期刊文献+
共找到9,291篇文章
< 1 2 250 >
每页显示 20 50 100
数智教育生态下人机协同教学范式转型 被引量:21
1
作者 袁磊 徐济远 刘沃奇 《开放教育研究》 北大核心 2025年第2期108-117,共10页
随着ChatGPT、DeepSeek等大模型的快速发展,生成式人工智能技术已深度融入教育。教育生态正从传统数字教育形态跃迁为人机共生、交往理性的数智教育生态,成为“师—机—生”三元互动和物理、文化、数字三元交融的复合场域。本研究聚焦... 随着ChatGPT、DeepSeek等大模型的快速发展,生成式人工智能技术已深度融入教育。教育生态正从传统数字教育形态跃迁为人机共生、交往理性的数智教育生态,成为“师—机—生”三元互动和物理、文化、数字三元交融的复合场域。本研究聚焦数智教育生态四个核心维度的范式变革:教学主体从单一走向多元,教师角色由知识传授者变为学习设计者,学生逐渐成为主动探索者,智能体作为教育“准主体”深度参与教学;知识观从静态走向动态,教学组织从单一走向混合;学习方式实现认知过程外显化,强调批判性使用与创造性应用知识;教学评价由结果导向转向多维整合,由静态测量转向动态适应。基于教学案例,本研究借助DeepSeek双模型架构设计了五阶段教学流程,开发了四类功能性教育智能体,并提出差异化智能体应用策略,以期为数智教育生态下人机协同教学提供实践范式与理论支持。 展开更多
关键词 数智教育 人机协同教学 教育生态 教育智能体 Deep Seek
在线阅读 下载PDF
基于RPA+DeepSeek的企业信息核查审计机器人研究——以ND会计师事务所市监局项目为例 被引量:3
2
作者 程平 唐涔芮 +1 位作者 胥尧 林定逢 《会计之友》 北大核心 2025年第12期107-114,共8页
传统企业信息核查审计工作因流程冗长、效率低、准确性不足及人力消耗大等问题,制约了核查质量和效率。文章以ND会计师事务所市场监督管理局项目为例,提出结合RPA与Deep Seek大模型的技术创新方案,推动核查审计工作的数字化转型。通过... 传统企业信息核查审计工作因流程冗长、效率低、准确性不足及人力消耗大等问题,制约了核查质量和效率。文章以ND会计师事务所市场监督管理局项目为例,提出结合RPA与Deep Seek大模型的技术创新方案,推动核查审计工作的数字化转型。通过构建涵盖应用层、服务层、数据层和基础设施层的审计机器人框架模型,实现从文件识别到报告生成的全流程自动化。Deep Seek大模型凭借其自然语言处理能力和本地化部署优势,提升非结构化数据处理效率和信息抽取精准度;RPA技术通过自动化流程执行,减少人工干预和错误风险。研究表明,RPA与Deep Seek大模型的深度融合显著提高了核查效率与准确性,降低了人力成本,为审计智能化转型提供了技术支撑。实际应用中需重点关注技术集成与业务流程适配、模型性能优化、数据安全与合规性保障,以及人员技术培训与转型支持。 展开更多
关键词 RPA Deep Seek 企业信息核查 数字化转型 审计机器人
在线阅读 下载PDF
Deep Seek技术驱动下的童书出版智能化生产范式转型 被引量:1
3
作者 陈苗苗 应莹 《出版广角》 北大核心 2025年第5期64-71,共8页
在数字化浪潮冲击下,传统童书出版业面临选题策划失准、创作滞后、编辑断层、营销低效等结构性困境,亟须通过智能化转型重构生产范式。以Deep Seek多模态大模型为技术框架,系统解析其如何通过动态用户画像、多模态内容生成、智能校对与... 在数字化浪潮冲击下,传统童书出版业面临选题策划失准、创作滞后、编辑断层、营销低效等结构性困境,亟须通过智能化转型重构生产范式。以Deep Seek多模态大模型为技术框架,系统解析其如何通过动态用户画像、多模态内容生成、智能校对与知识图谱、强化学习决策等技术模块,深度赋能童书出版选题策划、作者创作、编辑加工、营销发行全链路智能化升级。童书出版机构在转型过程中面临选题依赖数据遮蔽儿童需求、技术理性消解作者原创性、编辑职能被技术侵蚀、营销发行同质化等挑战,需构建童书出版智能化转型的方法论框架,助力童书出版产业在数字时代重塑核心竞争力。 展开更多
关键词 Deep Seek 童书出版 智能化 生产范式
在线阅读 下载PDF
改进Deep Q Networks的交通信号均衡调度算法
4
作者 贺道坤 《机械设计与制造》 北大核心 2025年第4期135-140,共6页
为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向... 为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向十字路口交通信号模型,并基于此构建交通信号调度优化模型;针对Deep Q Networks算法在交通信号调度问题应用中所存在的收敛性、过估计等不足,对Deep Q Networks进行竞争网络改进、双网络改进以及梯度更新策略改进,提出相适应的均衡调度算法。通过与经典Deep Q Networks仿真比对,验证论文算法对交通信号调度问题的适用性和优越性。基于城市道路数据,分别针对两种场景进行仿真计算,仿真结果表明该算法能够有效缩减十字路口车辆排队长度,均衡各路口车流通行量,缓解高峰出行方向的道路拥堵现象,有利于十字路口交通信号调度效益的提升。 展开更多
关键词 交通信号调度 十字路口 Deep Q Networks 深度强化学习 智能交通
在线阅读 下载PDF
Early identification of stroke through deep learning with multi-modal human speech and movement data 被引量:4
5
作者 Zijun Ou Haitao Wang +9 位作者 Bin Zhang Haobang Liang Bei Hu Longlong Ren Yanjuan Liu Yuhu Zhang Chengbo Dai Hejun Wu Weifeng Li Xin Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期234-241,共8页
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are... Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting. 展开更多
关键词 artificial intelligence deep learning DIAGNOSIS early detection FAST SCREENING STROKE
在线阅读 下载PDF
A Hybrid Approach for Pavement Crack Detection Using Mask R-CNN and Vision Transformer Model 被引量:2
6
作者 Shorouq Alshawabkeh Li Wu +2 位作者 Daojun Dong Yao Cheng Liping Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期561-577,共17页
Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learni... Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learning(DL)methods automate crack detection,but many still struggle with variable crack patterns and environmental conditions.This study aims to address these limitations by introducing the Masker Transformer,a novel hybrid deep learning model that integrates the precise localization capabilities of Mask Region-based Convolutional Neural Network(Mask R-CNN)with the global contextual awareness of Vision Transformer(ViT).The research focuses on leveraging the strengths of both architectures to enhance segmentation accuracy and adaptability across different pavement conditions.We evaluated the performance of theMaskerTransformer against other state-of-theartmodels such asU-Net,TransformerU-Net(TransUNet),U-NetTransformer(UNETr),SwinU-NetTransformer(Swin-UNETr),You Only Look Once version 8(YoloV8),and Mask R-CNN using two benchmark datasets:Crack500 and DeepCrack.The findings reveal that the MaskerTransformer significantly outperforms the existing models,achieving the highest Dice SimilarityCoefficient(DSC),precision,recall,and F1-Score across both datasets.Specifically,the model attained a DSC of 80.04%on Crack500 and 91.37%on DeepCrack,demonstrating superior segmentation accuracy and reliability.The high precision and recall rates further substantiate its effectiveness in real-world applications,suggesting that the Masker Transformer can serve as a robust tool for automated pavement crack detection,potentially replacing more traditional methods. 展开更多
关键词 Pavement crack segmentation TRANSPORTATION deep learning vision transformer Mask R-CNN image segmentation
在线阅读 下载PDF
教师要做人工智能时代的创变者 被引量:6
7
作者 王烽 《中小学管理》 北大核心 2025年第3期41-43,共3页
AI大模型的普及必然推动教育范式变革,其核心变革方向包括从“标准化”到“个性化”的教育体系重构,从“知识传递”到“全人发展”的教育目标升级,从“封闭课堂”到“无边界学习”的教育生态进化,从“师生互动”到“人机协同”的教学模... AI大模型的普及必然推动教育范式变革,其核心变革方向包括从“标准化”到“个性化”的教育体系重构,从“知识传递”到“全人发展”的教育目标升级,从“封闭课堂”到“无边界学习”的教育生态进化,从“师生互动”到“人机协同”的教学模式转型。教师角色将真正回归教育的本质—唤醒灵魂、点燃思想、陪伴成长,教师职能将向更复杂、更具创造性的方向演进。数字素养成为教师的必备素养,使用AI的高阶能力成为教师的关键能力,如何积极应变、主动求变成为重塑教师专业价值的必然选择。 展开更多
关键词 人工智能 AI大模型 Deep Seek 无边界学习 数字素养
原文传递
基于文件工作流和强化学习的工程项目文件管理优化方法
8
作者 司鹏搏 庞睿 +2 位作者 杨睿哲 孙艳华 李萌 《北京工业大学学报》 北大核心 2025年第10期1162-1170,共9页
为了解决大型工程项目中文件的传输时间与成本问题,提出一个基于文件工作流的工程项目文件管理优化方法。首先,构建了工程项目文件管理环境和具有逻辑顺序的文件工作流模型,分析了文件的传输和缓存。在此基础上,将文件管理优化问题建模... 为了解决大型工程项目中文件的传输时间与成本问题,提出一个基于文件工作流的工程项目文件管理优化方法。首先,构建了工程项目文件管理环境和具有逻辑顺序的文件工作流模型,分析了文件的传输和缓存。在此基础上,将文件管理优化问题建模为马尔可夫过程,通过设计状态空间、动作空间及奖励函数等实现文件工作流的任务完成时间与缓存成本的联合优化。其次,采用对抗式双重深度Q网络(dueling double deep Q network,D3QN)来降低训练时间,提高训练效率。仿真结果验证了提出方案在不同参数配置下文件传输的有效性,并且在任务体量增大时仍能保持较好的优化能力。 展开更多
关键词 文件工作流 传输时间 马尔可夫过程 对抗式双重深度Q网络(dueling double deep Q network D3QN) 文件管理 联合优化
在线阅读 下载PDF
An Artificial Intelligence‑Assisted Flexible and Wearable Mechanoluminescent Strain Sensor System 被引量:1
9
作者 Yan Dong Wenzheng An +1 位作者 Zihu Wang Dongzhi Zhang 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期217-231,共15页
