期刊文献+
共找到6,971篇文章
< 1 2 250 >
每页显示 20 50 100
Construction and application of multicomponent fluorescent droplets
1
作者 Wei-Tao Dou Qing-Wen Zeng +4 位作者 Yan Kang Haidong Jia Yulian Niu Jinglong Wang Lin Xu 《Chinese Chemical Letters》 2025年第1期137-146,共10页
The rapid development of microfluidic technology has led to the evolution of microdroplets from simple emulsion structures to complex multilayered and multicompartmental configurations.These advancements have endowed ... The rapid development of microfluidic technology has led to the evolution of microdroplets from simple emulsion structures to complex multilayered and multicompartmental configurations.These advancements have endowed microdroplets with the capability to contain multiple compartments that remain isolated from one another,enabling them to carry different molecules of interest.Consequently,researchers can now investigate intricate spatially confined chemical reactions and signal transduction pathways within subcellular organelles.Moreover,modern microdroplets often possess excellent optical transparency,allowing fluorescently labelled,multi-layered,and compartmental droplets to provide detailed insights through real-time,in situ,and dynamic fluorescence imaging.Hence,this review systematically summarizes current methodologies for preparing multicomponent microdroplets and their applications,particularly focusing on fluorescent microdroplets.Additionally,it discusses existing critical challenges and outlines future research directions.By offering a comprehensive overview of the preparation methods and applications of fluorescent microdroplets,this review aims to stimulate the interest of researchers and foster their utilization in more complex and biomimetic environments. 展开更多
关键词 FLUORESCENT Microfluidic Fluorescent droplets Multilayered droplets Multicompartmental droplets
原文传递
Changes in peridroplet mitochondria during progression of metabolism-associated fatty liver disease
2
作者 Jia-Jie Li Meng-Qiu Shao +5 位作者 Jin-Xing Liu Jing Miao Ling Yang Huan-Tian Cui Fei-Tian Min Wei-Bo Wen 《Life Research》 2025年第3期1-7,共7页
Metabolism-associated fatty liver disease(MAFLD)is a spectrum of chronic liver diseases caused by the abnormal accumulation of fat in the liver,which is becoming increasingly serious with the rise in obesity rates wor... Metabolism-associated fatty liver disease(MAFLD)is a spectrum of chronic liver diseases caused by the abnormal accumulation of fat in the liver,which is becoming increasingly serious with the rise in obesity rates worldwide.Studies have shown that the interaction between lipid droplets and mitochondria plays an important role in the development and progression of MAFLD.In particular,peridroplet mitochondria(PDM),as a unique class of mitochondrial subpopulations,play a key function in lipid metabolism through spatial proximity and functional synergy.The current study revealed the functional heterogeneity of PDM from different tissue sources by optimizing PDM isolation techniques(e.g.,differential centrifugation combined with protease-assisted method),which provided a theoretical basis for targeting lipid droplet-mitochondrial interactions to intervene in MAFLD.Therefore,this paper reviews the morphology,function and isolation methods of PDM,as well as the relationship between lipid droplet-mitochondrial interactions and MAFLD,with the aim of promoting the development of MAFLD intervention strategies based on lipid droplet-mitochondrial interactions. 展开更多
关键词 metabolism-associated fatty liver disease lipid droplet MITOCHONDRIA peridroplet mitochondria lipid droplet-mitochondria interaction
暂未订购
Lipid droplets in the nervous system:involvement in cell metabolic homeostasis
3
作者 Yuchen Zhang Yiqing Chen +3 位作者 Cheng Zhuang Jingxuan Qi Robert Chunhua Zhao Jiao Wang 《Neural Regeneration Research》 SCIE CAS 2025年第3期740-750,共11页
Lipid droplets serve as primary storage organelles for neutral lipids in neurons,glial cells,and other cells in the nervous system.Lipid droplet formation begins with the synthesis of neutral lipids in the endoplasmic... Lipid droplets serve as primary storage organelles for neutral lipids in neurons,glial cells,and other cells in the nervous system.Lipid droplet formation begins with the synthesis of neutral lipids in the endoplasmic reticulum.Previously,lipid droplets were recognized for their role in maintaining lipid metabolism and energy homeostasis;however,recent research has shown that lipid droplets are highly adaptive organelles with diverse functions in the nervous system.In addition to their role in regulating cell metabolism,lipid droplets play a protective role in various cellular stress responses.Furthermore,lipid droplets exhibit specific functions in neurons and glial cells.Dysregulation of lipid droplet formation leads to cellular dysfunction,metabolic abnormalities,and nervous system diseases.This review aims to provide an overview of the role of lipid droplets in the nervous system,covering topics such as biogenesis,cellular specificity,and functions.Additionally,it will explore the association between lipid droplets and neurodegenerative disorders.Understanding the involvement of lipid droplets in cell metabolic homeostasis related to the nervous system is crucial to determine the underlying causes and in exploring potential therapeutic approaches for these diseases. 展开更多
