键词 data-poor stock assessment Bayesian method catch data series demographic method Indian Ocean Thunnus alalunga
在线阅读 下载PDF
Data-Driven Anomaly Diagnosis for Machining Processes 被引量:8
15
作者 Y.C.Liang S.Wang +1 位作者 W.D.Li X.Lu 《Engineering》 SCIE EI 2019年第4期646-652,共7页
To achieve zero-defect production during computer numerical control(CNC)machining processes,it is imperative to develop effective diagnosis systems to detect anomalies efficiently.However,due to the dynamic conditions... To achieve zero-defect production during computer numerical control(CNC)machining processes,it is imperative to develop effective diagnosis systems to detect anomalies efficiently.However,due to the dynamic conditions of the machine and tooling during machining processes,the relevant diagnosis systems currently adopted in industries are incompetent.To address this issue,this paper presents a novel data-driven diagnosis system for anomalies.In this system,power data for condition monitoring are continuously collected during dynamic machining processes to support online diagnosis analysis.To facilitate the analysis,preprocessing mechanisms have been designed to de-noise,normalize,and align the monitored data.Important features are extracted from the monitored data and thresholds are defined to identify anomalies.Considering the dynamic conditions of the machine and tooling during machining processes,the thresholds used to identify anomalies can vary.Based on historical data,the values of thresholds are optimized using a fruit fly optimization(FFO)algorithm to achieve more accurate detection.Practical case studies were used to validate the system,thereby demonstrating the potential and effectiveness of the system for industrial applications. 展开更多
关键词 COMPUTER numerical control MACHINING ANOMALY detection FRUIT FLY optimization algorithm data-DRIVEN method
在线阅读 下载PDF
Management and prevention of mastitis:A multifactorial approach with a focus on milking,bedding and data-management 被引量:3
16
作者 Sarne De Vliegher lan Ohnstad Sofie Piepers 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第6期1214-1233,共20页
Mastitis is a complex, multifactorial disease. Pathogens, cows and farmers (via management) all play a role. It is costly and annoying for the farmer and threatens the image of the entire dairy industry. Prevention ... Mastitis is a complex, multifactorial disease. Pathogens, cows and farmers (via management) all play a role. It is costly and annoying for the farmer and threatens the image of the entire dairy industry. Prevention and control of mastitis is based on multiple principles that have been known for a long time. To implement them successfully, they should be put forward by a motivated and motivating advisor that transfers the existing knowledge to the farmer. When the changes are data-driven, applied by an encouraged farmer through a farm-specific implementation, prevention and control of mastitis will be successful and result in happy cows, happy farmers, happy advisors, happy consumers, and a happy industry. Nationwide projects focussing on communication and transfer of existing knowledge in prevention and control are very helpful in reaching high numbers of farmers and advisors and harmonizing the message brought by different parties. This paper gives an overview of multifactorial approach of mastitis management and prevention with a focus on milking, bedding and data-analysis. 展开更多
关键词 dairy cattle data-analysis MASTITIS milking machine multifactors
在线阅读 下载PDF
Data-driven model-free adaptive attitude control of partially constrained combined spacecraft with external disturbances and input saturation 被引量:6
17
作者 Han GAO Guangfu MA +1 位作者 Yueyong LYU Yanning GUO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第5期1281-1293,共13页
This study presents an improved data-driven Model-Free Adaptive Control(MFAC)strategy for attitude stabilization of a partially constrained combined spacecraft with external disturbances and input saturation. First, a... This study presents an improved data-driven Model-Free Adaptive Control(MFAC)strategy for attitude stabilization of a partially constrained combined spacecraft with external disturbances and input saturation. First, a novel dynamic linearization data model for the partially constrained combined spacecraft with external disturbances is established. The generalized disturbances composed of external disturbances and dynamic linearization errors are then reconstructed by a Discrete Extended State Observer(DESO). With the dynamic linearization data model and reconstructed information, a DESO-MFAC strategy for the combined spacecraft is proposed based only on input and output data. Next, the input saturation is overcome by introducing an antiwindup compensator. Finally, numerical simulations are carried out to demonstrate the effectiveness and feasibility of the proposed controller when the dynamic properties of the partially constrained combined spacecraft are completely unknown. 展开更多
关键词 Attitude CONTROL COMBINED SPACECRAFT data-DRIVEN CONTROL Discrete Extended State Observer(DESO) Input SATURATION
原文传递
Detecting Data-flow Errors Based on Petri Nets With Data Operations 被引量:4
18
作者 Dongming Xiang Guanjun Liu +1 位作者 Chungang Yan Changjun Jiang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期251-260,共10页
In order to guarantee the correctness of business processes, not only control-flow errors but also data-flow errors should be considered. The control-flow errors mainly focus on deadlock, livelock, soundness, and so o... In order to guarantee the correctness of business processes, not only control-flow errors but also data-flow errors should be considered. The control-flow errors mainly focus on deadlock, livelock, soundness, and so on. However, there are not too many methods for detecting data-flow errors. This paper defines Petri nets with data operations(PN-DO) that can model the operations on data such as read, write and delete. Based on PN-DO, we define some data-flow errors in this paper. We construct a reachability graph with data operations for each PN-DO, and then propose a method to reduce the reachability graph. Based on the reduced reachability graph, data-flow errors can be detected rapidly. A case study is given to illustrate the effectiveness of our methods. 展开更多
关键词 Business process modeling data-flow errors Petri nets reachability graph
在线阅读 下载PDF
Anomaly Detection Based on Data-Mining for Routing Attacks in Wireless Sensor Networks 被引量:2
19
作者 Song Jianhua Ma Chuanxiang 《China Communications》 SCIE CSCD 2008年第2期34-39,共6页
With the increasing deployment of wireless sensordevices and networks,security becomes a criticalchallenge for sensor networks.In this paper,a schemeusing data mining is proposed for routing anomalydetection in wirele... With the increasing deployment of wireless sensordevices and networks,security becomes a criticalchallenge for sensor networks.In this paper,a schemeusing data mining is proposed for routing anomalydetection in wireless sensor networks.The schemeuses the Apriori algorithm to extract traffic patternsfrom both routing table and network traffic packetsand subsequently the K-means cluster algorithmadaptively generates a detection model.Through thecombination of these two algorithms,routing attackscan be detected effectively and automatically.Themain advantage of the proposed approach is that it isable to detect new attacks that have not previouslybeen seen.Moreover,the proposed detection schemeis based on no priori knowledge and then can beapplied to a wide range of different sensor networksfor a variety of routing attacks. 展开更多
关键词 ANOMALY detection ROUTING ATTACKS data-MINING WIRELESS sensor networks
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部