期刊文献+
共找到9,675篇文章
< 1 2 250 >
每页显示 20 50 100
Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring
1
作者 Kusum Sharma Kousik Bhunia +5 位作者 Subhajit Chatterjee Muthukumar Perumalsamy Anandhan Ayyappan Saj Theophilus Bhatti Yung‑Cheol Byun Sang-Jae Kim 《Nano-Micro Letters》 2026年第2期644-663,共20页
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,... Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech. 展开更多
关键词 Wearable ORGANOGEL Deep learning Pressure sensor Bio-mechanical motion
在线阅读 下载PDF
From microstructure to performance optimization:Innovative applications of computer vision in materials science
2
作者 Chunyu Guo Xiangyu Tang +10 位作者 Yu’e Chen Changyou Gao Qinglin Shan Heyi Wei Xusheng Liu Chuncheng Lu Meixia Fu Enhui Wang Xinhong Liu Xinmei Hou Yanglong Hou 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期94-115,共22页
The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-lear... The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-learning(DL)-driven CV in four key areas of materials science:microstructure-based performance prediction,microstructure information generation,microstructure defect detection,and crystal structure-based property prediction.The CV has significantly reduced the cost of traditional experimental methods used in material performance prediction.Moreover,recent progress made in generating microstructure images and detecting microstructural defects using CV has led to increased efficiency and reliability in material performance assessments.The DL-driven CV models can accelerate the design of new materials with optimized performance by integrating predictions based on both crystal and microstructural data,thereby allowing for the discovery and innovation of next-generation materials.Finally,the review provides insights into the rapid interdisciplinary developments in the field of materials science and future prospects. 展开更多
关键词 MICROSTRUCTURE deep learning computer vision performance prediction image generation
在线阅读 下载PDF
Predicting lymph node metastasis in colorectal cancer using caselevel multiple instance learning
3
作者 Ling-Feng Zou Xuan-Bing Wang +4 位作者 Jing-Wen Li Xin Ouyang Yi-Ying Luo Yan Luo Cheng-Long Wang 《World Journal of Gastroenterology》 2026年第1期110-125,共16页
BACKGROUND The accurate prediction of lymph node metastasis(LNM)is crucial for managing locally advanced(T3/T4)colorectal cancer(CRC).However,both traditional histopathology and standard slide-level deep learning ofte... BACKGROUND The accurate prediction of lymph node metastasis(LNM)is crucial for managing locally advanced(T3/T4)colorectal cancer(CRC).However,both traditional histopathology and standard slide-level deep learning often fail to capture the sparse and diagnostically critical features of metastatic potential.AIM To develop and validate a case-level multiple-instance learning(MIL)framework mimicking a pathologist's comprehensive review and improve T3/T4 CRC LNM prediction.METHODS The whole-slide images of 130 patients with T3/T4 CRC were retrospectively collected.A case-level MIL framework utilising the CONCH v1.5 and UNI2-h deep learning models was trained on features from all haematoxylin and eosinstained primary tumour slides for each patient.These pathological features were subsequently integrated with clinical data,and model performance was evaluated using the area under the curve(AUC).RESULTS The case-level framework demonstrated superior LNM prediction over slide-level training,with the CONCH v1.5 model achieving a mean AUC(±SD)of 0.899±0.033 vs 0.814±0.083,respectively.Integrating pathology features with clinical data further enhanced performance,yielding a top model with a mean AUC of 0.904±0.047,in sharp contrast to a clinical-only model(mean AUC 0.584±0.084).Crucially,a pathologist’s review confirmed that the model-identified high-attention regions correspond to known high-risk histopathological features.CONCLUSION A case-level MIL framework provides a superior approach for predicting LNM in advanced CRC.This method shows promise for risk stratification and therapy decisions,requiring further validation. 展开更多