关键词 Alzheimer's disease lipid droplet biogenesis lipid droplets lipid metabolism nervous system neurodegenerative disorders oxidative stress Parkinson's disease
暂未订购
Impingement Characteristics Investigation of Supercooled Large Droplets Based on Eulerian Method
4
作者 YE Zekun SHEN Xiaobin +1 位作者 ZHAO Jingyu LIN Guiping 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第2期191-200,共10页
This numerical simulation investigates the two⁃phase flow under the condition of supercooled large droplets impinging on the aircraft surface.Based on Eulerian framework,a method for calculating supercooled water drop... This numerical simulation investigates the two⁃phase flow under the condition of supercooled large droplets impinging on the aircraft surface.Based on Eulerian framework,a method for calculating supercooled water droplet impingement characteristics is established.Then,considering the deformation and breaking effects during the movement,this method is extended to calculate the impingement characteristics of supercooled large droplets,as well as the bouncing and splashing effects during impingement.The impingement characteristics of supercooled large droplets is then investigated by this method.The results demonstrate that the deformation and breaking effects of supercooled large droplets have negligible influence on the impingement characteristics under the experimental conditions of this paper.In addition,the results of the impingement range and collection efficiency decrease when considering the bouncing and splashing effects.The bouncing effect mainly affects the mass loss near the impingement limits,while the splashing effect influences the result around the stagnation point.This investigation is beneficial for the analysis of aircraft icing and the design of anti⁃icing system with supercooled large droplet conditions. 展开更多
关键词 aircraft icing droplet impingement characteristics supercooled large droplet(SLD) Eulerian method numerical simulation
在线阅读 下载PDF
Role of Inertial Force and Dynamic Contact Angle on the Incipient Motion of Droplets in Shearing Gas Flow
5
作者 Zichen Zhang Aoyu Zhang +1 位作者 Tongtong Qi Xiaoyan Ma 《Fluid Dynamics & Materials Processing》 2025年第7期1601-1610,共10页
This study experimentally investigates the oscillatory dynamics of wind-driven droplets using high-speed imaging to capture droplet profiles within the symmetry plane and to characterize their natural oscillation freq... This study experimentally investigates the oscillatory dynamics of wind-driven droplets using high-speed imaging to capture droplet profiles within the symmetry plane and to characterize their natural oscillation frequencies.Results reveal that the eigenfrequencies vary spatially due to distinct oscillation modes occurring at different droplet locations.Notably,the fundamental eigenfrequency decreases with reducing droplet volume,while droplet viscosity exerts minimal influence on this frequency.Prior to the onset of motion,the dynamic contact angle consistently remains between the advancing and receding angles.The inertial forces generated by droplet oscillation are found to be significantly greater than the adhesion forces,indicating that classical static models are inadequate for capturing inertial contributions to droplet motion.These findings offer new insights into the role of oscillatory behavior in influencing the dynamics of droplet motion,and contribute to a more detailed understanding of wind-driven droplet transport phenomena. 展开更多
关键词 droplet oscillation droplet motion dynamic contact angle inertial force
在线阅读 下载PDF
Cloud Droplet Spectrum Evolution Driven by Aerosol Activation and Vapor Condensation:A Comparative Study of Different Bulk Parameterization Schemes
6
作者 Jun ZHANG Jiming SUN +2 位作者 Yu KONG Wei DENG Wenhao HU 《Advances in Atmospheric Sciences》 2025年第7期1316-1332,共17页