The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these chal... The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these challenges,this work develops an artificial intelligenceassisted,wireless,flexible,and wearable mechanoluminescent strain sensor system(AIFWMLS)by integration of deep learning neural network-based color data processing system(CDPS)with a sandwich-structured flexible mechanoluminescent sensor(SFLC)film.The SFLC film shows remarkable and robust mechanoluminescent performance with a simple structure for easy fabrication.The CDPS system can rapidly and accurately extract and interpret the color of the SFLC film to strain values with auto-correction of errors caused by the varying color temperature,which significantly improves the accuracy of the predicted strain.A smart glove mechanoluminescent sensor system demonstrates the great potential of the AIFWMLS system in human gesture recognition.Moreover,the versatile SFLC film can also serve as a encryption device.The integration of deep learning neural network-based artificial intelligence and SFLC film provides a promising strategy to break the“color to strain value”bottleneck that hinders the practical application of flexible colorimetric strain sensors,which could promote the development of wearable and flexible strain sensors from laboratory research to consumer markets. 展开更多
关键词 Mechanoluminescent Strain sensor FLEXIBLE Deep learning WIRELESS
在线阅读 下载PDF
“1+X”证书制度下虚实融合驱动高职服装陈列设计实训课程改革与实践 被引量:1
10
作者 徐博蕴 任丽惠 《纺织报告》 2025年第6期95-98,共4页
在“1+X”证书制度与职业教育数字化转型背景下,传统服装陈列设计实训课程面临资源适配不足、考核精准度欠缺等问题。文章提出了基于DeepSeek智能平台的虚实融合改革方案,通过课前智能导学构建证书知识体系、课中虚实互嵌实现技能分层... 在“1+X”证书制度与职业教育数字化转型背景下,传统服装陈列设计实训课程面临资源适配不足、考核精准度欠缺等问题。文章提出了基于DeepSeek智能平台的虚实融合改革方案,通过课前智能导学构建证书知识体系、课中虚实互嵌实现技能分层达标、课后岗证融合促进能力迁移,形成“标准解构—智能诊断—实战闭环”的创新人工智能(AI)赋能模式。通过实践印证,该模式可在较大程度上提升“1+X”证书通过率,降低教师案例开发成本,为高职实训课程的智能化升级提供可操作路径。 展开更多
关键词 “1+X”证书 服装陈列设计 虚实融合 Deep Seek 智能教学 实训课程 高职教育
在线阅读 下载PDF
Toward understanding the role of genomic repeat elements in neurodegenerative diseases 被引量:1
11
作者 Zhengyu An Aidi Jiang Jingqi Chen 《Neural Regeneration Research》 SCIE CAS 2025年第3期646-659,共14页
Neurodegenerative diseases cause great medical and economic burdens for both patients and society;however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage se... Neurodegenerative diseases cause great medical and economic burdens for both patients and society;however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage sequencing technology, researchers have started to notice that genomic repeat regions, previously neglected in search of disease culprits, are active contributors to multiple neurodegenerative diseases. In this review, we describe the association between repeat element variants and multiple degenerative diseases through genome-wide association studies and targeted sequencing. We discuss the identification of disease-relevant repeat element variants, further powered by the advancement of long-read sequencing technologies and their related tools, and summarize recent findings in the molecular mechanisms of repeat element variants in brain degeneration, such as those causing transcriptional silencing or RNA-mediated gain of toxic function. Furthermore, we describe how in silico predictions using innovative computational models, such as deep learning language models, could enhance and accelerate our understanding of the functional impact of repeat element variants. Finally, we discuss future directions to advance current findings for a better understanding of neurodegenerative diseases and the clinical applications of genomic repeat elements. 展开更多