关键词 Colorectal cancer Lymph node metastasis Deep learning Multiple instance learning HISTOPATHOLOGY
暂未订购
Automated Pipe Defect Identification in Underwater Robot Imagery with Deep Learning
4
作者 Mansour Taheri Andani Farhad Ameri 《哈尔滨工程大学学报(英文版)》 2026年第1期197-215,共19页
Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challeng... Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challenge due to factors such as light scattering,absorption,restricted visibility,and ambient noise.The advancement of deep learning has introduced powerful techniques for processing large amounts of unstructured and imperfect data collected from underwater environments.This study evaluated the efficacy of the You Only Look Once(YOLO)algorithm,a real-time object detection and localization model based on convolutional neural networks,in identifying and classifying various types of pipeline defects in underwater settings.YOLOv8,the latest evolution in the YOLO family,integrates advanced capabilities,such as anchor-free detection,a cross-stage partial network backbone for efficient feature extraction,and a feature pyramid network+path aggregation network neck for robust multi-scale object detection,which make it particularly well-suited for complex underwater environments.Due to the lack of suitable open-access datasets for underwater pipeline defects,a custom dataset was captured using a remotely operated vehicle in a controlled environment.This application has the following assets available for use.Extensive experimentation demonstrated that YOLOv8 X-Large consistently outperformed other models in terms of pipe defect detection and classification and achieved a strong balance between precision and recall in identifying pipeline cracks,rust,corners,defective welds,flanges,tapes,and holes.This research establishes the baseline performance of YOLOv8 for underwater defect detection and showcases its potential to enhance the reliability and efficiency of pipeline inspection tasks in challenging underwater environments. 展开更多
关键词 YOLO8 Underwater robot Object detection Underwater pipelines Remotely operated vehicle Deep learning
在线阅读 下载PDF
Opportunities and challenges of artificial intelligence-assisted endoscopy and high-quality data for esophageal squamous cell carcinoma
5
作者 Ken Kurisaki Shinichiro Kobayashi +6 位作者 Taro Akashi Yasuhiko Nakao Masayuki Fukumoto Kaito Tasaki Tomohiko Adachi Susumu Eguchi Kengo Kanetaka 《World Journal of Gastrointestinal Oncology》 2026年第1期61-74,共14页
This review comprehensively summarized the potential of artificial intelligence(AI)in the management of esophageal cancer.It highlighted the significance of AI-assisted endoscopy in Japan where endoscopy is central to... This review comprehensively summarized the potential of artificial intelligence(AI)in the management of esophageal cancer.It highlighted the significance of AI-assisted endoscopy in Japan where endoscopy is central to both screening and diagnosis.For the clinical adaptation of AI,several challenges remain for its effective translation.The establishment of high-quality clinical databases,such as the National Clinical Database and Japan Endoscopy Database in Japan,which covers almost all cases of esophageal cancer,is essential for validating multimodal AI models.This requires rigorous external validation using diverse datasets,including