Accurate descriptions of cloud droplet spectra from aerosol activation to vapor condensation using microphysical parameterization schemes are crucial for numerical simulations of precipitation and climate change in we... Accurate descriptions of cloud droplet spectra from aerosol activation to vapor condensation using microphysical parameterization schemes are crucial for numerical simulations of precipitation and climate change in weather forecasting and climate prediction models.Hence,the latest activation and triple-moment condensation schemes were combined to simulate and analyze the evolution characteristics of a cloud droplet spectrum from activation to condensation and compared with a high-resolution Lagrangian bin model and the current double-moment condensation schemes,in which the spectral shape parameter is fixed or diagnosed by an empirical formula.The results demonstrate that the latest schemes effectively capture the evolution characteristics of the cloud droplet spectrum during activation and condensation,which is in line with the performance of the bin model.The simulation of the latest activation and condensation schemes in a parcel model shows that the cloud droplet spectrum gradually widens and exhibits a multimodal distribution during the activation process,accompanied by a decrease in the spectral shape and slope parameters over time.Conversely,during the condensation process,the cloud droplet spectrum gradually narrows,resulting in increases in the spectral shape and slope parameters.However,these double-moment schemes fail to accurately replicate the evolution of the cloud droplet spectrum and its multimodal distribution characteristics.Furthermore,the latest schemes were coupled into a 1.5D cumulus model,and an observation case was simulated.The simulations confirm that the cloud droplet spectrum appears wider at the supersaturated cloud base and cloud top due to activation,while it becomes narrower at the middle altitudes of the cloud due to condensation growth. 展开更多
关键词 cloud microphysical parameterization cloud droplet spectrum aerosol activation cloud droplet condensation
在线阅读 下载PDF
Preparation of spherical HMX@PDA-based PBX by co-axial droplet microfluidic technology:Enhancing the interfacial effect and safety performance of composite microspheres 被引量:1
7
作者 Yunyan Guo Yi Liu +6 位作者 Jiani Xie Jiawei Li Fan Wang Jinshan Lei Chongwei An Zhongliang Ma Bidong Wu 《Defence Technology(防务技术)》 2025年第3期73-83,共11页
Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In ... Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In order to obtain high-quality HMX@PDA-based PBX explosives with high sphericity and a narrow particle size distribution,composite microspheres were prepared using co-axial droplet microfluidic technology.The formation mechanism,thermal behavior,mechanical sensitivity,electrostatic spark sensitivity,compressive strength,and combustion performance of the microspheres were investigated.The results show that PDA can effectively enhance the interfacial interaction between the explosive particles and the binder under the synergistic effect of chemical bonds and the physical"mechanical interlocking"structure.Interface reinforcement causes the thermal decomposition temperature of the sample microspheres to move to a higher temperature,with the sensitivity to impact,friction,and electrostatic sparks(for S-1)increasing by 12.5%,31.3%,and 81.5%respectively,and the compressive strength also increased by 30.7%,effectively enhancing the safety performance of the microspheres.Therefore,this study provides an effective and universal strategy for preparing high-quality functional explosives,and also provides some reference for the safe use of energetic materials in practical applications. 展开更多
关键词 droplet microfluidic technology Interfacial reinforcement Safety performance Surface modification POLYDOPAMINE HMX
在线阅读 下载PDF
Contribution of Transmembrane Protein 68 to Triglyceride Synthesis and Lipid Droplet Formation Differs From Diacylglycerol Acyltransferase
8
作者 YU Qing FU Yang-Yang +3 位作者 ZENG Fan-Si PANG Hui-Min HUANG Fei-Fei CHANG Ping-An 《生物化学与生物物理进展》 北大核心 2025年第3期705-715,共11页
Objective To characterize transmembrane protein 68(TMEM68)in an alternative triacylglycerol(TAG)biosynthesis pathway,and determine the interplay between TMEM68 and the canonical TAG synthesis enzyme acyl-CoA:diacylgly... Objective To characterize transmembrane protein 68(TMEM68)in an alternative triacylglycerol(TAG)biosynthesis pathway,and determine the interplay between TMEM68 and the canonical TAG synthesis enzyme acyl-CoA:diacylglycerol acyltransferase(DGAT).Methods Effects of exogenous fatty acid and monoacylglycerol on TAG synthesis and lipid droplet(LD)formation in TMEM68 overexpression and knockout cells treated with DGAT inhibitor or not were investigated by comparing LD morphology,Oil Red O staining,and measurement of TAG levels.LDs were stained with fluorescence dye and observed by confocal fluorescence microscopy.TAG levels were determined with an enzyme-based triglyceride assay kit.Colocalization of TMEM68 and DGAT1 was detected by co-expression and confocal fluorescence microscopy