关键词 Alzheimer's disease ATAXIA deep learning long-read sequencing NEURODEGENERATION neurodegenerative diseases Parkinson's disease repeat element structural variant
暂未订购
Open TBM Tunnel Intelligent Construction Technology 被引量:2
12
作者 LIU Yongsheng CHEN Qiao +4 位作者 ZHANG Hepei LI Shu′ao LIN Chungang YIN Long LI Mengyu 《隧道建设(中英文)》 北大核心 2025年第4期816-833,I0025-I0042,共36页
To fully leverage the advantages of mechanization and informatization in tunnel boring machine(TBM)operations,the authors aim to promote the advancement of tunnel construction technology toward intelligent development... To fully leverage the advantages of mechanization and informatization in tunnel boring machine(TBM)operations,the authors aim to promote the advancement of tunnel construction technology toward intelligent development.This involved exploring the deep integration of next-generation artificial intelligence technologies,such as sensing technology,automatic control technology,big data technology,deep learning,and machine vision,with key operational processes,including TBM excavation,direction adjustment,step changes,inverted arch block assembly,material transportation,and operation status assurance.The results of this integration are summarized as follows.(1)TBM key excavation parameter prediction algorithm was developed with an accuracy rate exceeding 90%.The TBM intelligent step-change control algorithm,based on machine vision,achieved an image segmentation accuracy rate of 95%and gripper shoe positioning error of±5 mm.(2)An automatic positioning system for inverted arch blocks was developed,enabling real-time perception of the spatial position and deviation during the assembly process.The system maintains an elevation positioning deviation within±3 mm and a horizontal positioning deviation within±10 mm,reducing the number of surveyors in each work team.(3)A TBM intelligent rail transportation system that achieves real-time human-machine positioning,automatic switch opening and closing,automatic obstacle avoidance,intelligent transportation planning,and integrated scheduling and command was designed.Each locomotive formation reduces one shunter and improves comprehensive transportation efficiency by more than 20%.(4)Intelligent analysis and prediction algorithms were developed to monitor and predict the trends of the hydraulic and gear oil parameters in real time,enhancing the proactive maintenance and system reliability. 展开更多
关键词 TUNNEL open TBM intelligent construction deep learning machine vision
在线阅读 下载PDF
MARIE:One-Stage Object Detection Mechanism for Real-Time Identifying of Firearms 被引量:1
13
作者 Diana Abi-Nader Hassan Harb +4 位作者 Ali Jaber Ali Mansour Christophe Osswald Nour Mostafa Chamseddine Zaki 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期279-298,共20页
Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable... Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively. 展开更多
关键词 Firearm and gun detection single shot multi-box detector deep learning one-stage detector MobileNet INCEPTION convolutional neural network
在线阅读 下载PDF
Spectrum of venous thromboembolism in adult patients with ulcerative colitis in Pakistan:A single center retrospective study 被引量:1
14
作者 Masood Muhammad Karim Hafsa Shaikh Faisal Wasim Ismail 《World Journal of Clinical Cases》 SCIE 2025年第6期9-13,共5页
BACKGROUND Patients with inflammatory bowel disease are at a 2-8-fold higher risk of deve-loping venous thromboembolism(VTE)as compared to the general population.Although the exact pathogenesis is unclear,the literatu... BACKGROUND Patients with inflammatory bowel disease are at a 2-8-fold higher risk of deve-loping venous thromboembolism(VTE)as compared to the general population.Although the exact pathogenesis is unclear,the literature suggests that increased risk of thromboembolic events in such patients occurs as a result of increased coagulation factors,inflammatory cytokines,and reduction in anticoagulants leading to a prothrombotic state.AIM To assess the prevalence,risk factors,management,and outcome of ulcerative colitis(UC)patients who develop VTE.METHODS This was a retrospective chart review done in The Gastroenterology Department of The Aga Khan University Hospital.Data was collected from medical records for all patients admitted with a diagnosis of UC from January 2012 to December 2022.RESULTS Seventy-four patients fulfilled the inclusion criteria.The mean±SD of age at presentation of all UC patients was 45 years±10 years whereas for those who developed VTE,it was 47.6 years±14.7 years.Hypertension and diabetes were the most common co-morbid seen among UC patients with a frequency of 17(22.9%)and 12(16.2%),respectively.A total of 5(6.7%)patients developed VTE.Deep venous thrombosis was the most common thromboembolic phenomenon seen in 3(60%)patients.All the patients with UC and concomitant VTE were discharged home(5;100%).CONCLUSION The prevalence of VTE with UC in Pakistani patients corresponds with the international literature.However,multi-centric studies are required to further explore these results. 展开更多
关键词 Deep venous thrombosis Inflammatory bowel disease Low-middle-income country ANTICOAGULATION Protein C deficiency
暂未订购
DEEP NEURAL NETWORKS COMBINING MULTI-TASK LEARNING FOR SOLVING DELAY INTEGRO-DIFFERENTIAL EQUATIONS 被引量:1
15
作者 WANG Chen-yao SHI Feng 《数学杂志》 2025年第1期13-38,共26页
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di... Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data. 展开更多
关键词 Delay integro-differential equation Multi-task learning parameter sharing structure deep neural network sequential training scheme
在线阅读 下载PDF
基于MCSP和Swin Transformer的转录因子结合位点预测模型
16
作者 李雪 石晋雪 +2 位作者 王会青 闫奥煜 王森 《华东理工大学学报(自然科学版)》 北大核心 2025年第4期552-563,共12页