those from different endoscope manufacturers and image qualities.Furthermore,endoscopists’skills significantly affect diagnostic accuracy,suggesting that AI should serve as a supportive tool rather than a replacement.Addressing these challenges,along with country-specific legal and ethical considerations,will facilitate the successful integration of multimodal AI into the management of esophageal cancer,particularly in endoscopic diagnosis,and contribute to improved patient outcomes.Although this review focused on Japan as a case study,the challenges and solutions described are broadly applicable to other high-incidence regions. 展开更多
关键词 Artificial intelligence Esophageal cancer ENDOSCOPY Deep learning National database Clinical translation Multimodal artificial intelligence
暂未订购
Flexible Monolithic 3D-Integrated Self-Powered Tactile Sensing Array Based on Holey MXene Paste
6
作者 Mengjie Wang Chen Chen +9 位作者 Yuhang Zhang Yanan Ma Li Xu Dan‑Dan Wu Bowen Gao Aoyun Song Li Wen Yongfa Cheng Siliang Wang Yang Yue 《Nano-Micro Letters》 2026年第2期772-785,共14页
Flexible electronics face critical challenges in achieving monolithic three-dimensional(3D)integration,including material compatibility,structural stability,and scalable fabrication methods.Inspired by the tactile sen... Flexible electronics face critical challenges in achieving monolithic three-dimensional(3D)integration,including material compatibility,structural stability,and scalable fabrication methods.Inspired by the tactile sensing mechanism of the human skin,we have developed a flexible monolithic 3D-integrated tactile sensing system based on a holey MXene paste,where each vertical one-body unit simultaneously functions as a microsupercapacitor and pressure sensor.The in-plane mesopores of MXene significantly improve ion accessibility,mitigate the self-stacking of nanosheets,and allow the holey MXene to multifunctionally act as a sensing material,an active electrode,and a conductive interconnect,thus drastically reducing the interface mismatch and enhancing the mechanical robustness.Furthermore,we fabricate a large-scale device using a blade-coating and stamping method,which demonstrates excellent mechanical flexibility,low-power consumption,rapid response,and stable long-term operation.As a proof-of-concept application,we integrate our sensing array into a smart access control system,leveraging deep learning to accurately identify users based on their unique pressing behaviors.This study provides a promising approach for designing highly integrated,intelligent,and flexible electronic systems for advanced human-computer interactions and personalized electronics. 展开更多
关键词 Holey MXene Microsupercapacitor Tactile sensor Monolithic 3D integration Deep learning algorithm
在线阅读 下载PDF
Harnessing artificial intelligence for the assessment of liver fibrosis and steatosis via multiparametric ultrasound
7
作者 Nicholas Viceconti Silvia Andaloro +8 位作者 Mattia Paratore Sara Miliani Giulia D’Acunzo Giuseppe Cerniglia Fabrizio Mancuso Elena Melita Antonio Gasbarrini Laura Riccardi Matteo Garcovich 《World Journal of Gastroenterology》 2026年第2期59-76,共18页
Artificial intelligence(AI)is revolutionizing medical imaging,particularly in chronic liver diseases assessment.AI technologies,including machine learning and deep learning,are increasingly integrated with multiparame... Artificial intelligence(AI)is revolutionizing medical imaging,particularly in chronic liver diseases assessment.AI technologies,including machine learning and deep learning,are increasingly integrated with multiparametric ultrasound(US)techniques to provide more accurate,objective,and non-invasive evaluations of liver fibrosis and steatosis.Analyzing large datasets from