and their interaction was determined by co-immunoprecipitation.RT-qPCR and immunoblotting assay were used to detect the expression of DGAT1.Results The synthesis of TAG catalyzed by TMEM68 was independent of DGAT activity.Surplus exogenous fatty acids and monoacylglycerol promoted TAG synthesis mainly through DGAT in human neuroblastoma cells.The LDs formed by TMEM68 were different in morphology from those by DGAT.In addition,TMEM68 and DGAT1 colocalized in the same endoplasmic reticulum(ER)compartment but did not interact physically.TMEM68 overexpression reduced the expression of DGAT1,the major DGAT enzyme involved in TAG synthesis,while TMEM68 knockout had little impact.Conclusion The TMEM68-mediated TAG synthesis pathway has distinct features from the canonical DGAT pathway,however,TMEM68 and DGAT may coregulate intracellular TAG levels. 展开更多
关键词 TRIACYLGLYCEROL lipid droplet TMEM68 GAT
原文传递
Diffusive Transfer between a Droplet and an Immiscible Oscillating Liquid in a Radial Hele-Shaw Cell
9
作者 Ivan Karpunin Denis Polezhaev 《Fluid Dynamics & Materials Processing》 2025年第3期543-553,共11页
An experimental study of the diffusive mass transfer between a droplet and an oscillating immiscible liquid in a horizontal axisymmetricHele-Shaw cell is carried out.Theliquid oscillates radially in the cell.Thetransv... An experimental study of the diffusive mass transfer between a droplet and an oscillating immiscible liquid in a horizontal axisymmetricHele-Shaw cell is carried out.Theliquid oscillates radially in the cell.Thetransverse size of the droplet exceeds the cell thickness.The viscosities of the droplet and the surrounding liquid are comparable.Relevant effort is provided to design and test an experimental setup and validate a protocol for determining the mass transfer rate of a solute in a two-liquid system.In particular,fluorescent dye Rhodamine B is considered as the solute.A critical comparison of the situations with and without oscillation is implemented.A procedure is introduced and validated to determine the molecular and effective diffusion coefficients through evaluation of the growth of the diffusion zone width over time.It is shown that,in the presence of the liquid oscillations,there is a significant increase in the width of the zone in which Rhodamine B is present compared to the reference case with no oscillations.The oscillatory flow leads to an intensification of the solute diffusion due to intense time-averaged flows inside the droplet and the surrounding liquid and oscillations of the drop itself.Thestudy is of significant practical interest with particular relevance to typical processes for liquid-liquid extraction. 展开更多
关键词 OSCILLATIONS droplet VISCOSITY diffusion Rhodamine B fluorescence radial Hele-Shaw cell
在线阅读 下载PDF
Multidimensional droplet manipulation on superhydrophobic surfaces using acoustic tweezers
10
作者 Guifeng Wen Zheyuan Zhong +2 位作者 Yue Fan Xuelin Tian Shilin Huang 《Chinese Chemical Letters》 2025年第5期342-347,共6页
On-demand droplet manipulation plays a critical role in microfluidics,bio/chemical detection and microreactions.Acoustic droplet manipulation has emerged as a promising technique due to its non-contact nature,biocompa... On-demand droplet manipulation plays a critical role in microfluidics,bio/chemical detection and microreactions.Acoustic droplet manipulation has emerged as a promising technique due to its non-contact nature,biocompatibility and precision,circumventing the complexities associated with other methods requiring surface or droplet pretreatment.Despite their promise,existing methods for acoustic droplet manipulation often involve complex hardware setups and difficulty for controlling individual droplet amidst multiple ones.Here we fabricate simple yet effective acoustic tweezers for in-surface and out-of-surface droplet manipulation.It is found that droplets can be transported on the superhydrophobic surfaces when the acoustic radiation force surpasses the friction force.Using a two-axis acoustic tweezer,droplets can be maneuvered along arbitrarily programmed paths on the surfaces.By introducing multiple labyrinthine structures on the superhydrophobic surface,individual droplet manipulation is realized by constraining the unselected droplets in the labyrinthine structures.In addition,a three-axis acoustic tweezer is developed for manipulating droplets in three-dimensional space.Potential applications of the acoustic tweezers for micro-reaction,bio-assay and chemical analysis are also demonstrated. 展开更多
关键词 Superhydrophobic surfaces Acoustic tweezers droplet manipulation MICROFLUIDICS Micro-reactions
原文传递
Experimental Method for Studying the Effect of Dissolved Substances on the Evaporation Rate of Watwer Droplets Suspended in Air
11