预测转录因子结合位点(Transcription Factor Binding Sites,TFBS)可以帮助识别特定细胞和组织的特异性调控机制,对于理解基因表达调控机制至关重要。现有方法结合DNA的序列和形状信息进行TFBS的预测,生成的形状信息未考虑长侧翼核苷酸... 预测转录因子结合位点(Transcription Factor Binding Sites,TFBS)可以帮助识别特定细胞和组织的特异性调控机制,对于理解基因表达调控机制至关重要。现有方法结合DNA的序列和形状信息进行TFBS的预测,生成的形状信息未考虑长侧翼核苷酸的影响,在对序列信息进行特征提取时忽略了不同通道间特征的互补性,模型的预测能力有待提高。本文提出了TFBS预测模型MSSW,考虑长侧翼核苷酸来生成形状信息;利用Swin Transformer提取形状信息中长程依赖和局部关联相结合的特性,将分裂注意力融入多尺度卷积神经网络(Multiscale Convolution and Split attention,MCSP)来捕获序列中不同通道间特征的互补性,获得跨通道的多尺度序列特征;结合提取的高级序列和形状特征进行TFBS的预测。结果表明,MSSW模型优于现有TFBS预测模型,可有效预测TFBS。 展开更多
关键词 转录因子结合位点 多尺度卷积 分裂注意力 Swin Transformer Deep DNAshape
在线阅读 下载PDF
Research status of high efficiency deep penetration welding of medium-thick plate titanium alloy:A review 被引量:4
17
作者 Zhihai Dong Ye Tian +4 位作者 Long Zhang Tong Jiang Dafeng Wang Yunlong Chang Donggao Chen 《Defence Technology(防务技术)》 2025年第3期178-202,共25页
Titanium alloy has the advantages of high strength,strong corrosion resistance,excellent high and low temperature mechanical properties,etc.,and is widely used in aerospace,shipbuilding,weapons and equipment,and other... Titanium alloy has the advantages of high strength,strong corrosion resistance,excellent high and low temperature mechanical properties,etc.,and is widely used in aerospace,shipbuilding,weapons and equipment,and other fields.In recent years,with the continuous increase in demand for medium-thick plate titanium alloys,corresponding welding technologies have also continued to develop.Therefore,this article reviews the research progress of deep penetration welding technology for medium-thick plate titanium alloys,mainly covering traditional arc welding,high-energy beam welding,and other welding technologies.Among many methods,narrow gap welding,hybrid welding,and external energy field assistance welding all contribute to improving the welding efficiency and quality of medium-thick plate titanium alloys.Finally,the development trend of deep penetration welding technology for mediumthick plate titanium alloys is prospected. 展开更多
关键词 Titanium alloy Deep penetration welding Narrow gap welding Hybrid welding External energy field assistance welding
在线阅读 下载PDF
基于思维链技术的语言模型Deep Seek-R1、GPT-4o与Claude-3.5 Sonnet在儿外科领域的表现评估
18
作者 普健 刘雪来 谷庆隆 《齐齐哈尔医学院学报》 2025年第19期1844-1852,共9页
目的本研究旨在评估采用思维链(Co T)技术的人工智能(AI)语言模型(Deep Seek-R1)与传统大语言模型(GPT-4o、Claude-3.5 Sonnet)在儿外科临床知识库应答任务中的性能差异,进而探索AI技术在医疗健康领域优化临床决策支持的可行性及潜在影... 目的本研究旨在评估采用思维链(Co T)技术的人工智能(AI)语言模型(Deep Seek-R1)与传统大语言模型(GPT-4o、Claude-3.5 Sonnet)在儿外科临床知识库应答任务中的性能差异,进而探索AI技术在医疗健康领域优化临床决策支持的可行性及潜在影响风险。方法研究团队构建标准化儿外科知识题库(n=147),涵盖先天性巨结肠、肛门闭锁及先天性胆总管囊肿三大疾病谱系,并从基础理论、临床诊断、治疗策略、并发症管理和预防措施五个维度设计问题。题库包含专业型问题(医生视角,n=79)与科普型问题(患者视角,n=68)。采用双盲法组织专业评估团队进行系统评分。此外,从既往临床病例中挑选罕见或诊断困难的病例问题,进一步评估三个模型的临床诊断能力,同时评估不同提问条件下AI临床诊断的差异。应用Kruskal-Wallis H检验进行多组独立样本间差异分析,若差异显著则进一步通过全部成对比较。采用卡方检验比较分类数据之间的表现差异。使用Cohen's kappa检验评估者之间的评分差异度。结果本研究对三个语言模型在儿外科场景的表现进行系统评估:(1)总体性能比较:Deep Seek-R1总体回答质量显著优于对照模型(H=23.42,P<0.001),Deep Seek-R1准确率(87.07%)高于GPT-4o(63.27%)和Claude-3.5 Sonnet(67.35%);(2)专业问题表现:三类模型在专业类问题中答案质量的差异尤为显著(H=26.50,P<0.001);(3)科普问题表现:三类模型在患者教育类问题中均表现良好(准确率>80%),组间差异无统计学意义(H=2.335,P=0.311),且未观察到明显错误答案;(4)病例分析能力:三种模型对于含完整辅助诊断信息的回答质量显著优于无辅助检查的病例问题[χ^(2)(2)=1.983,P=0.371]。结论在儿外科的知识测评中,采用思维链技术的人工智能模型(Deep Seek-R1)在处理复杂问题时的表现优于GPT-4o和Claude-3.5 Sonnet,但三个模型的部分答案仍存在局限和潜在错误。此外,在使用AI处理临床问题时提供更全面的输入信息能显著提升回答准确率。 展开更多