US images,AI enhances diagnostic precision,enabling better quantification of liver stiffness and fat content,which are essential for diagnosing and staging liver fibrosis and steatosis.Combining advanced US modalities,such as elastography and doppler imaging with AI,has demonstrated improved sensitivity in identifying different stages of liver disease and distinguishing various degrees of steatotic liver.These advancements also contribute to greater reproducibility and reduced operator dependency,addressing some of the limitations of traditional methods.The clinical implications of AI in liver disease are vast,ranging from early detection to predicting disease progression and evaluating treatment response.Despite these promising developments,challenges such as the need for large-scale datasets,algorithm transparency,and clinical validation remain.The aim of this review is to explore the current applications and future potential of AI in liver fibrosis and steatosis assessment using multiparametric US,highlighting the technological advances and clinical relevance of this emerging field. 展开更多
关键词 Artificial intelligence Multiparametric ultrasound LIVER FIBROSIS STEATOSIS Shear wave elastography Attenuation imaging Machine learning Deep learning
在线阅读 下载PDF
A novel deep learning-based framework for forecasting
8
作者 Congqi Cao Ze Sun +2 位作者 Lanshu Hu Liujie Pan Yanning Zhang 《Atmospheric and Oceanic Science Letters》 2026年第1期22-26,共5页
Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep... Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep learning to medium-range regional weather forecasting with limited data remains a significant challenge.In this work,three key solutions are proposed:(1)motivated by the need to improve model performance in data-scarce regional forecasting scenarios,the authors innovatively apply semantic segmentation models,to better capture spatiotemporal features and improve prediction accuracy;(2)recognizing the challenge of overfitting and the inability of traditional noise-based data augmentation methods to effectively enhance model robustness,a novel learnable Gaussian noise mechanism is introduced that allows the model to adaptively optimize perturbations for different locations,ensuring more effective learning;and(3)to address the issue of error accumulation in autoregressive prediction,as well as the challenge of learning difficulty and the lack of intermediate data utilization in one-shot prediction,the authors propose a cascade prediction approach that effectively resolves these problems while significantly improving model forecasting performance.The method achieves a competitive result in The East China Regional AI Medium Range Weather Forecasting Competition.Ablation experiments further validate the effectiveness of each component,highlighting their contributions to enhancing prediction performance. 展开更多
关键词 Weather forecasting Deep learning Semantic segmentation models Learnable Gaussian noise Cascade prediction
在线阅读 下载PDF
Deep brain stimulation for the treatment of Alzheimer's disease:A safer and more effective strategy
9
作者 Fan Zhang Yao Meng Wei Zhang 《Neural Regeneration Research》 2026年第5期1899-1909,共11页