作者 Alexander A.Fedorets Eduard E.Kolmakov +4 位作者 Anna V.Nasyrova Dmitry N.Medvedev Vyacheslav O.Mayorov Vladimir Yu.Levashov Leonid A.Dombrovsky 《Frontiers in Heat and Mass Transfer》 2025年第4期1091-1102,共12页
A new experimental method is developed to investigate the effect of dissolved substances on the evaporation rate of small water droplets suspended in the atmosphere.The laboratory setup is based on converting a genera... A new experimental method is developed to investigate the effect of dissolved substances on the evaporation rate of small water droplets suspended in the atmosphere.The laboratory setup is based on converting a generated droplet jet of complex structure into a directed flow of evaporating droplets falling in a vertical tube.Images of falling droplets captured by a high-speed camera through a window in the vertical channel wall are used to determine the sizes and velocities of individual droplets.The computational modeling of droplet motion and evaporation proved useful at all stages of the experimental work:from selecting the position of the vertical channel to processing the experimental data.It was found that even a 0.1%mass concentration of the dissolved ionic salt KCl has a considerable effect on decreasing the evaporation rate of the droplets.In contrast,a typical fungicide with a mass concentration of 2.5%has only a slight impact on the evaporation rate.The laboratory results enabled the authors to refine the evaporation model of water droplets to account for the presence of dissolved substances.Modified models of this type are expected to be useful in controling crop spraying and also in other potential applications. 展开更多
关键词 droplets EVAPORATION crop spraying experimental method physical model
在线阅读 下载PDF
Effect of Photoresist Biomimetic Surface Roughness on Droplet Evaporation Dynamics
12
作者 Zhihao Zhang Xiangcheng Gao Yuying Yan 《Journal of Bionic Engineering》 2025年第3期1338-1351,共14页
Control of the wetting properties of biomimetic functional surfaces is a desired functionality in many applications.In this paper,the photoresist SU-8 was used as fabrication material.A silicon wafer was used as a sub... Control of the wetting properties of biomimetic functional surfaces is a desired functionality in many applications.In this paper,the photoresist SU-8 was used as fabrication material.A silicon wafer was used as a substrate to prepare a biomimetic surface with different surface roughness and micro-pillars arranged in array morphology.The evaporation dynamics and interfacial heat transfer processes of deionised water droplets on the bioinspired microstructure surface were experimentally studied.The study not only proves the feasibility of preparing hydrophilic biomimetic functional surfaces directly through photoresist materials and photolithography technology but also shows that by adjusting the structural parameters and arrangement of the surface micro-pillar structure,the wettability of the biomimetic surface can be significantly linearly regulated,thereby effectively affecting the heat and mass transfer process at the droplet liquid-vapour interface.Analysis of the results shows that by controlling the biomimetic surface microstructure,the wettability can be enhanced by about 22%at most,the uniformity of the temperature distribution at the liquid-vapour interface can be improved by about 34%,and the average evaporation rate can be increased by about 28%.This study aims to provide some guidance for the research on bionic surface design based on photoresist materials. 展开更多
关键词 Biomimetics droplet evaporation Surface roughness WETTABILITY Interfacial phenomenon
在线阅读 下载PDF
Splashing behavior of metal droplets in basic oxygen furnace steelmaking process
13
作者 Zi-cheng Xin Qing Liu +2 位作者 Jiang-shan Zhang Wen-hui Lin Kai-xiang Peng 《Journal of Iron and Steel Research International》 2025年第10期3328-3341,共14页
Splashing behavior of metal droplets is one of the main phenomena in basic oxygen furnace steelmaking process.The size distribution of metal droplets and the residence time of the metal droplets in the slag have impor... Splashing behavior of metal droplets is one of the main phenomena in basic oxygen furnace steelmaking process.The size distribution of metal droplets and the residence time of the metal droplets in the slag have important effects on the kinetics of the metal–slag reactions.The particle size distribution law,characteristic diameter,splashing velocity and splashing angle of metal droplets were investigated,and an improved prediction model of trajectory and residence time for metal droplets was established based on the combination of expanded droplets theory,decarburization mechanism model and ballistic motion principle.Meanwhile,the trajectory and residence time of metal droplets under different working conditions were analyzed