关键词 人工智能 大语言模型 儿外科 思维链 Deep Seek-R1 GPT-4o Claude-3.5 Sonnet
在线阅读 下载PDF
基于ReDeepWaveNet的水下图像增强网络设计
19
作者 张丹 苏里阳 +2 位作者 段舒婷 孙贵新 张雨杭 《无线电工程》 2025年第6期1238-1243,共6页
水下图像由于对比度低,色彩失真严重,衰减程度随波长的变化而变化,导致颜色不对称传输等问题。尽管深度学习技术在水下图像恢复(Underwater Image Restoration,UIR)方面已经取得了较好效果,但颜色不对称性问题依然存在。已知基于颜色通... 水下图像由于对比度低,色彩失真严重,衰减程度随波长的变化而变化,导致颜色不对称传输等问题。尽管深度学习技术在水下图像恢复(Underwater Image Restoration,UIR)方面已经取得了较好效果,但颜色不对称性问题依然存在。已知基于颜色通道的卷积范围赋予正确的接受野大小(上下文),可以有效提升UIR任务的性能,同时抑制不相关的多上下文特征,增强模型的表示能力。提出基于跳过机制来自适应地改进学习到的多上下文特征的框架ReDeepWaveNet,采用全局注意力机制(Global Attention Mechanism,GAM)来替代卷积块注意力模块(Convolutional Block Attention Module,CBAM),抑制来自前一层的无关的颜色局部跳跃信息;设计双分支通路(Dual Branch Pathway,DBP)模块,通过多尺度特征提取更丰富的图像细节特征;设计了新的复合损失函数,更准确地控制恢复图像的质量。在多个数据集上的实验表明,该方案在主客观图像质量上优于现有的方法。 展开更多
关键词 水下图像恢复 Deep WaveNet 全局注意力机制 多尺度特征提取 复合损失
在线阅读 下载PDF
Recent progress on artificial intelligence-enhanced multimodal sensors integrated devices and systems 被引量:2
20
作者 Haihua Wang Mingjian Zhou +5 位作者 Xiaolong Jia Hualong Wei Zhenjie Hu Wei Li Qiumeng Chen Lei Wang 《Journal of Semiconductors》 2025年第1期179-192,共14页
Multimodal sensor fusion can make full use of the advantages of various sensors,make up for the shortcomings of a single sensor,achieve information verification or information security through information redundancy,a... Multimodal sensor fusion can make full use of the advantages of various sensors,make up for the shortcomings of a single sensor,achieve information verification or information security through information redundancy,and improve the reliability and safety of the system.Artificial intelligence(AI),referring to the simulation of human intelligence in machines that are programmed to think and learn like humans,represents a pivotal frontier in modern scientific research.With the continuous development and promotion of AI technology in Sensor 4.0 age,multimodal sensor fusion is becoming more and more intelligent and automated,and is expected to go further in the future.With this context,this review article takes a comprehensive look at the recent progress on AI-enhanced multimodal sensors and their integrated devices and systems.Based on the concept and principle of sensor technologies and AI algorithms,the theoretical underpinnings,technological breakthroughs,and pragmatic applications of AI-enhanced multimodal sensors in various fields such as robotics,healthcare,and environmental monitoring are highlighted.Through a comparative study of the dual/tri-modal sensors with and without using AI technologies(especially machine learning and deep learning),AI-enhanced multimodal sensors highlight the potential of AI to improve sensor performance,data processing,and decision-making capabilities.Furthermore,the review analyzes the challenges and opportunities afforded by AI-enhanced multimodal sensors,and offers a prospective outlook on the forthcoming advancements. 展开更多
关键词 SENSOR multimodal sensors machine learning deep learning intelligent system
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部