Alzheimer's disease is the most common type of cognitive disorder,and there is an urgent need to develop more effective,targeted and safer therapies for patients with this condition.Deep brain stimulation is an in... Alzheimer's disease is the most common type of cognitive disorder,and there is an urgent need to develop more effective,targeted and safer therapies for patients with this condition.Deep brain stimulation is an invasive surgical treatment that modulates abnormal neural activity by implanting electrodes into specific brain areas followed by electrical stimulation.As an emerging therapeutic approach,deep brain stimulation shows significant promise as a potential new therapy for Alzheimer's disease.Here,we review the potential mechanisms and therapeutic effects of deep brain stimulation in the treatment of Alzheimer's disease based on existing clinical and basic research.In clinical studies,the most commonly targeted sites include the fornix,the nucleus basalis of Meynert,and the ventral capsule/ventral striatum.Basic research has found that the most frequently targeted areas include the fornix,nucleus basalis of Meynert,hippocampus,entorhinal cortex,and rostral intralaminar thalamic nucleus.All of these individual targets exhibit therapeutic potential for patients with Alzheimer's disease and associated mechanisms of action have been investigated.Deep brain stimulation may exert therapeutic effects on Alzheimer's disease through various mechanisms,including reducing the deposition of amyloid-β,activation of the cholinergic system,increasing the levels of neurotrophic factors,enhancing synaptic activity and plasticity,promoting neurogenesis,and improving glucose metabolism.Currently,clinical trials investigating deep brain stimulation for Alzheimer's disease remain insufficient.In the future,it is essential to focus on translating preclinical mechanisms into clinical trials.Furthermore,consecutive follow-up studies are needed to evaluate the long-term safety and efficacy of deep brain stimulation for Alzheimer's disease,including cognitive function,neuropsychiatric symptoms,quality of life and changes in Alzheimer's disease biomarkers.Researchers must also prioritize the initiation of multi-center clinical trials of deep brain stimulation with large sample sizes and target earlier therapeutic windows,such as the prodromal and even the preclinical stages of Alzheimer's disease.Adopting these approaches will permit the efficient exploration of more effective and safer deep brain stimulation therapies for patients with Alzheimer's disease. 展开更多
关键词 Alzheimer's disease amyloid-β cholinergic system deep brain stimulation entorhinal cortex FORNIX HIPPOCAMPUS MECHANISMS nucleus basalis of Meynert THERAPY
暂未订购
Harnessing deep learning for the discovery of latent patterns in multi-omics medical data
10
作者 Okechukwu Paul-Chima Ugwu Fabian COgenyi +8 位作者 Chinyere Nkemjika Anyanwu Melvin Nnaemeka Ugwu Esther Ugo Alum Mariam Basajja Joseph Obiezu Chukwujekwu Ezeonwumelu Daniel Ejim Uti Ibe Michael Usman Chukwuebuka Gabriel Eze Simeon Ikechukwu Egba 《Medical Data Mining》 2026年第1期32-45,共14页
The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities... The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders. 展开更多
关键词 deep learning multi-omics integration biomedical data mining precision medicine graph neural networks autoencoders and transformers
在线阅读 下载PDF
Research on the visualization method of lithology intelligent recognition based on deep learning using mine tunnel images
11
作者 Aiai Wang Shuai Cao +1 位作者 Erol Yilmaz Hui Cao 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期141-152,共12页
An image processing and deep learning method for identifying different types of rock images was proposed.Preprocessing,such as rock image acquisition,gray scaling,Gaussian blurring,and feature dimensionality reduction... An image processing and deep learning method for identifying different types of rock images was proposed.Preprocessing,such as rock image acquisition,gray scaling,Gaussian blurring,and feature dimensionality reduction,was conducted to extract useful feature information and recognize and classify rock images using Tensor Flow-based convolutional neural network(CNN)and Py Qt5.A rock image