based on this model.The results illustrate that the metal droplets with larger particle size are produced at low lance distance,while the metal droplets with smaller particle size are produced at high lance distance.There is a significant linear relationship between the three diameters(maximum droplet diameter,distribution characteristic diameter,reaction characteristic diameter)and the blowing number.The residence time of decarbonized metal droplets in slag is about 0.2–73 s.Meanwhile,the initial carbon content and diameter of the metal droplets and the FeO content of slag are the main factors affecting the motion state of the metal droplets in the slag,while the splashing velocity,splashing angle and the height of the foam slag have little influence.This model can be used to predict the trajectory and residence time of decarburized metal droplets in a variety of complex multiphase slag conditions,overcoming the limitation that the known model is only applicable to a few specific conditions. 展开更多
关键词 BOF steelmaking Metal droplet Size distribution TRAJECTORY Residence time
原文传递
3D Printing on Droplets by Ultrasonic Levitation
14
作者 Qin Qin Zhicheng Cheng +1 位作者 Cheng Wen Jigang Huang 《Additive Manufacturing Frontiers》 2025年第2期149-155,共7页
Vat photopolymerization 3D printing creates structures by projecting patterns onto a photosensitive resin within a vat.However,the presence of resin vats limits the printing of multiscale multimaterial structures.In t... Vat photopolymerization 3D printing creates structures by projecting patterns onto a photosensitive resin within a vat.However,the presence of resin vats limits the printing of multiscale multimaterial structures.In this context,a novel 3D printing process is presented in which a cured structure is produced from acoustically levitated droplets without a physical vat.This enables the printing process to achieve high flexibility in the printing orientation and material supply.In pursuit of the envisioned 3D acoustic levitation printing strategy,acoustic levitation technology was utilized to suspend a photosensitive resin.Objects with small features were successfully produced by projecting patterns onto levitated resin droplets.Transforming printing orientations allows the fabrication of multiscale structures.Levitating resin droplets on-demand enables the rapid replacement of materials,thereby realizing effortless multimaterial 3D printing.By exploiting the flexibility of printing on levitation resin droplets,the capability of 3D printing on existing objects was established.Finally,an interesting example was illustrated,in which an object integrating liquid,gas,and solid materials was fabricated using the proposed 3D printing strategy.The results show that 3D printing on levitated droplets is feasible for fabricating multiscale and multimaterial objects,which contributes to the development of new 3D printing methods and potential applications. 展开更多
关键词 3d printing droplet levitation Multiscale Multimaterial
在线阅读 下载PDF
Evaporation of sub-millimeter flying dinitrogen tetroxide droplet under high temperature and pressure:Experimental measurement and theoretical modeling
15
作者 Lihan FEI Wu ZHU +3 位作者 Yuyuan ZHANG Peng ZHANG Zuohua HUANG Chenglong TANG 《Chinese Journal of Aeronautics》 2025年第5期80-91,共12页
The evaporation behaviors are crucial for the flame location estimation in liquid rocketengines.This work,for the first time,experimentally reports the sub-millimeter droplet evaporationcharacteristics of the corrosiv... The evaporation behaviors are crucial for the flame location estimation in liquid rocketengines.This work,for the first time,experimentally reports the sub-millimeter droplet evaporationcharacteristics of the corrosive dinitrogen tetroxide(NTO,one prevailing hypergolic oxidizer)athigh ambient pressure up to 4.5 MPa.An in-house corrosion-resistant droplet generator is usedto generate isolated flying droplets of sub-millimeter size,which are then exposed in a gas environ-ment with temperatures between 1010 K and 1210 K and pressures in the range between 2.0 MPaand 4.5 MPa,provided by an optical rapid compression machine.Parallelly,a theoretical modelconsidering both the droplet ambient convection and the NTO dissociation is developed.Resultsindicate that firstly,the present theoretical model that considers the transient droplet-ambient con-vection as well as the temperature and pressure dependent rate of dissociation shows good agree-ment with the experimentally observed droplet lifetime.In addition,the flying droplets velocityregress gradually due to momentum exchange with the ambient,which is more prominent at higherpressure.The evaporation caused droplet size reduction is consistent with the classical D^(2)-law pre-diction,in the present temperature and pressure range.Finally,higher temperature and pressureaccelerate the evaporation and an empirical correlation for the temperature and pressure dependentevaporation rate constant is proposed,which shows good agreement with experiment and simula-tion results. 展开更多