dataset was established and separated into workouts,confirmation sets,and test sets.The framework was subsequently compiled and trained.The categorization approach was evaluated using image data from the validation and test datasets,and key metrics,such as accuracy,precision,and recall,were analyzed.Finally,the classification model conducted a probabilistic analysis of the measured data to determine the equivalent lithological type for each image.The experimental results indicated that the method combining deep learning,Tensor Flow-based CNN,and Py Qt5 to recognize and classify rock images has an accuracy rate of up to 98.8%,and can be successfully utilized for rock image recognition.The system can be extended to geological exploration,mine engineering,and other rock and mineral resource development to more efficiently and accurately recognize rock samples.Moreover,it can match them with the intelligent support design system to effectively improve the reliability and economy of the support scheme.The system can serve as a reference for supporting the design of other mining and underground space projects. 展开更多
关键词 rock picture recognition convolutional neural network intelligent support for roadways deep learning lithology determination
在线阅读 下载PDF
Artificial intelligence in metabolic dysfunction-associated steatotic liver disease:Transforming diagnosis and therapeutic approaches
12
作者 Pablo Guillermo Hernández-Almonacid Ximena Marín-Quintero 《World Journal of Gastroenterology》 2026年第2期77-89,共13页
Metabolic dysfunction-associated steatotic liver disease(MASLD)is an increasingly prevalent condition associated with hepatic complications and cardiovascular and renal events.Given its significant clinical impact,the... Metabolic dysfunction-associated steatotic liver disease(MASLD)is an increasingly prevalent condition associated with hepatic complications and cardiovascular and renal events.Given its significant clinical impact,the development of new strategies for early diagnosis and treatment is essential to improve patient outcomes.Over the past decade,the integration of artificial intelligence(AI)into gastroenterology has led to transformative advancements in medical practice.AI represents a major step towards personalized medicine,offering the potential to enhance diagnostic accuracy,refine prognostic assessments,and optimize treatment strategies.Its applications are rapidly expanding.This article explores the emerging role of AI in the management of MASLD,emphasizing its ability to improve clinical prediction,enhance the diagnostic performance of imaging modalities,and support histopathological confirmation.Additionally,it examines the development of AI-guided personalized treatments,where lifestyle modifications and close monitoring play a pivotal role in achieving therapeutic success. 展开更多
关键词 Metabolic dysfunction-associated steatotic liver disease Artificial intelligence Machine learning Deep learning ULTRASONOGRAPHY Digital pathology Hepatocellular carcinoma Precision medicine
暂未订购
Multimodal artificial intelligence integrates imaging,endoscopic,and omics data for intelligent decision-making in individualized gastrointestinal tumor treatment
13
作者 Hui Nian Yi-Bin Wu +5 位作者 Yu Bai Zhi-Long Zhang Xiao-Huang Tu Qi-Zhi Liu De-Hua Zhou Qian-Cheng Du 《Artificial Intelligence in Gastroenterology》 2026年第1期1-19,共19页
Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including ... Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies. 展开更多
关键词 Multimodal artificial intelligence Gastrointestinal tumors Individualized therapy Intelligent diagnosis Treatment optimization Prognostic prediction Data fusion Deep learning Precision medicine
在线阅读 下载PDF
数智教育生态下人机协同教学范式转型 被引量:33
14
作者 袁磊 徐济远 刘沃奇 《开放教育研究》 北大核心 2025年第2期108-117,共10页
随着ChatGPT、DeepSeek等大模型的快速发展,生成式人工智能技术已深度融入教育。教育生态正从传统数字教育形态跃迁为人机共生、交往理性的数智教育生态,成为“师—机—生”三元互动和物理、文化、数字三元交融的复合场域。本研究聚焦... 随着ChatGPT、DeepSeek等大模型的快速发展,生成式人工智能技术已深度融入教育。教育生态正从传统数字教育形态跃迁为人机共生、交往理性的数智教育生态,成为“师—机—生”三元互动和物理、文化、数字三元交融的复合场域。本研究聚焦数智教育生态四个核心维度的范式变革:教学主体从单一走向多元,教师角色由知识传授者变为学习设计者,学生逐渐成为主动探索者,智能体作为教育“准主体”深度参与教学;知识观从静态走向动态,教学组织从单一走向混合;学习方式实现认知过程外显化,强调批判性使用与创造性应用知识;教学评价由结果导向转向多维整合,由静态测量转向动态适应。基于教学案例,本研究借助DeepSeek双模型架构设计了五阶段教学流程,开发了四类功能性教育智能体,并提出差异化智能体应用策略,以期为数智教育生态下人机协同教学提供实践范式与理论支持。 展开更多
关键词 数智教育 人机协同教学 教育生态 教育智能体 Deep Seek
在线阅读 下载PDF
基于RPA+DeepSeek的企业信息核查审计机器人研究——以ND会计师事务所市监局项目为例 被引量:3
15
作者 程平 唐涔芮 +1 位作者 胥尧 林定逢 《会计之友》 北大核心 2025年第12期107-114,共8页
传统企业信息核查审计工作因流程冗长、效率低、准确性不足及人力消耗大等问题,制约了核查质量和效率。文章以ND会计师事务所市场监督管理局项目为例,提出结合RPA与Deep Seek大模型的技术创新方案,推动核查审计工作的数字化转型。通过... 传统企业信息核查审计工作因流程冗长、效率低、准确性不足及人力消耗大等问题,制约了核查质量和效率。文章以ND会计师事务所市场监督管理局项目为例,提出结合RPA与Deep Seek大模型的技术创新方案,推动核查审计工作的数字化转型。通过构建涵盖应用层、服务层、数据层和基础设施层的审计机器人框架模型,实现从文件识别到报告生成的全流程自动化。Deep Seek大模型凭借其自然语言处理能力和本地化部署优势,提升非结构化数据处理效率和信息抽取精准度;RPA技术通过自动化流程执行,减少人工干预和错误风险。研究表明,RPA与Deep Seek大模型的深度融合显著提高了核查效率与准确性,降低了人力成本,为审计智能化转型提供了技术支撑。实际应用中需重点关注技术集成与业务流程适配、模型性能优化、数据安全与合规性保障,以及人员技术培训与转型支持。 展开更多
关键词 RPA Deep Seek 企业信息核查 数字化转型 审计机器人
在线阅读 下载PDF
Deep Seek技术驱动下的童书出版智能化生产范式转型 被引量:1
16
作者 陈苗苗 应莹 《出版广角》 北大核心 2025年第5期64-71,共8页
在数字化浪潮冲击下,传统童书出版业面临选题策划失准、创作滞后、编辑断层、营销低效等结构性困境,亟须通过智能化转型重构生产范式。以Deep Seek多模态大模型为技术框架,系统解析其如何通过动态用户画像、多模态内容生成、智能校对与... 在数字化浪潮冲击下,传统童书出版业面临选题策划失准、创作滞后、编辑断层、营销低效等结构性困境,亟须通过智能化转型重构生产范式。以Deep Seek多模态大模型为技术框架,系统解析其如何通过动态用户画像、多模态内容生成、智能校对与知识图谱、强化学习决策等技术模块,深度赋能童书出版选题策划、作者创作、编辑加工、营销发行全链路智能化升级。童书出版机构在转型过程中面临选题依赖数据遮蔽儿童需求、技术理性消解作者原创性、编辑职能被技术侵蚀、营销发行同质化等挑战,需构建童书出版智能化转型的方法论框架,助力童书出版产业在数字时代重塑核心竞争力。 展开更多
关键词 Deep Seek 童书出版 智能化 生产范式
在线阅读 下载PDF
改进Deep Q Networks的交通信号均衡调度算法
17
作者 贺道坤 《机械设计与制造》 北大核心 2025年第4期135-140,共6页
为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向... 为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向十字路口交通信号模型,并基于此构建交通信号调度优化模型;针对Deep Q Networks算法在交通信号调度问题应用中所存在的收敛性、过估计等不足,对Deep Q Networks进行竞争网络改进、双网络改进以及梯度更新策略改进,提出相适应的均衡调度算法。通过与经典Deep Q Networks仿真比对,验证论文算法对交通信号调度问题的适用性和优越性。基于城市道路数据,分别针对两种场景进行仿真计算,仿真结果表明该算法能够有效缩减十字路口车辆排队长度,均衡各路口车流通行量,缓解高峰出行方向的道路拥堵现象,有利于十字路口交通信号调度效益的提升。 展开更多
关键词 交通信号调度 十字路口 Deep Q Networks 深度强化学习 智能交通
在线阅读 下载PDF
人工智能的出现及人文学科的应对——立足于信息环境演化的视角
18
作者 王军 《云梦学刊》 2025年第6期7-10,共4页
近年来,以Chat GPT、Deep Seek等为代表的大语言模型(LLM)人工智能迅猛发展,对人文社科领域产生了广泛而深刻的影响。这些基于LLM技术的聊天机器人,能够流畅地进行自然语言交互,展现出多语言处理、上下文理解乃至一定逻辑推理的能力,使... 近年来,以Chat GPT、Deep Seek等为代表的大语言模型(LLM)人工智能迅猛发展,对人文社科领域产生了广泛而深刻的影响。这些基于LLM技术的聊天机器人,能够流畅地进行自然语言交互,展现出多语言处理、上下文理解乃至一定逻辑推理的能力,使得知识整合和提取变得前所未有的高效。人工智能正在重塑人们获取信息、生产知识、表达思想的方式,为传统以写作、诠释和批判性思考为核心技能的人文社科领域带来了巨大冲击。 展开更多
关键词 Chat GPT Deep Seek
在线阅读 下载PDF
Early identification of stroke through deep learning with multi-modal human speech and movement data 被引量:4
19
作者 Zijun Ou Haitao Wang +9 位作者 Bin Zhang Haobang Liang Bei Hu Longlong Ren Yanjuan Liu Yuhu Zhang Chengbo Dai Hejun Wu Weifeng Li Xin Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期234-241,共8页
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are... Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting. 展开更多
关键词 artificial intelligence deep learning DIAGNOSIS early detection FAST SCREENING STROKE
在线阅读 下载PDF
教师要做人工智能时代的创变者 被引量:8
20
作者 王烽 《中小学管理》 北大核心 2025年第3期41-43,共3页
AI大模型的普及必然推动教育范式变革,其核心变革方向包括从“标准化”到“个性化”的教育体系重构,从“知识传递”到“全人发展”的教育目标升级,从“封闭课堂”到“无边界学习”的教育生态进化,从“师生互动”到“人机协同”的教学模... AI大模型的普及必然推动教育范式变革,其核心变革方向包括从“标准化”到“个性化”的教育体系重构,从“知识传递”到“全人发展”的教育目标升级,从“封闭课堂”到“无边界学习”的教育生态进化,从“师生互动”到“人机协同”的教学模式转型。教师角色将真正回归教育的本质—唤醒灵魂、点燃思想、陪伴成长,教师职能将向更复杂、更具创造性的方向演进。数字素养成为教师的必备素养,使用AI的高阶能力成为教师的关键能力,如何积极应变、主动求变成为重塑教师专业价值的必然选择。 展开更多
关键词 人工智能 AI大模型 Deep Seek 无边界学习 数字素养
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部