关键词 DROPS EVAPORATION Flying isolated droplets Dinitrogen tetroxide High pressure effect
原文传递
Lipid droplets and gallbladder targeted fluorescence probe for ratiometric NO imaging in gallstones disease models
16
作者 Zhoupeng Zheng Shengyi Gong +2 位作者 Qianhua Li Shiya Zhang Guoqiang Feng 《Chinese Chemical Letters》 2025年第5期549-553,共5页
Gallstones are a common disease worldwide,often leading to obstruction and inflammatory complications,which seriously affect the quality of life of patients.Research has shown that gallstone disease is associated with... Gallstones are a common disease worldwide,often leading to obstruction and inflammatory complications,which seriously affect the quality of life of patients.Research has shown that gallstone disease is associated with ferroptosis,lipid droplets(LDs),and abnormal levels of nitric oxide(NO).Fluorescent probes provide a sensitive and convenient method for detecting important substances in life systems and diseases.However,so far,no fluorescent probes for NO and LDs in gallstone disease have been reported.In this work,an effective ratiometric fluorescent probe LR-NH was designed for the detection of NO in LDs.With an anthracimide fluorophore and a secondary amine as a response site for NO,LR-NH exhibits high selectivity,sensitivity,and attractive ratiometric capability in detecting NO.Importantly,it can target LDs and shows excellent imaging ability for NO in cells and ferroptosis.Moreover,LR-NH can target the gallbladder and image NO in gallstone disease models,providing a unique and unprecedented tool for studying NO in LDs and gallbladder. 展开更多
关键词 Ratiometric fluorescent probe Nitric oxide Lipid droplets GALLBLADDER Gallstone disease
原文传递
pH-dependent reaction kinetics between glyoxal and ammonium sulfate in simulated cloud droplets
17
作者 Kun Liu Tao Wang +5 位作者 Guohua Zhang Wei Sun Ye Yang Mingjin Tang Xinming Wang Xinhui Bi 《Journal of Environmental Sciences》 2025年第12期686-693,共8页
Aqueous-phase reactions between carbonyls and reduced nitrogen compounds play a considerable role in the formation of secondary organic aerosols and brown carbon in the atmosphere.However,the reported reaction rate co... Aqueous-phase reactions between carbonyls and reduced nitrogen compounds play a considerable role in the formation of secondary organic aerosols and brown carbon in the atmosphere.However,the reported reaction rate constants for these reactions have largely been limited to bulk aqueous-phase simulations,which may not accurately represent the real state of atmospheric cloud droplets.We employed an integration of optical tweezers and Raman spectroscopy to manipulate and analyze simulated cloud droplets(size range8000-10,000 nm),comprising a mixture of glyoxal and ammonium sulfate.This approach enabled us to delve into the intricate realm of their reaction kinetics at individual droplet level mimicking cloud droplets.Raman spectroscopy provided high temporal resolution(20 s)measurements of the changes in the amount of nitrogen-containing organics(or NOCs as represented by the C-N bond)within the droplets.The results indicate that the reaction follows first-order kinetics throughout the monitoring over 80-400 min.The average reaction rate constant for the formation of NOCs within the single droplet was determined to be(6.77±0.98)×10^(-5)s^(-1),up to three orders of magnitude higher than those through the bulk aqueous-phase simulations,especially at lower p H levels.Additionally,the reaction rate constant in single droplet increases with increasing p H,consistent with the trend previously reported for the bulk aqueous-phase simulations.The results highlight the difference of the reaction rate constant between bulk aqueous-phase and droplets,which would improve our understanding on the formation and impacts of secondary organic aerosols and brown carbon in atmospheric aqueous phase. 展开更多
关键词 Optical tweezer-Raman spectroscopy Single droplet Ammonium sulfate Aqueous phase reaction Brown carbon
原文传递
Fluorosurfactants and their application in droplet microreactors: An overview
18
作者 Wei Cheng Huilin Wen +2 位作者 Xiaoqiang Chen Shaobin Zhang Ziyi Yu 《Chinese Journal of Chemical Engineering》 2025年第2期314-326,共13页
Fluorosurfactants play a crucial role in ensuring the stability and uniformity of droplet microreactors,which significantly broaden their applications in chemical and biological research.This review covers structure d... Fluorosurfactants play a crucial role in ensuring the stability and uniformity of droplet microreactors,which significantly broaden their applications in chemical and biological research.This review covers structure diversity and functional versatility of fluorosurfactants.Fluorosurfactants can be divided into two basic types according to their structure,linear and dendritic types,which both provides individual advantages.Linear fluorosurfactants are easily synthesized and commercially available,whereas dendritic fluorosurfactants have a branched structure that greatly reduces molecular cross-talk between droplets.Based on the application point of view,fluorosurfactants can be further classified into two categories:reactive and responsive fluorosurfactants.The hydrophilic head of reactive fluorosurfactants contains a reactive functional group,making them very useful in other applications,such as microcapsule preparation or protein crystallization.In contrast,responsive fluorosurfactants would change their properties with respect to external stimuli,such as temperature or light,making them perfect candidates for the on-demand control of droplet behavior.Development of these new classes of fluorosurfactants has expanded the capabilities and applications of droplet microreactors that enables interdisciplinary challenges to be solved. 展开更多
关键词 MICROREACTOR SURFACTANTS Interface droplet stability Linear/dendric surfactants Reactive/responsive fluorosurfactants
在线阅读 下载PDF
Spherical Magnetic Fe-Alginate Microgels Fabricated by Droplet-Microfluidics Combining with an External Crosslinking Approach and the Study of Their pH Dependent Fe^(3+) Release Behaviors
19
作者 Jie Chen Run-Yu Yu +3 位作者 ai-Qi Wang Zhe-Yu Zhang Arezoo Ardekani Yuan-Du Hu 《Chinese Journal of Polymer Science》 2025年第2期289-302,共14页
Due to the rapid development and potential applications of iron(Ⅲ)-alginate(Fe-Alg)microgels in biomedical as well as environmental engineering,this study explores the preparation and characterization of spherical Fe... Due to the rapid development and potential applications of iron(Ⅲ)-alginate(Fe-Alg)microgels in biomedical as well as environmental engineering,this study explores the preparation and characterization of spherical Fe-Alg microgels using droplet microfluidics combined with an external ionic crosslinking method.This study focused on the role of Fe^(3+)and examined its effects on the physical/chemical properties of microgels under different ionic conditions and reduced or oxidized states.The pH-dependent release behavior of Fe^(3+)from these microgels demonstrates their potential biomedical and environmental applications.Furthermore,the microgels can exhibit magnetism simply by utilizing in situ oxidation,which can be further used for targeted drug delivery and magnetic separation technologies. 展开更多
关键词 Fe-alginate microgels droplet microfluidics In situ oxidation MAGNETISM
原文传递
The boundary effect of QGP droplets and the self-similarity effect of hadrons on QGP–hadron phase transition
20
作者 Tingting Dai Huiqiang Ding +2 位作者 Luan Cheng Weining Zhang Enke Wang 《Communications in Theoretical Physics》 2025年第7期70-81,共12页
We investigate the boundary effect of quark–gluon plasma(QGP)droplets and the self-similarity effect of hadrons on QGP–hadron phase transition.In intermediate-or low-energy collisions,when the transverse momentum is... We investigate the boundary effect of quark–gluon plasma(QGP)droplets and the self-similarity effect of hadrons on QGP–hadron phase transition.In intermediate-or low-energy collisions,when the transverse momentum is below quantum chromodynamics(QCD)scale,QGP cannot be produced.However,if the transverse momentum changes to a relatively large value,a smallscale QGP droplet is produced.The modified MIT bag model with the multiple reflection expansion method is employed to study the QGP droplet with the curved boundary effect.It is found that the energy density,entropy density and pressure of QGP with the influence are smaller than those without the influence.In the hadron phase,we propose the two-body fractal model(TBFM)to study the self-similarity structure,arising from resonance,quantum correlation and interaction effects.It is observed that the energy density,entropy density and pressure increase due to the self-similarity structure.We calculate the transverse momentum spectra of pions with the self-similarity structure influence,which show good agreement with experimental data.Considering both boundary effect and self-similarity structure influence,our model predicts an increase in the transition temperature compared to the scenarios without these two effects in the High Intensity heavy-ion Accelerator Facility(HIAF)energy region,2.2 GeV to approximately 4.5 GeV. 展开更多
关键词 QGP droplet multiple reflection expansion method self-similarity structure phase transition
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部